首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
We investigate the effect of laterally varying earth structure on centroid moment tensor inversions using fundamental mode mantle waves. Theoretical seismograms are calculated using a full formulation of surface wave ray theory. Calculations are made using a variety of global tomographic earth models. Results are compared with those obtained using the so-called great-circle approximation, which assumes that phase corrections are given in terms of mean phase slowness along the great circle, and which neglects amplitude effects of heterogeneity. Synthetic tests suggest that even source parameters which fit the data very well may have large errors due to incomplete knowledge of lateral heterogeneity. The method is applied to 31 shallow, large earthquakes. For a given earthquake, the focal mechanisms calculated using different earth models and different forward modelling techniques can significantly vary. We provide a range of selected solutions based on the fit to the data, rather than one single solution. Difficulties in constraining the dip-slip components of the seismic moment tensor often produce overestimates of seismic moment, leading to near vertical dip-slip mechanisms. This happens more commonly for earth models not fitting the data well, confirming that more accurate modelling of lateral heterogeneity can help to constrain the dip-slip components of the seismic moment tensor.  相似文献   

9.
10.
11.
Seismic imaging of the laterally varying D" region beneath the Cocos Plate   总被引:1,自引:0,他引:1  
We use an axisymmetric, spherical Earth finite difference algorithm to model SH -wave propagation through cross-sections of laterally varying lower mantle models beneath the Cocos Plate derived from recent data analyses. Synthetic seismograms with dominant periods as short as 4 s are computed for several models: (1) a D" reflector 264 km above the core–mantle boundary with laterally varying S -wave velocity increases of 0.9–2.6 per cent, based on localized structures from a 1-D double-array stacking method; (2) an undulating D" reflector with large topography and uniform velocity increase obtained using a 3-D migration method and (3) cross-sections through the 3-D mantle S -wave velocity tomography model TXBW. We apply double-array stacking to assess model predictions of data. Of the models explored, the S -wave tomography model TXBW displays the best overall agreement with data. The undulating reflector produces a double Scd arrival that may be useful in future studies for distinguishing between D" volumetric heterogeneity and D" discontinuity topography. Synthetics for the laterally varying models show waveform variability not observed in 1-D model predictions. It is challenging to predict 3-D structure based on localized 1-D models when lateral structural variations are on the order of a few wavelengths of the energy used, particularly for the grazing geometry of our data. Iterative approaches of computing synthetic seismograms and adjusting model characteristics by considering path integral effects are necessary to accurately model fine-scale D" structure.  相似文献   

12.
The ability of seismological criteria to identify earthquakes from underground explosions depends partly on the orientation of the earthquake source. Well-determined double-couple moment tensor solutions for a large number of earthquakes have been published in the Harvard centroid moment tensor (CMT) and United Slates Geological Survey (USGS) catalogues. Statistical analyses of these catalogues indicate that the distribution of the orientation of earthquake mechanisms is not random. The distribution of the T axes shows significant clustering around the downward vertical, indicating that a larger number of earthquake mechanisms radiate compressional P -wave energy to teleseismic distances from near the maximum of the radiation pattern than is predicted if earthquake sources are randomly oriented double couples. The clustered T axes correspond to compressional dip-slip mechanisms, and it is this type of mechanism which is believed to cause both the m b: M s (the ratio of body-wave to surface-wave magnitude) and first-motion criteria to misidentify an earthquake as an explosion.  相似文献   

13.
14.
15.
16.
The Kopeh Dagh is a linear mountain range separating the shortening in Iran from the stable, flat Turkmenistan platform. In its central part is an array of active right-lateral strike-slip faults that obliquely cut the range and produce offsets of several kilometres in the geomorphology and geological structure. They are responsible for major destructive earthquakes in the 19th and 20th centuries and represent an important seismic hazard for this now-populous region of NE Iran. These strike-slip faults all end in thrusts, revealed by the uplift and incision of Late Quaternary river terraces, and do not continue beyond the Atrak river valley, which forms the southern margin of the Kopeh Dagh. The cumulative offset on these strike-slip faults, and their associated rotation about vertical axes, can account for ∼60 km of N–S shortening. This value is similar to estimates of the Late Quaternary N–S right-lateral shear between central Iran and Afghanistan, which must be accommodated in NE Iran. The strike-slip faults also require ∼30 km of along-strike extension of the Kopeh Dagh, which is taken up by the westward component of motion between the South Caspian Basin and both Eurasia and Central Iran. It is probable that these motions occurred over the last ∼10 Ma.  相似文献   

17.
18.
19.
We present the extension of stereotomography to P - and S -wave velocity estimation from PP - and PS -reflected/diffracted waves. In this new context, we greatly benefit from the use of locally coherent events by stereotomography. In particular, when applied to S -wave velocity estimation from PS -data, no pairing of PP - and PS -events is a priori required. In our procedure the P -wave velocity model is obtained first using stereotomography on PP -arrivals. Then the S -wave velocity model is obtained using PS -stereotomography on PS -arrivals fixing the P -wave velocity model. We present an application to an 'ideal' synthetic data set demonstrating the relevance of the approach, which allows us to recover depth consistent P - and S -waves velocity models even if no pairing of PP - and PS -events is introduced. Finally, results to a real data set from the Gulf of Mexico are presented demonstrating the potential of the method in a noisy data context.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号