首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental investigations between 800 ° to 1,100 ° C yielded no evidence for extensive substitution of Mn2++Si4+2Mn3+ in braunite, leading to a complete solid solution series between partridgeite (Mn2O3) and braunites with silica contents up to 40 wt. % as proposed by Muan (1959a, b). In the presence of excess manganese braunite of nearly ideal composition coexists at 800 ° C with partridgeite and at T1,000 ° C with hausmannite (Mn3O4). At 800 ° C and 1,000 ° C braunite coexists, in the presence of excess silica, with a SiO2-polymorph and at 1,100 ° C with rhodonite (MnSiO3). Quantitative analysis of the X-ray patterns of coexisting cristobalite and braunite confirms a maximum silica-excess in braunite of only about 2 wt.% over the ideal composition, Mn2+Mn 6 3+ SiO12.  相似文献   

2.
 The magnetic behavior of the Jahn-Teller structure braunite, (Mn2+ 1−yM y )(Mn3+ 6− x Mx)SiO12, is strongly influenced by the incorporation of elements substituting manganese. Magnetic properties of well-defined synthetic samples were investigated in dependence on the composition. The final results are presented in magnetic phase diagrams. To derive the necessary data, ac susceptibility and magnetization of braunites with the substitutional elements M = Mg, Fe, (Cu+Ti) and Cu were measured. Whereas the antiferromagnetic ordering temperature, T N , of pure braunite is hardly affected by the substitution of nonmagnetic Mg, it is rapidly suppressed by the substitution of magnetic atoms at the Mn positions. Typically for a concentration (x, y) ≥ 0.7 of the substituted elements, a spin glass phase occurs in the magnetic phase diagrams. Additionally, for the braunite system with Fe3+ substitutions, we observe in the concentration range 0.2 < x< 0.7 a double transition from the paramagnetic state, first to the antiferromagnetic state, followed by a transition to a spin glass state at lower temperatures. The unusual change of the magnetic properties with magnetic substitution at the Mn positions is attributed to the peculiar antiferromagnetic structure of braunite, which has been resolved recently. Received: 19 April 2001 / Accepted: 6 September 2001  相似文献   

3.
Summary ?A single-crystal X-ray investigation was performed on crystals of P21/c natural pigeonite with varying Ca and Fe* ( = Fe2+ + Mn2+) contents, in order to verify the effect of microtextural disorder on structure refinements and to constrain the crystal chemistry of pigeonite. Antiphase domains and exsolution lamellae affect differently the refinement results. In a crystal free of exsolution the structure obtained after refinement with all reflections is an average of that of the antiphase domains and of their boundaries, whereas in an exsolved crystal it represents only the structure of the prevailing pigeonite lamellae. The refinement using only h + k odd reflections seems to give the structure of the Ca-free pigeonite characteristic of the antiphase domains rather than that of Ca-rich domain walls. The ratio of the scale factors in refinements with all reflections and with only h + k odd reflections allows the ratios of the exsolved augite and pigeonite phases to be estimated. The crystal chemistry of the investigated samples follows the trends outlined by data on Ca-free and Fe-free synthetic samples. In particular, it is shown that Ca and Fe* substitution for Mg induce similar changes in the average structure, i.e. both induce an expansion in the M1 polyhedron and decrease the difference between the M2–O3 distances. Received October 18, 2001; revised version accepted February 15, 2002  相似文献   

4.
High-pressure, low-temperature metamorphic Mn-rich quartzites from Andros and Evvia (Euboea) islands, Greece, situated in the Eocene blueschist belt of the Hellenides, reveal different Mn-Al-Ca-Mg-silicate assemblages in response to variable metamorphic grade. On Evvia, piemontite- and/or braunite-rich quartzites which are associated with low-grade blueschists (T<400° C, P> 8 kbar) show the principle mineral assemblage quartz + montite + sursassite + braunite + Mg-chlorite + hematite + rutile + titanite. The Mn-Al-silicate sursassite, basically (Mn2+, Ca)4 Al2(Al, Fe3+, Mn3+, Mg)4Si6O21(OH)7, thus far reported as a rare mineral, locally occurs as a rockforming mineral in cm- to m-thick layers. On Andros, higher-grade quartzites (T450–500° C, P>10 kbar) of similar composition contain the assemblage quartz + piemontite + spessartine + braunite + Mg-chlorite+hematite + phengite+ phlogopite + rutile. Rare sursassite is present only as a relict phase. Additional, mostly accessory minerals in quartzites from Evvia and Andros are ardennite, Na-amphibole, acmitic clinopyroxene, albite, apatite, and tourmaline. The chemical composition of the main phases is characterized in detail.Disequilibrium textures and mineral compositions in some samples from Andros and Evvia imply the reactions sursassite + braunite + quartz = spessartine+clinochlore±hematite + H2O + O2 (1) sursassite + braunite + phengite + quartz = spessartine + phlogopite±hematite + H2O + O2 (2) and in braunite-free assemblages sursassite + Mn3+Fe –1 3+ [hematite, piemontite] + hematite + quartz = spessartine + clinochlore + H2O+O2 (3) Reactions (1) to (3) have positive P-T slopes. They are considered to account for the breakdown of sursassite and the formation of spessartine during prograde metamorphism of the piemontite quartzites and related rocks. P-T data from Andros and Evvia and geological data from few other occurrences reported suggest sursassite+ quartz±braunite to be stable at T<400–450° C over a considerable pressure interval at least up to 10 kbar. Theoretical phase relations among Mn3+-Mn2+-silicates in the pseudoquaternary system Al-Mn-Ca-Mg with excess quartz, H2O, and O2 indicate that low-grade assemblages containing sursassite (±braunite±pumpellyite±viridine±piemontite + quartz) are likely precursors of higher-grade assemblages including spessartine, Mg-chlorite, braunite, viridine, and piemontite reported from greenschist-, amphibolite-, and high-grade blueschist-facies rocks of appropriate composition.  相似文献   

5.
In the metamorphosed manganese oxide ores of India, braunite is ubiquitous in all assemblages from chlorite to sillimanite grades. Chemical analyses of braunite from different prograde assemblages confirm the presence of a fixed R2+ (=Mn2++Mg+Ca) SiO3 molecule in the mineral. Element partitioning between coexisting braunite and bixbyite indicates a near-ideal mixing of Fe+3/ -Mn+3 in the phases. This also indicates that braunite became relatively ferrian while equilibrating with associated phases such as bixbyite, hollandite and jacobsite during prograde reactions. Petrogenetic studies show that as a general trend, prograde lower oxide phases appeared by deoxidation of higher oxide phases. But braunite, a more reduced phase than bixbyite, appeared early from deoxidation of pyrolusite in presence of quartz. Bixbyite could appear later from the reacting pyrolusite-braunite-quartz assemblage. Inferred mineral reaction paths and the general trend of pro-grade deoxidation reactions suggest that the composition of ambient fluid phase was internally buffered during metamorphism.  相似文献   

6.
Summary ?The occurrence of divalent rare earth elements (Sm2+, Yb2+, Tm2+, and Ho2+) in natural fluorite is evaluated using a suite of 37 samples deriving mainly from Sn–W deposits in the Erzgebirge (Germany), Central Kazakhstan, and the Mongolian Altai. Trace element composition was determined by ICP-AES and ICP-MS. The defect structure of the samples was studied by cathodoluminescence (CL), electron paramagnetic resonance (EPR), and optical absorption spectroscopy. Reduction of cubic Sm3+, Yb3+, Tm3+, and Ho3+ under radioactive irradiation produces the corresponding divalent centres. Our data suggest a preferable formation of Sm2+ and Yb2+ under thorium and of Tm2+ and Ho2+ under uranium irradiation. Irradiation (indicated by intense brownish (thorium) and deep purple (uranium) coloration of fluorite) gives rise to a population of divalent centres in equilibrium with their decay. However, sporadic radioactive irradiation and stabilisation of the divalent state of the REE by other electron defects were found in most cases. Three models of stabilisation of Sm2+, Yb2+, Tm2+, and Ho2+ are discussed. The most effective mechanism for Sm, Yb, Tm, and Ho is coupling with Fe3+ centres (REE3++Fe2+ → REE2++Fe3+). Accordingly, the occurrence of Fe3+ centres in natural fluorite is regarded to indicate not an oxidising, but rather a reducing environment during fluorite precipitation. Originally incorporated in the divalent form, Fe2+ was converted to Fe3+ by radioactive irradiation. Such a conclusion is in agreement with the finding of high contents of interstitial fluorine providing tetragonal local compensation of trivalent REE centres in crystals with high Fe3+. If Fe is not present, compensation of divalent Sm, Yb, and Tm is achieved by radiogenic oxidation of Ce(Pr, Tb)3+ accompanied by charge transfer (REE3++Ce(Pr, Tb)3+ → REE2++ Ce(Pr, Tb)4+). Ho2+ is sometimes stabilised by a hole trapped by an electron localised on a F vacancy (Ho3++e on □F → REE2++ self-trapped exciton). Because Sm2+ is optically active, the stabilisation by Fe3+ (stable up to temperatures above 350 °C) or Ce(Pr, Tb)4+ (unstable even under visible light) in samples may be determined by careful observations in the field. Institut für Geotechnik, ETH Zürich, ETH-H?nggerberg, Zürich, Switzerland Stanford Linear Accelerator Center, Menlo Park, CA, USA Received January 8, 2002; revised version accepted June 10, 2002  相似文献   

7.
Geochemical modeling of coal mine drainage, Summit County, Ohio   总被引:4,自引:1,他引:4  
A. Foos 《Environmental Geology》1997,31(3-4):205-210
 Geochemical modeling was used to investigate downstream changes in coal mine drainage at Silver Creek Metro-park, Summit County, Ohio. A simple mixing model identified the components that are undergoing conservative transport (Cl, PO4 3–, Ca2+, K+, Mg2+ and Na+) and those undergoing reactive transport (DO, HCO3 , SO4 2–, Fe2+, Mn2+ and Si). Fe2+ is removed by precipitation of amorphous iron-hydroxide. Mn2+ are removed along with Fe2+ by adsorption onto surfaces of iron-hydroxides. DO increases downstream due to absorption from the atmosphere. The HCO3 concentration increases downstream as a result of oxidation of organic material. The rate of Fe2+ removal from the mine drainage was estimated from the linear relationship between Fe+2 concentration and downstream distance to be 0.126 mg/s. Results of this study can be used to improve the design of aerobic wetlands used to treat acid mine drainage. Received: 4 June 1996 · Accepted: 17 September 1996  相似文献   

8.
 The hydrothermal reaction between grossular and 1 molar manganese chloride solution was studied at 2 kbar and 600 °C at various bulk Ca/(Ca+Mn) compositions: Ca3Al2Si3O12+3Mn2+(aq) ⇔ Mn3Al2Si3O12+3Ca2+(aq) The reaction products are garnets of the spessartine-grossular solid-solution series which discontinuously armour the dissolving grossular grains. The first garnet to crystallize is spessartine rich (X gt Mn≥0.95), reflecting the high Mn content of the solution, but as the reaction proceeds more calcium-rich garnets progressively overgrow the initial products. The armouring product layer is detached from the dissolving grossular, which allows the progressive overgrowth to occur on both its external and internal surfaces and results in the development of a two directional Ca/(Ca+Mn) zoning pattern in the product grains. The compositional changes in the run products are consistent with attainment of heterogeneous equilibrium between the external rims of the spessartine-grossular garnets and the bulk solutions in runs of duration ≥24 hours. Plots of ln KD versus X gt Ca maxima show linear variations that are not consistent with the ideal mixing that has been proposed for spessartine-grossular garnets at temperatures of 900 to 1200 °C. The data rather fit a regular solution model with the parameters Δ (600 °C, 2 kbar)=−8.0±0.8 kJ/mol and w gt CaMn=2.6±2.0 kJ/mol. Existing solubility measurements and thermodynamic data from other Ca and Mn silicates support the calculated data. Grossular activities calculated using the w gt CaMn parameter indicate that even in manganese-rich metapelites pressure estimates calculated using the garnet-plagioclase-Al2SiO5-quartz barometer will not be increased by more than 0.2 kbar. Received: 18 January 1995/Accepted: 4 June 1996  相似文献   

9.
Experiments ranging from 2 to 3 GPa and 800 to 1300 °C and at 0.15 GPa and 770 °C were performed to investigate the stability and mutual solubility of the K2ZrSi3O9 (wadeite) and K2TiSi3O9 cyclosilicates under upper mantle conditions. The K2ZrSi3O9–K2TiSi3O9 join exhibits complete miscibility in the P–T interval investigated. With increasing degree of melting the solid solution becomes progressively enriched in Zr, indicating that K2ZrSi3O9 is the more refractory end member. At 2 GPa, in the more complex K2ZrSi3O9–K2TiSi3O9–K2Mg6Al2Si6O20(OH)4 system, the presence of phlogopite clearly limits the extent of solid solution of the cyclosilicate to more Zr-rich compositions [Zr/(Zr + Ti) > 0.85], comparable to wadeite found in nature, with TiO2 partitioning strongly into the coexisting mica and/or liquid. However, at 1200 °C, with increasing pressure from 2 to 3 GPa, the partitioning behaviour of TiO2 changes in favour of the cyclosilicate, with Zr/(Zr + Ti) of the K2(Zr,Ti)Si3O9 phase decreasing from ∼0.9 to ∼0.6. The variation in the Ti content of the coexisting phlogopite is related to its degree of melting to forsterite and liquid, following the major substitution VITi+VI□=2VIMg. Received: 26 January 1999 / Accepted: 10 January 2000  相似文献   

10.
Résumé La braunite du gisement de St. Marcel-Praborna, dans le Val d'Aoste (Italie) présente un certain nombre de faciès et générations caractéristiques. Chacun de ces faciès possède non seulement des particularités morphologiques mais aussi des traits géochimiques propres.La braunite en filigrane représente la première génération de braunite dans le gisement et certains de ses traits géochimiques semblent hérités des séries originelles.Le faciès de braunite compacte représente la braunite presque pure, tandis que la braunite en filigrane renferme tout à la fois du Ca, du Fe, du Ti, ainsi que des traces en éléments de transition (Ni notamment).L'importance de la teneur en MnO2 du gisement nous parait étroitement liée à l'enrichissement tardif en K+ du gisement.Les rapports paragénétiques et l'évolution des oxydes manganésifères de St. Marcel sont des traits que l'on retrouve dans les oxydes des nodules polymétalliques ayant subi les effets du métamorphisme.L'oxydation des silicates et carbonates, souvent due aux fracturations tardives, est négligeable dans ce gisement.
Braunite in the metamorphosed Mn ore-body at St. Marcel-Praborna Val d'Aosta, Italy, occurs in several textural forms, each characterised by particular morphological or chemical features.Sponge-like (filigran-texture) braunite contains Ca, Fe, Ti and traces of some transition elements, especially Ni. This form represents the first braunite generation in this deposit and some of its chemical features are inherited by its transformation products.A second generation of braunite is compact and idioblastic and has almost the pure end-member chemical composition.The significant MnO2 content of this deposit seems to be closely related to a late enrichment in K.The paragenetic relationships and the evolution of the Mn-oxides of St. Marcel have the characteristics of oxides in those polymetallic nodules which have been metamorphosed.Oxidation of silicates and carbonates, often due to late fracturing, is negligible in this deposit.
  相似文献   

11.
 The partitioning of Mg and Fe between magnesiowüstite and ringwoodite solid solutions has been measured between 15 and 23 GPa and 1200–1600 C using both Fe and Re capsule materials to vary the oxidation conditions. The partitioning results show a clear dependence on the capsule material used due to the variation in Fe3+ concentrations as a consequence of the different oxidation environments. Using results from experiments performed in Fe capsules, where metallic Fe was also added to the starting materials, the difference in the interaction parameters for the two solid solutions (W FeMg mwW FeMg ring) is calculated to be 8.5±1 kJ mol−1. Similar experiments performed in Re metal capsules result in a value for W FeMg mwW FeMg ring that is apparently 4 kJ higher, if all Fe is assumed to be FeO. Electron energy-loss near-edge structure (ELNES) spectroscopic analyses, however, show Fe3+ concentrations to be approximately three times higher in magnesiowüstite produced in Re capsules than in Fe capsules and that Fe3+ partitions preferentially into magnesiowüstite, with K D Fe3+ ring/mw estimated between 0.1 and 0.6. Using an existing activity composition model for magnesiowüstite, a least–squares fit to the partitioning data collected in Fe capsules results in a value for the ringwoodite interaction parameter (W FeMg ring) of 3.5±1 kJ mol−1. The equivalent regular interaction parameter for magnesiowüstite (W FeMg mw) is 12.1±1.8 kJ mol. These determinations take into account the Fe3+ concentrations that occur in both phases in the presence of metallic Fe. The free energy change in J mol−1 for the Fe exchange reaction can be described, over the range of experimental conditions, by 912 + 4.15 (T−298)+18.9P with T in K, P in kbar. The estimated volume change for this reaction is smaller than that predicted using current compilations of equation of state data and is much closer to the volume change at ambient conditions. These results are therefore a useful test of high pressure and temperature equation of state data. Using thermodynamic data consistent with this study the reaction of ringwoodite to form magnesiowüstite and stishovite is calculated from the data collected using Fe capsules. Comparison of these results with previous studies shows that the presence of Fe3+ in phases produced in multianvil experiments using Re capsules can have a marked effect on apparent phase relations and determined thermodynamic properties. Received: 13 September 2000 / Accepted: 25 March 2001  相似文献   

12.
Summary The crystal structure of arsentsumebite, ideally, Pb2Cu[(As, S)O4]2(OH), monoclinic, space group P21/m, a = 7.804(8), b = 5.890(6), c = 8.964(8) ?, β = 112.29(6)°, V = 381.2 ?3, Z = 2, dcalc. = 6.481 has been refined to R = 0.053 for 898 unique reflections with I> 2σ(I). Arsentsumebite belongs to the brackebuschite group of lead minerals with the general formula Pb2 Me(XO4)2(Z) where Me = Cu2+, Mn2+, Zn2+, Fe2+, Fe3+; X = S, Cr, V, As, P; Z = OH, H2O. Members of this group include tsumebite, Pb2Cu(SO4)(PO4)(OH), vauquelinite, Pb2Cu(CrO4)(PO4)(OH), brackebuschite, Pb2 (Mn, Fe)(VO4)2(OH), arsenbracke buschite, Pb2(Fe, Zn)(AsO4)2(OH, H2O), fornacite, Pb2Cu(AsO4)(CrO4)(OH), and feinglosite, Pb2(Zn, Fe)[(As, S)O4]2(H2O). Arsentsumebite and all other group members contain M = MT chains where M = M means edge-sharing between MO6 octahedra and MT represents corner sharing between octahedra and XO4 tetrahedra. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(AsO4)2 (OH, H2O)2 and tsumcorite-group minerals Me(1)Me(2)2(XO4)2(OH, H2O)2. Received June 24, 2000; revised version accepted February 8, 2001  相似文献   

13.
Résumé Les minéralisations manganésifères de Falotta et de Parsettens (Grisons-Suisse) se manifestent dans les radiolarites du Jurassique supérieur et elles sont déposées sur les ophiolites du domaine pennique. Ce minerai présente des microstructures botryoïdales caractéristiques des nodules polymétalliques. Les phases minéralogiques des nodules, sous l'effet du métamorphisme alpin, se transforment de façon progressive en braunite faiblement cristallisée (avec un important excès en SiO2) à la périphérie des structures botryoïdales; par contre, vers la partie centrale de ces structures, la braunite est souvent largement cristallisée (sa teneur en SiO2 est normale). De fines veinules constituées de termes intermédiaires de la série isostructurale de la cryptomélanehollandite recoupent la minéralisation de braunite et indiquent la deuxième étape dans l'évolution du minerai oxydé de Falotta et Parsettens. La troisième étape est représentée par la présence de la todorokite et de la birnessite due à l'oxydation des veinules postérieures de rhodonite. Ces deux oxydes n'ont aucun rapport direct avec la minéralisation primaire. L'existence de structures sédimentaires et volcaniques non déformées dans les écailles supérieures de la nappe de Platta permet d'expliquer la conservation de microstructures primaires de nodules polymétalliques dans le minerai de braunite. La variation de la teneur en Sr2+ observée lorsque l'on va de Falotta vers Parsettens, dans les termes intermédiaires de la série isostructurale de la cryptomélane-hollandite, ainsi que la déstabilisation de la braunite au voisinage des veinules, seraient liées à la différence du degré de déformation entre ces deux zones. Il est important de remarquer que les paramètres géochimiques Fe/Mn ou Mn/Co&+Cu&+Ni, couramment utilisés dans les travaux sur les nodules polymétalliques, sont inadéquats même dans les structures les mieux préservées.
The manganese ores of Falotta and Parsettens (Oberhalbstein, Grison Canton, Switzerland) are enclosed in Upper Jurassic radiolarites and overlay ophiolites of Upper Pennine nappes. These ores exhibit the botryoidal microstructures typical of manganese nodules. The mineralogical components of the outerpart of these nodules, which were affected by alpine metamorphism — were first transformed gradually into a poorly crystallized braunite (with a large excess of SiO2). In contrast, the inner part of the nodules is composed of well-crystallized braunite with normal (10 wt%) contents of SiO2. Narrow veinlets with intermediate members of the cryptomelane-hollandite isostructural series crosscut the braunite mineralization, and represent a secondary paragenesis. A third step is marked by the appearance of todorokite and birnessite through the oxidation of the rhodonite veinlets. This is apparently the first observation of primary botryoidal microstructures in these nodules — and the first observation of braunite microstructures in a metamorphic area. The occurrence of undeformed volcanic and sedimentary textures in the upper Platta thrust sheets explains the preservation of these primary structures in these nodules. Moreover, the increase in flattening and intensive schistosity from Falotta to Parsettens may be related with the enrichment of Sr2+ in the intermediate members of the cryptomelane-hollandite series and with the destabilization of the braunite along the veinlets. It must also be pointed out that the Fe/Mn or Mn/Co&+Cu&+Ni ratios, currently used in research on manganese nodules, seem to be inadequate even for the Falotta ore, in which the best-preserved primary microstructures exist. In Falotta as in Parsettens, todorokite and birnessite come from the late rhodonite veinlets and are not related with the primary ore.
  相似文献   

14.
Titanium complexation in hydrothermal systems   总被引:3,自引:0,他引:3  
The solubility of rutile in aqueous solutions of HCl, HF, H2SO4, NaOH, and NaF was determined at 500°C, 1000 bar, and hydrogen fugacity from 8 × 10−12 to 10.3 bar (Mn3O4/Mn2O3 and Ni/NiO buffers, dissolution of an Al batch weight). The experimentally determined solubility values were used to calculate the constants of the following equilibria at 500°C and 1 kbar pressure: TiO2(rutile) + H2O + HCl0 = Ti(OH)3Cl0 (pK = 4.89); TiO2(rutile) + 2HCl0 = Ti(OH)2Cl 2 0 (pK = 4.69), TiO2(rutile) + HS O 4 + H+ = Ti(OH)2SO 4 0 (pK = 1.98), TiO2(rutile) + 2HSO 4 + 2H+ = Ti(SO4) 2 0 + 2H2O (pK = −1.50), TiO2(rutile) + 2H2O + OH = Ti(OH) 5 (pK = 3.17), TiO2(rutile) + 2H2O + 2OH = Ti(OH) 6 2− (pK = 1.46), TiO2(rutile) + 2H2O + F = Ti(OH)3F0 + OH (pK = 5.86), TiO2(rutile) + 2HF0 = Ti(OH)2F 2 0 (pK = 2.99), and TiO2(rutile) + 2H2O + F = Ti(OH)4F (pK = 3.69). Based on the results obtained on the composition of volcanic emanations whose Ti concentrations were determined, we evaluated the constants of the equilibria TiO2(rutile) + H2O + HCl0 = Ti(OH)3Cl0 (pK = 2.74) and TiO2(rutile) + HSO 4 + H+ = Ti(OH)2SO 4 0 (pK = 3.40) at 25°C. The electrostatic model of electrolyte ionization was used to calculate the ionization constants and the Gibbs free energy values for the following Ti species in aqueous fluids at the parameters of postmagmatic processes: Ti(OH) 3 + , Ti(OH) 4 0 , Ti(OH) 5 , Ti(OH) 6 2− , Ti(OH)3F0, Ti(OH)2F 2 0 , Ti(OH)4F, Ti(OH)3Cl0, Ti(OH)2Cl 2 0 , Ti(OH)2SO 4 0 , and Ti(SO4) 2 0 . As follows from our data on Ti complexation with Cl, F, and SO4, fluids the most favorable for Ti migration are aqueous acid F-rich solutions with Ti concentrations of no higher than a few fractions of a milligram per kilogram of water. Original Russian Text ? B.N. Ryzhenko, N.I. Kovalenko, N.I. Prisyagina, 2006, published in Geokhimiya, 2006, No. 9, pp. 950–966.  相似文献   

15.
Summary Garnet occurs as a significant mineral constituent of felsic garnet-biotite granite in the southern edge of the Třebíč pluton. Two textural groups of garnet were recognized on the basis of their shape and relationship to biotite. Group I garnets are 1.5–2.5 mm, euhedral grains which have no reaction relationship with biotite. They are zoned having high XMn at the rims and are considered as magmatic. Group II garnets form grain aggregates up to 2.5 cm in size, with anhedral shape of individual grains. The individual garnet II grains are usually rimmed by biotite and have no compositional zoning. The core of group I garnets and group II garnets contains 67–80 mol% of almandine, 5–19 mol% of pyrope, 7–17 mol% of spessartine and 2–4 mol% of grossular. Biotite occurs in two generations; both are magnesian siderophyllites with Fe/(Fe + Mg) = 0.50–0.69. The matrix biotite in granites (biotite I) has high Ti content (0.09–0.31 apfu) and Fe/(Fe + Mg) ratio between 0.50 and 0.59. Biotite II forms reaction rims around garnet, is poor in Ti (0.00–0.06 apfu) and has a Fe/(Fe + Mg) ratio between 0.61 and 0.69. The textural relationship between biotite and garnet indicates that garnet reacted with granitic melt to form Ti-poor biotite and a new granitic melt, depleted in Ti and Mg and enriched in Fe and Al. In contrast to the host durbachites (hornblende-biotite melagranites), which originated by mixing of crustal melts and upper mantle melts, the origin of garnet-bearing granites is related to partial melting of the aluminium-rich metamorphic series of the Moldanubian Zone.  相似文献   

16.
Textural and geochemical studies of inclusions in topaz from greisens in the Hensbarrow topaz granite stock (St. Austell, Cornwall) are used to constrain the composition of fluids responsible for late stage greisening and mineralisation. The topaz contains an abundant and varied suite of inclusions including aqueous liquid + vapour (L + V), quartz, zinnwaldite, albite, K-feldspar, muscovite, ilmenorutile, apatite, columbite, zircon, varlamoffite [(Sn, Fe)(O, OH)2] and qitianlingite [(Fe+2,Mn+2)2(Nb,Ta)2W+6O10]. Primary L + V inclusions in topaz show relatively high T h (mainly 300 to >500 °C) and a narrow range of salinities (23–30 wt % NaCl equivalent) compared with those in greisen quartz (150–450 °C, 0–50 wt % NaCl equivalent). Textures indicate that topaz formed earlier than quartz and the fluid inclusion data are interpreted as indicating a cooling of the hydrothermal fluids during greisenisation, mixing with meteoric waters and a decrease in pressure causing intermittent boiling. The presence of early-formed albite and K-feldspar as inclusions in the topaz is likely to indicate that the greisen-forming fluid became progressively more acid during greisenisation. The most distinctive inclusions in the topaz are wisp- and bleb-shaped quartz, < 50 μm in size, which show textural characteristics indicating former high degrees of plasticity. They often have multiple shrinkage bubbles at their margins rich in Sn, Fe, Mn, S and Cl and, more rarely, contain euhedral albite, K-feldspar, stannite or pyrrhotite crystals up to 40 μm in size. The quartz inclusions show similar morphologies to inclusions in topaz from quartz-topaz rocks elsewhere which have been interpreted as trapped “silicate melt”. Their compositions are, however, very different to those expected for late stage topaz-normative granitic melts. From their textural and chemical characteristics they are interpreted as representing crystallised silica colloid, probably trapped as a hydro gel during greisenisation. There is also evidence for the colloidal origin of inclusions of varlamoffite in the topaz. These occurrences offer the first reported evidence in natural systems for the formation of colloids in high temperature hydrothermal fluids. Their high ore carrying potential is suggested by the presence of varlamoffite and the occurrence of stannite, pyrrhotite and SnCl within the quartz inclusions. Received: 9 April 1996 / Accepted: 12 November 1996  相似文献   

17.
 The crystal chemical response of basalt clinopyroxene to increasing pressure was investigated by means of crystal-structure simulation (a procedure that enables modeling of the structural parameters of a clinopyroxene of known chemistry without requiring direct X-ray diffraction analysis) using available experimental chemical data. Pressure proved the main physical variable governing clinopyroxene behavior in a magmatic environment. The general internal consistency of the simulation data permitted construction of an empirical geobarometer based on the relationship of cell volume (Vc) vs M1-site volume (VM1). The straightforward geobarometric formulation in the absence of direct X-ray analysis is: P(kbar)=698.443+4.985⋅AlT−26.826⋅Fe2+ M1−3.764⋅Fe3+ +53.989⋅AlM1+3.948⋅Ti+14.651⋅Cr −700.431⋅Ca−666.629⋅Na−682.848⋅MgM2−691.138⋅Fe2+ M2−688.384⋅Mn−6.267⋅(MgM2)2−4.144⋅(Fe2+ M2 where: (Fe2+ M1⋅MgM2)/(Fe2+ M2⋅MgM1)=e**(0.238⋅R3++0.289⋅CNM−2.315), CNM=Ca+Na+Mn, and R3+=AlM1+Fe3++Ti+Cr, with cations in atoms per formula unit. The geobarometer reproduces experimental pressures within ±2 kbar (=1σ; max. dev. ≤5 kbar; N=29) in the range 0–24 kbar and is applicable to near-liquidus C2/c clinopyroxenes crystallized from basaltic melts in the absence of garnet (excepting high-Al2O3 basalts). It is therefore suitable for many natural clinopyroxenes occurring as mega- or phenocrysts or forming well-preserved cumulate pyroxenites. If the above restrictions are not wholly satisfied, the Vc vs VM1 plot can also be used qualitatively to deduce the relative pressure conditions of clinopyroxenes forming from similar batches of magma. The structural simulation of experimental data also provided insight into the influence of minor chemical changes of the parental magma on the crystal chemistry of clinopyroxene at high pressure. Within the considered compositional space at given P-T, a CaO and a SiO2 in the melt have opposite effects on M2- and T-site cation populations. As a result, under similar physical conditions, clinopyroxenes from higher-CaO or more undersaturated basalts have higher VM2, VT and Vc and lower VM1. For basalts with normal contents of Al2O3 (<18 wt %), variations of major elements in the melt do not reduce the accuracy of the geobarometer. Received: 3 April 1994 / Accepted: 23 December 1995  相似文献   

18.
Summary The mineral chemistry of a Variscan lamprophyre (kersantite) from the Frankenwald, Germany, has been investigated by electron microprobe. This potassic, Si-saturated, mafic rock contains an assemblage of different generations of titanite and allanite-(Ce), Th-rich zircon, and metamict REE–Ti–Zr–Th silicates. The primary ferroan-ceroan titanite contains unusually high contents of REE2O3 (max. (ΣLa to Sm)+Y = 36.8 oxide wt.%), ZrO2 (max. 5.4 wt.%), and ThO2 (max. 3.1 wt.%). Its empirical formula averages to (Ca0.31 La0.17 Ce0.30 Pr0.03 Nd0.08 Sm0.01 Y0.01 Fe2+0.06 Th0.02 Mn0.01)Σ1.00 (Ti0.60 Fe2+0.22 Al0.06 Zr0.07 Mg0.04 Nb0.01)Σ1.00 O1.00(Si0.93 Al0.07)Σ1.00 O4. Element correlations reveal operation of the complex substitution Ca2++Ti4++Th4+ ⇔ REE3++Al3++Zr4+. In comparison to allanite-(Ce), ferroan-ceroan titanite preferentially incorporated the LREE and Th. This finding is inconsistent with previous experimental studies and suggests that both minerals are not cogenetic. High Zr contents in titanite, usually known only from Si-undersaturated alkaline rocks, and the predominance of Fe2+ suggest that the ferroan-ceroan titanite crystallized from an alkali-rich, low-fO2 residual melt.  相似文献   

19.
Reaction textures, fluid inclusions, and metasomatic zoning coupled with thermodynamic calculations have allowed us to estimate the conditions under which a biotite–hornblende gneiss from the Kurunegala district, Sri Lanka [hornblende (NMg=38–42) + biotite (NMg=42–44) + plagioclase + quartz + K-feldspar + ilmenite + magnetite] was transformed into patches of charnockite along shear zones and foliation planes. Primary fluid inclusion data suggest that two immiscible fluids, an alkalic supercritical brine and almost pure CO2, coexisted during the charnockitisation event and subsequent post-peak metamorphic evolution of the charnockite. These metasomatic fluids migrated through the amphibolite gneiss along shear zones and into the wallrock under peak metamorphic conditions of 700–750 °C, 5–6 kbar, and afl H2O=0.52–0.59. This resulted in the formation of charnockite patches containing the assemblage orthopyroxene (NMg=45–48) + K-feldspar (Or70–80) + quartz + plagioclase (An28) in addition to K-feldspar microveins along quartz and plagioclase grain boundaries. Remnants of the CO2-rich fluid were trapped as separate fluid inclusions. The charnockite patches show the following metasomatic zonation patterns: – a transition zone with the assemblage biotite (NMg= 49–51) + hornblende (NMg = 47–50) + plagioclase + quartz + K-feldspar + ilmenite + magnetite; – a KPQ (K-feldspar–plagioclase–quartz) zone with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg=45–48) + quartz + ilmenite + magnetite; – a charnockite core with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg = 39–41) + biotite (NMg=48–52) + quartz + ilmenite + magnetite. Systematic changes in the bulk chemistry and mineralogy across the four zones suggest that along with metasomatic transformation, this process may have been complicated by partial melting in the charnockite core. This melting would have been coeval with metasomatic processes on the periphery of the charnockite patch. There is also good evidence in the charnockitic core that a second mineral assemblage, consisting of orthopyroxene (NMg= 36–42) + biotite (NMg=50–51) + K-feldspar (Or70–80) + quartz + plagioclase (An28–26), could have crystallised from a partial melt during cooling from 720 to 660 °C at decreasing afl H2O from 0.67 to 0.5. Post-magmatic evolution of charnockite at T < 700 °C resulted in fluids being released during the crystallisation of the charnockitic core. These gave rise to the formation of late stage rim myrmekites along K-feldspar grain boundaries as well as late stage biotite, cummingtonite, and carbonates. Received: 15 September 1999 / Accepted: 8 June 2000  相似文献   

20.
Summary ?Hydrothermal experiments to synthesize pumpellyite group minerals of the pumpellyite–okhotskite series and to investigate their stability have been carried out at 200, 300 and 400 MPa P fluid and 250–500 °C by using cold-seal pressure vessels and solid buffers of MnO2–Mn2O3, Cu2O–CuO and Cu2O–Cu buffer assemblages. Okhotskite and pumpellyite rich in the okhotskite component crystallized from an oxide mixture starting material of Ca4MgMn3+ 3Al2Si6O24.5-oxide+excess H2O at P fluid of 200, 300 and 400 MPa and temperatures of 300 and 400 °C. However, a single phase of okhotskite was not produced, and associated piemontite, hausmannite, wollastonite, clinopyroxene, corundum, braunite–neltnerite solid solution and alleghanyite also formed. Mn-pumpellyite of the okhotskite–pumpellyite join occurs as aggregates of needle crystals, rounded grains or flaky crystals. Chemical compositions are variable and range from pumpellyite-(Mn2+) to okhotskite: 31–36 SiO2, 13–21 Al2O3, 12–25 total Mn2O3, 0.6–4 MgO and 20–24 wt.% CaO. Reconnaissance experiments using a starting material of synthetic Ca2Mn3+Al2Si3O12(OH)-piemontite at 300 MPa and temperatures of 250, 300, 400 and 500 °C indicate that Mn-rich pumpellyite can crystallize from piemontite at lower temperatures than the stability field of piemontite. The Mn-rich pumpellyite was accompanied by garnet, wollastonite and alleghanyite. The chemical compositions of the Mn-pumpellyites are 32–36 SiO2, 18–27 Al2O3, 8–18 total Mn2O3 and 20–23 wt.% CaO. This study shows that the stability fields of piemontite, piemontite+Mn-pumpellyite, and Mn-pumpellyite range in this order with decreasing temperature under high fO2 conditions. The maximum stability temperature of Mn-rich pumpellyite lies between 400 and 500 °C at 200–400 MPa in high fO2 conditions. Received March 3, 2000; revised version accepted December 28, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号