首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
鲍艳  王玉琦  南素兰  俞淼 《高原气象》2023,42(2):333-343
动态植被模型是研究植被变化对气候反馈和影响的重要模型工具。本文对耦合了动态植被(Dynamic Vegetation, DV)和碳氮(Carbon and Nitrogen, CN)模型的NCAR陆面过程模式CLM4.5(Community Land Model version 4.5)对青藏高原(以下简称高原)植被的模拟性能进行了评估,获得了定量化的偏差信息,并对高原植被和气候变化因子的关系进行了初步探讨。结果表明:模型能大致再现叶面积指数(Leaf area index, LAI)在历史时期的季节循环、长期变化趋势和空间分布,但空间变率较遥感资料大。模拟的乔木覆盖度偏大,草地覆盖度偏小,因此严重高估了植被高原南部和东部的LAI。与遥感观测相比,模拟的LAI呈现了1~2个月的滞后,这与模式本身的植被动力机制不完善和模式的降水驱动偏差有关。高原植被变化趋势的时空分布与表层土壤水和降水等气象因子的趋势变化显示出较好的一致性,表明在该研究时段,地表水循环的变化(主要是降水和土壤水含量)对高原植被生长可能起主导作用。  相似文献   

2.
利用中国科学院大气物理研究所(IAP)大气科学与地球流体力学数值模拟国家重点实验室(LASG)的全球耦合模式(GOALS〖CD*2〗AVIM),进行了100年积分。利用后40年的结果对模式耦合植被动态过程(AVIM)前后输出的海洋物理场对比分析。结果表明:耦合AVIM后的模式可以合理地模拟全球海洋温盐环流的气候态、季节变化,可以改进模式的模拟效果,在一定程度上克服了耦合AVIM前模式的缺点,使模拟结果更接近实测。由于植被〖CD*2〗大气的双向作用,在季节变化的模拟中,9月的改进效果大于3月的,北半球大于南半球;对于年平均气候态,耦合AVIM后的模式结果在热带海区海表面温度(SST)的模拟效果得到了明显改善,尤其是赤道太平洋海区的海温偏低现象得到了改善;在年际变化的模拟中,改善了耦合AVIM前模式模拟的年际变化分布,加大了赤道太平洋的标准差的模拟,使得耦合AVIM后模拟的年际变化大于耦合前;增强了耦合模式对赤道太平洋ENSO的模拟能力,较耦合AVIM前的模式模拟出了更多的ENSO基本特征,也改善了耦合AVIM前ENSO变化周期偏弱、偏短的现象;同样改善了对气候系统中存在的相互作用的模拟,对于热带印度洋SST变化与赤道太平洋SST的相互关联的模拟中,更加真实地模拟出了气候系统中存在的相互关联关系,体现出了AVIM动态植被过程对气候耦合模式的改善。  相似文献   

3.
利用MODIS卫星观测资料,对一个考虑了生态系统碳氮循环过程的动态植被模型ICM的模拟性能进行了评估.重点对反映植被动力学的关键参数--叶面积指数(LAI)的模拟结果与观测进行了对比分析,评估了ICM对LAI季节变化特征的模拟能力.结果表明,ICM基本能够模拟出植被的季节变化特征.总体而言,模拟值在低纬度和高纬度地区大...  相似文献   

4.
俞淼  陈海山  孙照渤 《大气科学》2011,35(3):571-588
植被动态冠层模型Interactive Canopy Model(ICM)考虑了生态系统中较完整的碳氮循环过程,能够较为客观真实地描述较短时间尺度上植被的动态变化特征.本文在ICM原有碳氮分配方案基础上,考虑了植物花、果实等新生组织对碳氮分配的影响,假设新生组织碳库是花期以后植物的主要碳汇之一,并利用物候模型Fore-...  相似文献   

5.
动态植被模型(Interactive Canopy Model,ICM)中考虑了生态系统碳氮循环过程,能够描述较短时间尺度上的植被与大气之间相互作用过程。利用21 a的GIMMS卫星观测LAI资料,与ICM模拟结果进行年际变率对比分析,评估模型对植被年际变化的模拟性能。结果表明,ICM能在一定程度上反映植被年际变率的空间分布特征,但模拟的热带部分地区植被的年际变率偏小,除此之外大部分地区模拟的年际变率偏大;模拟能够反映出全球植被年际变化的主要空间分布型,同时低纬度地区植被的时间演变特征要好于高纬度地区;ICM对寒带灌丛、北非稀树大草原、落叶针叶林的年际变化模拟较好,但对中国东部农作物的模拟表现出了明显的周期振荡现象,与实际情况差距较大。  相似文献   

6.
灾害动态风险评估是对风险评估方法的一次改进,通过对灾害过程的不同阶段分别开展风险分析,将气象灾害的风险分析从气候特征评价向天气过程评价转化,以更好地应用于动态风险预警。以杭州暴雨灾害为例,将灾害性天气风险评估过程划分为灾前预评估、灾中实时评估、灾后调查评估3个阶段,利用灰色关联模型界定杭州暴雨致灾因子的评价指标,同时基于模糊综合评价方法构建灾害风险评估模型,进而形成一整套阶段性动态风险评估流程。最后,结合1509号台风暴雨过程进行实例分析,并分别给出3个阶段的评估检验结果。结果显示灾后评估结果与灾中评估的一致性高达76.0%,而与灾前预评估的一致性仅为49.0%,说明灾中评估的开展可以有效修正预评估结果。随着动态风险评估流程模型的业务化运行,将会实现针对整个灾害过程的滚动加密评估,从而进一步提升风险评估结果的可靠性。  相似文献   

7.
8.
为了开展客观定量的暴雨洪涝灾害评估,探讨了基于暴雨洪涝淹没模型的暴雨洪涝灾害损失评估业务流程,其核心环节有两部分:估算因降水造成的淹没范围和建立适用的经济损失评估模型。其中暴雨洪涝淹没模型以最大坡降算法和曼宁公式计算暴雨洪涝汇流过程,通过给定汇流时间得到研究区域的淹没面积和水深;经济损失评估模型由直接经济损失和间接经济损失构成,直接经济损失由淹没范围内各类财产的价值乘以其相应的损失率得到。以武汉市江夏区2010年7月一次暴雨洪涝灾害过程为例给出了整个评估流程的实现过程,结果表明基于暴雨洪涝淹没模型的洪涝灾害损失评估业务流程物理意义清楚,表达了暴雨-径流-洪涝灾害全过程,可用以提高洪涝灾害影响评估的定量化程度,同时也为暴雨洪涝风险管理提供一定的依据。  相似文献   

9.
选取汉中市2018-07-01和2019-08-09两次暴雨过程中新一代天气雷达数据产品的组合反射率因子和自动雨量计逐小时降水资料,建立随时空变化的动态Z-R关系,获得雷达估算降水场,分析其空间分布特征,并对不同等级降水的估算能力进行了分析。结果表明:(1)动态Z-R关系定量降水估算在两次暴雨中表现良好,能很好地反映地面降水的分布特征,对于30 mm/h以下量级降水,实测降水量和估算降水量的面积和落区均表现一致,其中20~30 mm/h短时强降水估算面积最准确,但对于30 mm/h以上量级降水,估算面积减小,值偏弱,无法反映出降水最大值落区。(2)随着降水量级增大,估算的绝对误差也同步增大。具体表现为小雨量级有明显的高估,中雨及中雨以上量级则有不同程度的低估。从相对误差来看,大雨和暴雨量级的降水估算精度高,估算值能反映真实值。  相似文献   

10.
水稻障碍型冷害损失评估及预测动态模型研究   总被引:18,自引:2,他引:18  
在分析东北水稻生殖生长关键期低温生理反应的基础上,建立了计算日冷积温(时积温)及其与空壳率关系的模式和敏感期内每日水稻敏感群体数量比率分布标准化模式,进而建立了水稻在生殖生长关键期内因低温影响而导致空壳率及减产率评估、预测模式。该模式可较精确地计算出逐日低温导致的空壳率及减产率,可比成熟期提前25 d左右进行冷害评估和损失预测。  相似文献   

11.
The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, within an integrated system, has been increasing. In this paper, some numerical schemes and a higher resolution soil texture dataset were employed to improve the Sheffield Dynamic Global Vegetation Model (SDGVM). Using eddy covariance-based measurements, we then tested the standard version of the SDGVM and the modified version of the SDGVM. Detailed observations of daily carbon and water fluxes made at the upland oak forest on the Walker Branch Watershed in Tennessee, USA offered a unique opportunity for these comparisons. The results revealed that the modified version of the SDGVM did a reasonable job of simulating the carbon and water flux and the variation of soil water content (SWC). However, at the end of the growing season, it failed to simulate the effect of the limitations on the soil respiration dynamics and as a result underestimated this respiration. It was also noted that the modified version overestimated the increase in the SWC following summer rainfall, which was attributed to an inadequate representation of the ground water and thermal cycle.  相似文献   

12.
Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-I and net pri- mary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model- simulated Nifio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2-7 years. Further analysis indicates their correlation coefficient reaches -0.7 when NEP lags the Nifio3.4 index for about 1-2 months.  相似文献   

13.
A simplified vegetation distribution prediction scheme is used in combination with the Biosphere-Atmosphere Transfer Scheme (BATS) and coupled to a version of the NCAR Community Climate Model (CCM1) which includes a mixed-layer ocean. Employed in an off-line mode as a diagnostic tool, the scheme predicts a slightly darker and slightly rougher continental surface than when BATS' prescribed vegetation classes are used. The impact of tropical deforestation on regional climates, and hence on diagnosed vegetation, differs between South America and S.E. Asia. In the Amazon, the climatic effects of removing all the tropical forest are so marked that in only one of the 18 deforested grid elements could the new climate sustain tropical forest vegetation whereas in S.E. Asia in seven of the 9 deforested elements the climate could continue to support tropical forest. Following these off-line tests, the simple vegetation scheme has been coupled to the GCM as an interactive (or two-way) submodel for a test integration lasting 5.6 yr. It is found to be a stable component of the global climate system, producing only ~ 3% (absolute) interannual changes in the predicted percentages of continental vegetation, together with globally-averaged continental temperature increases of up to + 1.5 °C and evaporation increases of 0 to 5 W m–2 and no discernible trends over the 67 months of integration. On the other hand, this interactive land biosphere causes regional-scale temperature differences of ± 10 °C and commensurate disturbances in other climatic parameters. Tuning, similar to the q-flux schemes used for ocean models, could improve the simulation of the present-day surface climate but, in the longer term, it will be important to focus on predicting the characteristics of the continental surface rather than simple vegetation classes. The coupling scheme will also have to allow for vegetation responses occurring over longer timescales so that the coupled system is buffered from sudden shocks.  相似文献   

14.
植物的生长策略不仅影响生态系统结构,而且对全球碳、水循环也起着至关重要的作用。本文以中国科学院大气物理研究所研发的第一代全球植被动力学模式IAP-DGVM1.0为平台,考察森林生态系统中树的个体生长方案及其影响。结果表明,与观测相比,模式高估了个体茎生物量,低估了个体叶生物量,从而进一步高估了中国森林生态系统的总生物量和成熟林受干扰后恢复的时间尺度,低估了生态系统净初级生产力和叶面积指数。  相似文献   

15.
The available energy (AE), driving the turbulent fluxes of sensible heat and latent heat at the earth surface, was estimated at four partly complex coniferous forest sites across Europe (Tharandt, Germany; Ritten/Renon, Italy; Wetzstein, Germany; Norunda, Sweden). Existing data of net radiation were used as well as storage change rates calculated from temperature and humidity measurements to finally calculate the AE of all forest sites with uncertainty bounds. Data of the advection experiments MORE II (Tharandt) and ADVEX (Renon, Wetzstein, Norunda) served as the main basis. On-site data for referencing and cross-checking of the available energy were limited. Applied cross checks for net radiation (modelling, referencing to nearby stations and ratio of net radiation to global radiation) did not reveal relevant uncertainties. Heat storage of sensible heat J H, latent heat J E, heat storage of biomass J veg and heat storage due to photosynthesis J C were of minor importance during day but of some importance during night, where J veg turned out to be the most important one. Comparisons of calculated storage terms (J E, J H) at different towers of one site showed good agreement indicating that storage change calculated at a single point is representative for the whole canopy at sites with moderate heterogeneity. The uncertainty in AE was assessed on the basis of literature values and the results of the applied cross checks for net radiation. The absolute mean uncertainty of AE was estimated to be between 41 and 52 W m?2 (10–11 W m?2 for the sum of the storage terms J and soil heat flux G) during mid-day (approximately 12% of AE). At night, the absolute mean uncertainty of AE varied from 20 to about 30 W m?2 (approximately 6 W m?2 for J plus G) resulting in large relative uncertainties as AE itself is small. An inspection of the energy balance showed an improvement of closure when storage terms were included and that the imbalance cannot be attributed to the uncertainties in AE alone.  相似文献   

16.
 This study presents results from a downscaling simulation of the impact of a doubling of CO2 concentration. A multidecadal coupled simulation of a 1% per year increase of CO2 concentration with the Hadley Centre ocean-atmosphere model provides its sea-surface temperatures and deep soil climatological temperatures as a boundary condition to two 10-year integrations with a version of the ARPEGE-IFS atmosphere model. This global spectral model has a horizontal resolution varying between 60 km in the Mediterranean Sea and 700 km in the southern Pacific. The global impact as well as the regional impact over Europe in this time slice are examined and compared with results from other studies. Over Europe, our main focus, the model impact consists of a warming of about 2 °C, relatively uniform and with little seasonal dependence. There are precipitation increases of about 10% over the northern part in winter and spring, and 30% over the southern part in winter only. Precipitation decreases by 20% in the southern part in autumn. The day-to-day variability of the precipitation increases, except over the southern area in summer. No strong impact is found on the soil moisture. Budgets of physical fluxes are examined at the top of the atmosphere and at the land-atmosphere interface. Received: 26 February 1997/Accepted: 21 October 1997  相似文献   

17.
The deposition fluxes of inorganic compounds dissolved in fog and rain were quantified for two different ecosystems in Europe. The fogwater deposition fluxes were measured by employing the eddy covariance method. The site in Switzerland that lies within an agricultural area surrounded by the Jura mountains and the Alps is often exposed to radiation fog. At the German mountain forest ecosystem, on the other hand, advection fog occurs most frequently. At the Swiss site, fogwater deposition fluxes of the dominant components SO42− (0.027 mg S m−2 day−1), NO3 (0.030 mg N m−2 day−1) and NH4+ (0.060 mg N m−2 day−1) were estimated to be <5% of the measured wet deposition (0.85, 0.70 and 1.34 mg m−2 day−1, respectively). The corresponding fluxes at the forest site (0.62, 0.82 and 1.16 mg m−2 day−1, respectively) were of the same order of magnitude as wet deposition (1.04, 1.01 and 1.36 mg m−2 day−1), illustrating the importance of fog (or occult) deposition. Trajectory analyses at the forest site indicate significantly higher fogwater concentrations of all major ions if air originated from the east (i.e. the Czech Republic), which is in close agreement with earlier studies.  相似文献   

18.
19.
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon–nitrogen(CN) interactions(CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83(BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production(GPP) and latent heat flux(LE) for the dry season, and improved the carbon(C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m~(-2)d~(-1), net ecosystem exchange by 1.96 g C m~(-2)d~(-1), LE by 5.0 W m~(-2), and soil moisture by 0.03 m~3m~(-3), at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses(including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.  相似文献   

20.
Turbulent transport processes for momentum and scalar quantities are examined by a joint probability distribution analysis using data observed within and above a deciduous forest. Characteristics of transport processes in the frequency domain were also analyzed using Tukey's procedure. The results confirm that sweep phenomena prevail within and at the top of a tall plant canopy and that downdrafts are more effective for vertical transport of momentum and scalar quantities. On the other hand, updrafts become more efficient for vertical transport in the daytime at levels about twice treetop height. The results show that within the forest, the sweep phenomenon prevails over a wide frequency range, while above the forest, prevalence of the ejection phenomenon is limited to low frequencies. It is again noted that the plant canopy plays an important role in the sweep-ejection cycle as well as in turbulent transport processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号