首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The central star V4334 Sgr (Sakurai's Object) of the planetary nebula PN G010.4+04.4 underwent in 1995–1996 the rare event of a very late helium flash. It represents only one out of two such events during the era of modern astronomy (the other event was V605 Aql = Nova Aql 1919). All the other prominent objects of that type originate from events occurring several thousands of years ago (e.g. A30, A78). Thus it is of special interest for stellar evolution theory to model the detailed observations obtained during the last four years. Those models depend essentially on basic stellar parameters like effective temperature, surface gravity and stellar radius. Most of them depend strongly on the assumed distance to the object. Some models may give some constraints on this parameter, but most of them depend on the assumption as input parameter. Hence to determine a reliable distance is of considerable significance. This should be obtained through models that give us lower and upper boundaries, or through means which are independent of models. The detailed review, by using every kind of determination available up to now, leads to a Galactic foreground extinction of E B–V =0m75 ±0.05 and a distance of D = 2.0-0.6 +1.0 kpc.  相似文献   

2.
We create a grid of evolutionary models which include models thatexhibit born-again behavior; that is a very late helium pulse. Ourmodels include metalicities between Z = 0.001 and Z = 0.020. Massloss is varied beginning at the peak of the last thermal pulse onthe AGB. By doing this, we determine the range of helium mass atAGB departure that later produces a very late helium flash. Wepresent a direct comparison between our models, Sakurai's Object andFG Sge. Based on our comparisons, we make an observable predictionfor the future of Sakurai's Object: We expect it to increase intemperature and decrease slightly in luminosity within the next 20to 70 years and then to cool and brighten a second time with alonger time scale of roughly 200 to 500 years. It will become asFG Sge is now.  相似文献   

3.
The measurement of isotopic ratios provides a privileged insight both into nucleosynthesis and into the mechanisms operating in stellar envelopes, such as gravitational settling. In this article, we give a few examples of how isotopic ratios can be determined from high‐resolution, high‐quality stellar spectra. We consider examples of the lightest elements, H and He, for which the isotopic shifts are very large and easily measurable, and examples of heavier elements for which the determination of isotopic ratios is more difficult. The presence of 6Li in the stellar atmospheres causes a subtle extra depression in the red wing of the 7Li 670.7 nm doublet which can only be detected in spectra of the highest quality. But even with the best spectra, the derived 6Li abundance can only be as good as the synthetic spectra used for their interpretation. It is now known that 3D non‐LTE modelling of the lithium spectral line profiles is necessary to account properly for the intrinsic line asymmetry, which is produced by convective flows in the atmospheres of cool stars, and can mimic the presence of 6Li. We also discuss briefly the case of the carbon isotopic ratio in metal‐poor stars, and provide a new determination of the nickel isotopic ratios in the solar atmosphere. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula. Its structure and dynamics have been studied previously through high-resolution imaging and spectroscopy, and it appears dynamically similar to the ring structure around SN 1987A. Here, we present long-slit spectroscopy of the circumstellar nebula around Sher 25, and of the background nebula of the host cluster NGC 3603. We perform a detailed nebular abundance analysis to measure the gas-phase abundances of oxygen, nitrogen, sulphur, neon and argon. The oxygen abundance in the circumstellar nebula  (12 + log O/H = 8.61 ± 0.13 dex)  is similar to that in the background nebula (8.56 ± 0.07), suggesting that the composition of the host cluster is around solar. However, we confirm that the circumstellar nebula is very rich in nitrogen, with an abundance of 8.91 ± 0.15, compared to the background value of 7.47 ± 0.18. A new analysis of the stellar spectrum with the fastwind model atmosphere code suggests that the photospheric nitrogen and oxygen abundances in Sher 25 are consistent with the nebular results. While the nitrogen abundances are high, when compared to stellar evolutionary models, they do not unambiguously confirm that the star has undergone convective dredge-up during a previous red supergiant phase. We suggest that the more likely scenario is that the nebula was ejected from the star while it was in the blue supergiant phase. The star's initial mass was around  50 M  , which is rather too high for it to have had a convective envelope stage as a red supergiant. Rotating stellar models that lead to mixing of core-processed material to the stellar surface during core H-burning can quantitatively match the stellar results with the nebula abundances.  相似文献   

5.
We present 1D numerical simulations of the very late thermal pulse (VLTP) scenario for a wide range of remnant masses. We show that by taking into account the different possible remnant masses, the observed evolution of V4334 Sgr (a.k.a. Sakurai's object) can be reproduced within the standard 1D mixing length theory (MLT) stellar evolutionary models without the inclusion of any ad hoc reduced mixing efficiency. Our simulations hint at a consistent picture with present observations of V4334 Sgr. From energetics, and within the standard MLT approach, we show that low-mass remnants  ( M ≲ 0.6 M)  are expected to behave markedly differently from higher mass remnants  ( M ≳ 0.6 M)  in the sense that the latter remnants are not expected to expand significantly as a result of the violent H-burning that takes place during the VLTP. We also assess the discrepancy in the born-again times obtained by different authors by comparing the energy that can be liberated by H-burning during the VLTP event.  相似文献   

6.
We present observations of Sakurai's Object obtained at 1–5 μm between 2003 and 2007. By fitting a radiative transfer model to an echelle spectrum of CO fundamental absorption features around  4.7 μm  , we determine the excitation conditions in the line-forming region. We find  12C/13C = 3.5+2.0−1.5  , consistent with CO originating in ejecta processed by the very late thermal pulse, rather than in the pre-existing planetary nebula. We demonstrate the existence of  2.2 × 10−6≤ M CO≤ 2.7 × 10−6 M  of CO ejecta outside the dust, forming a high-velocity wind of  500 ± 80 km s−1  . We find evidence for significant weakening of the CO band and cooling of the dust around the central star between 2003 and 2005. The gas and dust temperatures are implausibly high for stellar radiation to be the sole contributor.  相似文献   

7.
Five planetary nebulae are known to show hydrogen-poor material nearthe central star. In the case of A58, this gas was ejected following alate thermal pulse similar to Sakurai's Object. In this paper I will reviewthese five objects. One of them, IRAS 18333 –2357, may not be a truePN. I will show that there is a strong case for a relation to the [WC]stars and their relatives, the weak emission-line stars. The surfaceabundances of the [WC] stars are explained via diffuse overshoot intothe helium layer. The hydrogen-poor PNe do not support this: theirabundances indicate a change of abundance with depth in the heliumlayer. A short-lived phase of very high mass loss, the r-AGB, isindicated. Sakurai's Object may be at the start of such a phase, and mayevolve to very low stellar temperatures.  相似文献   

8.
A study on the distribution of neutron exposures in a low-mass asymptotic giant branch (AGB) star is presented, according to the s-process nucleosynthesis model with the 12C(α, n)16O reaction occurred under radiative conditions in the interpulse phases. The model parameters, such as the over- lap factor r of two successive convective thermal pulses, the mass ratio q of the 13C shell with respect to the He intershell, and the effective mass of 13C in the 13C shell, vary with the pulse number. Considering these factors, a calculating method for the distribution of neutron exposures in the He intershell has been presented. This method has the features of simplicity and universality. Using this method, the exposure distribution for the stellar model of a star with the mass of 3 M? and the solar metallicity has been calculated. The results suggest that under the reasonable assumption that the number density of neutrons is uniform in the 13C shell, the ?nal exposure distribution approaches to an exponential distribution. For a stellar model with the de?nite initial mass and metallicity, there is a de?nite relation between the mean neutron exposure τ0 and the neutron exposure Δτ of each pulse, namely τ0 = 0.434λ(q1, q2, …, qmmax +1, …, r1, r2, …, rmmax +1)Δτ, where mmax is the total number of thermal pulses with the third dredge-up episode, and the proportional coeffcient λ(q1, q2, …, qmmax +1, …, r1, r2, …, rmmax +1) can be determined by an exponential curve ?tting to the ?nal exposure distribution. This new formula quantitatively uni?es the classical model with the s-process nu- cleosynthesis model by means of neutron exposure distribution, and makes the classical model continue to offer guidance and constraints to the s-process nu- merical calculations of stellar models.  相似文献   

9.
Understanding transport processes inside stars is one of the main goals of asteroseismology. Chemical turbulent mixing can affect the internal distribution of μ near the energy generating core, having an effect on the evolutionary tracks similar to that of overshooting. This mixing leads to a smoother chemical composition profile near the edge of the convective core, which is reflected in the behavior of the buoyancy frequency and, therefore, in the frequencies of gravity modes. We describe the effects of convective overshooting and turbulent mixing on the frequencies of gravity modes in B‐type main sequence stars. In particular, the cases of p‐g mixed modes in β Cep stars and high‐order modes in SPBs are considered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
For the first time we propose a real physical mechanism for 'extra mixing' in red giants that can quantitatively interpret all the known star-to-star abundance variations in globular clusters. This is Zahn's mechanism. It considers extra mixing in a radiative zone of a rotating star as a result of the joint operation of meridional circulation and turbulent diffusion. It is shown that the only free parameter, the angular velocity at the base of the convective envelope, can be so adjusted as to fit the observed abundance correlations without leading to a conflict with available data on rotation velocities of blue horizontal branch stars in the same cluster. There are two critical assumptions in our model, that the top of the radiative zone is not in synchronous rotation with the stellar surface but rotates significantly faster and that the criterion for shear instability takes a particular form. These will eventually be tested by three-dimensional hydrodynamical simulations.  相似文献   

11.
Hot cluster horizontal branch (HB) stars and field subdwarf B (sdB) stars are core helium burning stars that exhibit abundance anomalies that are believed to be due to atomic diffusion. Diffusion can be effective in these stars because they are slowly rotating. In particular, the slow rotation of the hot HB stars (Teff > 11000 K), which show abundance anomalies, contrasts with the fast rotation of the cool HB stars, where the observed abundances are consistent with those of red giants belonging to the same cluster. The reason why sdB stars and hot HB stars are rotating slowly is unknown. In order to assess the possible role of magnetic fields on abundances and rotation, we investigated the occurrence of such fields in sdB stars with Teff < 30 000 K, whose temperatures overlap with those of the hot HB stars. We conclude that large‐scale organised magnetic fields of kG order are not generally present in these stars but at the achieved accuracy, the possibility that they have fields of a few hundred Gauss remains open. We report the marginal detection of such a field in SB 290; further observations are needed to confirm it (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Recent advances in constructing stellar evolution models of hydrogen-deficient post-asymptotic giant branch (AGB) stars are presented. Hydrogen-deficiency can originate from mixing and subsequent convective burning of protons in the deeper layers during a thermal pulse on the post-AGB (VLTP). Dredge-up alone may also be responsible for hydrogen-deficiency of post-AGB stars. Models of the last thermal pulse on the AGB with very small envelope masses have shown efficient third dredge-up. The hydrogen content of the envelope is diluted sufficiently to produce H-deficient post-AGB stars (AFTP). Moreover, dredge-up alone may also cause H-deficiency during the Born-again phase (LTP). During the second AGB phase a convective envelope develops. A previously unknown lithium enrichment at the surface of Born-again stellar models may be used to distinguish between objects with different post-AGB evolution. The observed abundance ratios of C, O and He can be reproduced by all scenarios if an AGB starting model with inclusion of overshoot is used for the post-AGB model sequence. An appendix is devoted to the numerical methods for models of proton capture nucleosynthesis in the He-flash convection zone during a thermal pulse.  相似文献   

13.
The spectroscopic variability of Arcturus hints at cyclic activity cycle and differential rotation. This could provide a test of current theoretical models of solar and stellar dynamos. To examine the applicability of current models of the flux transport dynamo to Arcturus, we compute a mean‐field model for its internal rotation, meridional flow, and convective heat transport in the convective envelope. We then compare the conditions for dynamo action with those on the Sun. We find solar‐type surface rotation with about 1/10th of the shear found on the solar surface. The rotation rate increases monotonically with depth at all latitudes throughout the whole convection zone. In the lower part of the convection zone the horizontal shear vanishes and there is a strong radial gradient. The surface meridional flow has maximum speed of 170 m/s and is directed towards the equator at high and towards the poles at low latitudes. Turbulent magnetic diffusivity is of the order 1015–1016 cm2/s. The conditions on Arcturus are not favorable for a circulation‐dominated dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The property of inhomogeneous turbulence in conducting fluids to expel large‐scale magnetic fields in the direction of decreasing turbulence intensity is shown as important for the magnetic field dynamics near the base of a stellar convection zone. The downward diamagnetic pumping confines a fossil internal magnetic field in the radiative core so that the field geometry is appropriate for formation of the solar tachocline. For the stars of solar age, the diamagnetic confinement is efficient only if the ratio of turbulent magnetic diffusivity ηT of the convection zone to the (microscopic or turbulent) diffusivity ηin of the radiative interior is ηT/ηin 105. Confinement in younger stars requires larger ηT/ηin. The observation of persistent magnetic structures on young solar‐type stars can thus provide evidence for the nonexistence of tachoclines in stellar interiors and on the level of turbulence in radiative cores. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Infrared spectroscopy and photometry have revealed the remarkableevolution of Sakurai's Object from 1996 to the present. A cooling,carbon-rich photospheric spectrum was observable from 1996 to 1998.Considerable changes occured in 1998 as the continuum reddened due toabsorption and emission by newly formed dust located outside thephotosphere. In addition, a strong and broad helium 1.083 m P Cygniline developed, signifying the acceleration of an outer envelope ofmaterial to speeds as high as 1000 km s-1. At the same time thephotosphere of the central star remained quiescent. By 1999 thephotosphere was virtually completely obscured by the dust and the heliumemission line was the only detectable spectral feature remaining in the1–5 m band. In 2000 emission by dust has become even more dominant,as the envelope continues to expand and cool and the helium line weakens.  相似文献   

16.
We present new near-infrared observations of Sakurai's Object obtainedduring 1998–99 when this final helium shell flash object was in the dustcondensation phase. The infrared colours have reddened compared to earlierepochs, indicating increased dust condensation. The infrared spectrareveal all the features of a carbon star superposed on a dust continuum.  相似文献   

17.
For applying the kω model proposed by Li to the general stellar environment, it is necessary to study the physical meanings of the parameters in this model, in order to set a limit for the range of their values. It is indicated by the study that the variation of the parameter clμ impacts all the Péclet number, kinetic energy, characteristic timescale and characteristic length of turbulent ?ows. Besides, as the model parameter clμ increases, the damping rate of turbulent kinetic energy in the bottom convective overshoot region can be accelerated evidently. Both the model parameter clμ and the equivalent mixing length parameter α are proportional to the effciency of convective heat transfer in the convection zone, and their logarithms have a linear relation. There is also a linear relation between the logarithms of the model parameter clμ and the damping index θ of turbulent kinetic energy in the convective overshoot region. For the Sun, a group of appropriate model parameters are obtained to be: clμ = 0.004, and α = 1.7.  相似文献   

18.
Summary Stars of nearly all spectral types and luminosity classes are surrounded by tenuous high-temperature (T106-107K) coronae, which emit most of their radiation in the soft X-ray part of the spectrum. This paper reviews our present observational knowledge and theoretical understanding of stellar coronae, as has emerged from the extensive observations carried out with theEinstein and EXOSAT Observatories. We argue that different physical mechanisms are likely to be responsible for coronal emission in different parts of the HR diagram and we discuss the principal scenarios that have been proposed to account for the data. We show that in spite of the enormous progress made during the past decade, our understanding of stellar coronal emission remains incomplete and largely phenomenological. We outline major unsolved problems to be addressed by future space missions.  相似文献   

19.
We present differential Hα and Hβ photometry of the very bright RS CVn‐binary α Aurigae (Capella)obtained with theVienna automatic photoelectric telescope in the years 1996 through 2000. Low‐level photometric variations of up to 0m.04 are detected in Hα. A multifrequency analysis suggests two real periods of 106 ± 3 days and 8.64 ± 0.09 days, that we interpret to be the rotation periods of the cool and the hot component of the Capella binary, respectively. These periods confirm that the hotter component of Capella rotates asynchronously, while the cooler component appears to be synchronized with the binary motion. The combined Hα data possibly contains an additional period of 80.4 days that we, however, believe is either spurious and was introduced due to seasonal amplitude variations or stems from a time‐variable circumbinary mass flow. The rotational periods result in stellar radii of 14.3 ± 4.6 R and 8.5 ± 0.5 R for the cool and hot component, respectively, and are in good agreement with previously published radii based on radiometric and interferometric techniques. The long‐period eclipsing binary Aurigae served as our check star, and we detected complex light variations outside of eclipse of up to 0m.15 in H α and 0m.20 in Hβ. Our frequency analysis suggests the existence of at least three significant periods of 132, 89, and 73 days. One of our comparison stars (HD 33167, F5V) was discovered to be a very‐low amplitude variable with a period of 2.6360 ± 0.0055 days.  相似文献   

20.
In this paper, a literal analytical solution is developed for the abundances differential equations of the helium burning phase in hot massive stars. The abundance for each of the basic elements 4He,12C,16O and 20Ne is obtained as a recurrent power series in time, which facilitates its symbolic and numerical evaluations. Numerical comparison between the present solution and the numerical integration of the differential equations for the abundances show good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号