首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The middle Caradoc rocks of Salop are a mosaic of sedimentary facies deposited in nearshore environments. The uppermost Horderley Sandstone in the Onny Valley is interpreted as formed by migrating marine bars and proximal and distal stonn deposits. The time equivalent Chatwall Sandstone of the Chatwall district is interpreted as a beach sequence. The overlying Alternata Limestone is a product of both proximal and distal storm deposits, associated with marine bars, in which different faunal assemblages are mized. Correlation of local sections is difficult due to facies and faunal changes and non-deposition events. Based on a sedimentary model and palaeoecological information it is suggested that the Alternata Limestone in the Chatwall area is older than elsewhere, and that the base of the Cheney Longville Flags youngs southwards. Four faunal events are defined based on transect collecting, discriminant function and cluster analysis. These are the Howellites antiquior, Dalmanella lepta and Bancroftina robuste Associations and the Heterorthis alternata interregnum.  相似文献   

2.
The Precipice Sandstone is traditionally interpreted as a braided fluvial deposit that transitions upwards into meandering channel deposits responding to a rise in base level that eventually deposits the overlying alluvial to lacustrine Evergreen Formation. This study found sedimentary evidence of tidal to marine influence within the Precipice Sandstone coincident with avulsion and diversion of the system from southward to northward-flowing channels as the system was transgressed. The north-flowing channels are interpreted to debouch into a shallow restricted marine embayment with tide and wave influence, which provides an alternative insight into this unit and suggests a Lower Jurassic north or northeasterly marine connection. The Precipice Sandstone is a regional aquifer, in places hosts hydrocarbons and has been considered as a storage unit for CO2 geosequestration. Outcrop analogues can provide geometries to accompany facies interpreted from sedimentary structures that are observable in core, to assist in characterising reservoir heterogeneity.  相似文献   

3.
A detailed sedimentary study of the Lower Carboniferous (Courceyan) Shipway Limestone Formation at Three Cliffs Bay on the Gower Peninsula (South Wales) has shown that the bioclastic limestones represent a storm-dominated sequence that contains the storm-related sedimentary structure hummocky cross-stratification (HCS). Conformably overlying the Shipway Limestone is a cross-stratified oolitic sandbody with evidence of subaerial exposure. Six sedimentary lithofacies are identified in these two formations which record a distal to proximal, shallowing-upward trend that passes from beneath mean wave-base to above fairweather wave-base. The shallow marine facies model constructed by Wu (1982) from his study of the Lower Carboniferous limestone sequences of South Wales is re-evaluated. Modifications proposed for the model include the addition of two distal tempestite facies and a proximal oolite sand body. The Shipway Limestone and Brofiscin Oolite record the first major, basin-wide, shallowing-upward phase of the Lower Carboniferous in South Wales.  相似文献   

4.
Middle Eocene Fulra Limestone and Oligocene Maniyara Fort Formation represent platform carbonate deposits of Kutch at the north-western margin of India. These carbonates contain larger benthic foraminifera, including Alveolina, Assilina, Discocyclina, Lepidocyclina, Miogypsina, Nummulites and Spiroclypeus. This study presents paleodepositional and paleobathymetric interpretations for both formations using benthic foraminifera in combination with lithological association, sedimentary structures and early diagenetic features. The six carbonate facies comprising the Fulra Limestone indicate a depositional spectrum ranging from bar-lagoon to mid-ramp depositional conditions. It records several shallowing upward cycles, leading to emergence and formation of paleokarst. The four carbonate facies of the Maniyara Fort Formation represents deposition within the inner ramp setting in bar-lagoon and patch-reef environment, while intervening fine siliciclastics correspond to episodes of relative sea level fall. Nummulitic accumulations form low-relief bars within the fair weather wave base in both the formations. The depositional setting of the Paleogene carbonate in Kutch broadly resembles Eocene platformal deposits in the circum-Tethys belt.  相似文献   

5.
The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.  相似文献   

6.
In Jabalpur area about 18 m to 45 m thick Lameta Formation is stratigraphically divisible into five lithounits namely, Green Sandstone, Lower Limestone, Mottled Nodular Beds, Upper Limestone and Upper Sandstone. Having differentiated lithofacies constitution and here grouped as facies associations, these units are intensively burrowed and sparingly fossiliferous. Ichnogenera including Arenicolites, Calycraterion, Fucusopsis, Laevicyclus, Macanopsis, Ophiomorpha, Paleomeandron, Rhizocorallium, Stipsellus, Thalassinoides and Zoophycos are recovered from the Lower Limestone, Mottled Nodular Beds and Upper Limestone associations of the Lameta Formation of Jabalpur area.Among these, Arenicolites, Calycraterion, Laevicyclus, Ophiomorpha, Rhizocorallium, Stipsellus and Thalassinoides belong to mixed Skolithos and Cruziana ichnofacies and indicate sandy backshore to sublittoral condition of deposition. Additionally rhyzocretes, some times chertified, are also present in different parts of the Lameta Formation. Ichnofacies assemblage supported by sedimentological information suggests that the Lameta Formation of Jabalpur area was deposited in coastal marine settings where sediments were subaerially exposed intermittently.  相似文献   

7.

The mid‐Silurian Major Mitchell Sandstone of the Grampians Group outcrops at Mt Bepcha, western Victoria, represent a prograding fluviodeltaic sequence comprising four lithofacies and five ichnofacies. The stratigraphically lowest Interbedded Sandstone/Siltstone Facies is characterised by thin sandstone and siltstone beds with soft‐sediment deformation and scours with gravelly lag deposits. This lithofacies contains Thalassinoides, Palaeophycus, Rhizocorallium and intrastratal burrows, together indicative of the Cruziana Ichnofacies, and is interpreted as a shallow‐marine depositional environment on a low‐energy delta front with minor tidal influences. The overlying Massive Sandstone Facies lacks silt, and consists of predominantly massive and some plane‐laminated sandstone, abundant Skolithos linearis , rare Palaeophycus and a single small Cruziana problematica ; the trace‐fossil assemblage is assigned to the Skolithos Ichnofacies. This facies is believed to have been deposited in a marine high‐energy shoreface environment with continuously shifting sands, affected by periodic flooding events from the mouth of a nearby river. Above this is the Trough Cross‐bedded Facies, which contains trough cross‐bedding with gravelly lag deposits, a northwest palaeocurrent direction and large Taenidium barretti burrows (Burrowed Ichnofacies). This facies also contains abundant plane‐laminated sandstone with a northeast‐southwest palaeocurrent direction and ichnofossils of Scoyenia and Daedalus , representing the Scoyenia Ichnofacies. The Trough Cross‐bedded Facies is interpreted to have been deposited in shallow low‐sinuosity channels by overbank‐flooding events, most likely on a delta plain. The uppermost facies, the Plane‐laminated Facies, contains thin beds of current‐lineated, plane‐laminated graded coarse to fine sandstone that preserve arthropod trackways (Arthropod Ichnofacies). This facies was deposited on a periodically sheet‐flooded, subaerially exposed delta plain.  相似文献   

8.
Sedimentation patterns are described from the Kilbride Formation west of the Maam Fault zone, north Galway, Ireland. Seven distinct facies are described using faunal and lithological parameters. Environments of deposition range from marginal marine to deep shelf conditions. Lateral facies distributions were largely controlled by a rocky topographic high which influenced sedimentation until being buried by outer shelf sediments in middle-upper Kilbride Formation times. Four distinct sequences are described: in the lower Kilbride Formation, sequences I and IV are dominated by proximal storm deposits; sequence II was deposited in the lee of the topographic high and is interpreted as barred estuarine deposits; and in sequence III, at the topographic high, no deposition took place. In the upper Kilbride Formation the barrier was buried and uniform outer shelf conditions prevailed throughout the area. Faunal assemblages were strongly controlled by local environmental conditions and do not conform directly with the expected pattern of depth-related brachiopod communities. The Lingula and Eocoelia communities are amalgamated and alloch-thonous, the Pentameroides and Costistricklandia communities are absent, and only the Clorinda community is well represented, though parautochthonous.  相似文献   

9.
In terminal fluvial-fan systems, characteristic proximal to distal variations in sedimentary architectures are recognized to arise from progressive downstream loss of water discharge related to both infiltration and evaporation. This work aims to elucidate downstream trends in facies and architecture across the medial and distal zones of terminal-fan systems, which record transitions from deposits of channel elements to lobe-like and sheet-like elements. This is achieved via a detailed characterization of ancient ephemeral fluvial deposits of the well-exposed Kimmeridgian Tordillo Formation (Neuquén Basin, Argentina). The fine sand-prone and silt-prone succession associated with the medial to distal sectors of the system has been studied to understand relationships between depositional processes and resulting architectures. Facies and architectural-element analyses, and quantification of resulting sedimentological data at multiple scales, have been undertaken to characterize sedimentary facies, facies transitions, bed types, architectural elements and larger-scale architectural styles. Eight bed types with distinct internal facies transitions are defined and interpreted in terms of different types of flood events. Channelized and non-channelized architectural elements are defined based on their constituent bed types and their external geometry. The most common elements are terminal lobes, which are composite bodies within which largely unconfined sandy deposits are stacked in a compensational manner; a hierarchical arrangement of internal components is recognized. Proximal feeder-channel avulsion events likely controlled the evolution of terminal-lobe elements and their spatiotemporal shifts. Stratigraphic relations between architectural elements record system-wide trends, whereby a proximal sector dominated by channel elements passes downstream via a gradational transition to a medial sector dominated by sandy terminal-lobe elements, which in turn passes further downstream to a distal sector dominated by silty terminal lobe-margin and fringing deposits. This work enhances current understanding of the stratigraphic record of terminal fluvial systems at multiple scales, and provides insight that can be applied to predict the facies and architectural complexity of terminal fluvial successions.  相似文献   

10.
The influence of palaeodrainage characteristics, palaeogeography and tectonic setting are rarely considered as controls on stratigraphic organization in palaeovalley or incised valley systems. This study is an examination of the influence of source region vs. downstream base level controls on the sedimentary architecture of a set of bedrock-confined palaeovalleys developed along the distal margin of the Alpine foreland basin in south-eastern France. Three distinct facies associations are observed within the palaeovalley fills. Fluvial facies association A is mainly dominated by poorly sorted, highly disorganized, clast-to-matrix-supported cobble-to-boulder conglomerates that are interpreted as streamflood deposits. Facies association B comprises mainly yellow siltstones and is interpreted as recording deposition in an estuarine basin environment. Estuarine marine facies association C comprises interstratified estuarine siltstones and clean, well-sorted washover sandstones. The sedimentary characteristics of the valley fill successions are related to the proximity of depositional sites to sediment source areas. Palaeovalleys located proximal to structurally controlled basement palaeohighs are entirely dominated by coarse fluvial streamflood deposits. In contrast, distal palaeovalley segments, which are located several kilometres downstream, contain successions showing upward transition from coarse fluvial facies into estuarine central basin fines, and finally into estuarine-marginal marine facies. Facies distributions suggest that the fluvial deposits form wedge-shaped, downstream-thinning sediment bodies, whereas the estuarine deposits form an upstream-thinning wedge. The vertical stacking of fluvial to estuarine to marginal marine depositional environments records the fluvial aggradation and subsequent transgression of relatively small bedrock-confined river valleys, which drained a rugged, upland terrain. Facies geometries suggest that a fluvial sediment wedge initially prograded downvalley, in response to high bed load sediment yields. Subsequently, palaeovalleys became drowned during the passage of a marine transgression, with the establishment of estuarine conditions. Initial fluvial aggradation and subsequent marine flooding of the palaeovalleys is a consequence of the interaction of high local rates of sediment supply and relative sea-level rise driven by flexural subsidence of the basin.  相似文献   

11.
平顶山煤田的太原组属于混合型的碳酸盐浅海和陆源碎屑海岸沉积。下部和上部灰岩段主要形成于滨海潮间带和浅海中,并在其中发育行风暴浊流沉积。中部碎屑岩段为障壁岛-泻湖-潮坪体系沉积。太原组煤的显微组分为微镜惰煤,煤质属于低灰高硫煤。  相似文献   

12.
山西柳林成家庄剖面太原组发育7层灰岩,从下到上依次为半沟灰岩、吴家峪灰岩、庙沟灰岩、下毛儿沟灰岩、上毛儿沟灰岩、斜道灰岩和东大窑灰岩。通过详细的野外观测和室内镜下薄片研究,确定了各层灰岩的沉积相类型,恢复了当时的沉积环境和各层灰岩沉积时相对水体深度的变化。其中庙沟灰岩属中缓坡相沉积,吴家峪灰岩、下毛儿沟灰岩、上毛儿沟灰岩、斜道灰岩和东大窑灰岩均属浅缓坡相沉积,半沟灰岩属后缓坡相沉积。7层灰岩的相对水体深度关系为:庙沟灰岩>斜道灰岩>东大窑灰岩>下毛儿沟灰岩>上毛儿沟灰岩>吴家峪灰岩>半沟灰岩。在太原组内识别出6次沉积间断、7次小型沉积旋回,总体构成2次明显的相对海平面升降旋回。  相似文献   

13.
The upper part of the Limestone Coal Group (Pendleian E1), between the major marine transgressions of the Black Metals and the Index Limestone, represents an early example of ‘coal measures’ facies. It comprises a distal and a proximal facies association. The distal facies association, which was subject to relatively strong marine influences and included both deltaic and fluvial elements, is characterized by a regular ‘layer-cake’ succession with laterally-persistent lithological members. By contrast, the proximal association, which was more subject to fluvial influences and is typified by the variable Bannockburn Main Complex, is characterized by abrupt lateral changes in lithofacies. The distal facies association is dominant in the west of the Kilsyth Trough, but proximal facies intercalations increase eastwards, so that they constitute a fairly high proportion of the succession in the Kincardine Basin, particularly in areas of locally-increased tectonic subsidence that were frequently occupied by major channel belts. Some of the sheet sandstones within the distal association have a lower, upward-coarsening portion succeeded by a coarser-grained, erosive-based, upward-fining portion. The resulting ‘two-storey’ profile may reflect deltaic sand bodies having been suceeded by fluvial sand bodies, following a general fall in base level. Linear regression lines showing the relationship between the number of horizons colonized by vegetation and net subsidence, suggest that local autocyclic, tectonosedimentary processes, such as delta switching, channel migration, and avulsion, were superimposed upon a widespread allocyclic, probably glacial-eustatic, process. The former processes were most effective within the proximal facies association and in the Kincardine Basin and the latter in the distal association and the Kilsyth Trough.  相似文献   

14.
Sediments of the Upper Carboniferous to Lower Jurassic Karoo Supergroup (∼ 4.5 km thick) were deposited in the mid-Zambezi Valley Basin, southern Zambia. The Upper Palæozoic Lower Karoo Group in this area ends with a Late Permian sedimentary unit called the Madumabisa Mudstone Formation. The formation is 700 m thick and comprises four lithofacies grouped into two facies assemblages, collectively interpreted as lacustrine deposits. Sediments of a massive mudrock facies assemblage were deposited from suspension, probably from sediment-laden rivers entering a lake. Concretionary calcilutite beds probably mark the positions of palæosediment-water interfaces where calcite was precipitated. A laminated mudrock facies assemblage is attributed to lacustrine deposition from inflowing rivers at the lake margins and shallow parts of the lake. Repeated thickening-upward cycles are evidence of upward shallowing, interrupted by events of more abrupt deepening. Sandstone interbeds are interpreted as fluvial deposits laid down during low lake stands, with cross-lamination and asymmetrical ripples indicating current rather than wave deposition. A fossil assemblage of ostracods, bivalves, gastropods, fish scales, the alga Botryococcus sp. and fossil burrows is consistent with a lacustrine origin for the formation.  相似文献   

15.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

16.
The Ebisutoge–Fukuda tephra (Plio‐Pleistocene boundary, central Japan) has a well‐recorded eruptive style, history, magnitude and resedimentation styles, despite the absence of a correlative volcanic edifice. This tephra was ejected by an extremely large‐magnitude and complex volcanic eruption producing more than 400 km3 total volume of volcanic materials (volcanic explosivity index=7), which extended more than 300 km away from the probable eruption centre. Remobilization of these ejecta occurred progressively after the completion of a series of eruptions, resulting in thick resedimented volcaniclastic deposits in spatially separated fluvial basins, more than 100 km from the source. Facies analysis of resedimented volcaniclastic deposits was carried out in distal fluvial basins. The distal tephra (≈100–300 km from the source) comprises two different lithofacies, primary pyroclastic‐fall deposits and reworked volcaniclastic deposits. The resedimented volcaniclastic succession shows five distinct sedimentary facies, interpreted as debris‐flow deposits (facies A), hyperconcentrated flow deposits (facies B), channel‐fill deposits (facies C), floodplain deposits with abundant flood‐flow deposits (facies D) and floodplain deposits with rare flood deposits (facies E). Resedimented volcaniclastic materials at distal locations originated from unconsolidated deposits of a climactic, large ignimbrite‐forming eruption. Factors controlling inter‐ and intrabasinal facies changes are (1) temporal change of introduced volcaniclastic materials into the basin; (2) proximal–distal relationship; and (3) distribution pattern of pyroclastic‐flow deposits relative to drainage basins. Thus, studies of the Ebisutoge–Fukuda tephra have led to a depositional model of volcaniclastic resedimentation in distal areas after extremely large‐magnitude eruptions, an aspect of volcaniclastic deposits that has often been ignored or poorly understood.  相似文献   

17.
The interaction of river and marine processes in the fluvial to marine transition zone fundamentally impacts delta plain morphology and sedimentary dynamics. This study aims to improve existing models of the facies distribution, stratigraphic architecture and preservation in the fluvial to marine transition zone of mixed-process deltas, using a comprehensive sedimentological and stratigraphic dataset from the Middle Miocene Lambir Formation, Baram Delta Province, north-west Borneo. Eleven facies associations are identified and interpreted to preserve the interaction of fluvial and marine processes in a mixed-energy delta, where fluvial, wave and tidal processes display spatially and temporally variable interactions. Stratigraphic successions in axial areas associated with active distributary channels are sandstone-rich, comprising fluvial-dominated and wave-dominated units. Successions in lateral areas, which lack active distributary channels, are mudstone-rich, comprising fluvial-dominated, tide-dominated and wave-dominated units, including mangrove swamps. Widespread mudstone preservation in axial and lateral areas suggests well-developed turbidity maximum zones, a consequence of high suspended-sediment concentrations resulting from tropical weathering of a mudstone-rich hinterland. Within the fluvial to marine transition zone of distributary channels, interpreted proximal–distal sedimentological and stratigraphic trends suggest: (i) a proximal fluvial-dominated, tide-influenced subzone; (ii) a distal fluvial-dominated to wave-dominated subzone; and (iii) a conspicuously absent tide-dominated subzone. Lateral areas preserve a more diverse spectrum of facies and stratigraphic elements reflecting combined storm, tidal and subordinate river processes. During coupled storm and river floods, fluvial processes dominated the fluvial to marine transition zone along major and minor distributary channels and channel mouths, causing significant overprinting of preceding interflood deposits. Despite interpreted fluvial–tidal channel units and mangrove influence implying tidal processes, there is a paucity of unequivocal tidal indicators (for example, cyclical heterolithic layering). This suggests that process preservation in the fluvial to marine transition zone preserved in the Lambir Formation primarily records episodic (flashy) river discharge, river flood and storm overprinting of tidal processes, and possible backwater dynamics.  相似文献   

18.
塔里木盆地东河砂岩沉积和储层特征及综合分析   总被引:14,自引:4,他引:14  
东河砂岩是一套覆盖广泛的海侵初期的沉积产物,但不是一个等时沉积体,相当于晚泥盆世晚期至早石炭世早期沉积,具体沉积时间各地有差异。东河砂岩具有海侵初期填平补齐的特征,其沉积相决定于海侵的速度、沉积物的供给和海侵前的古地貌。塔北地区受塔北古隆起的阻挡,海水在古隆起周围滞留时间较长,又有较粗粒的物源供给,其沉积产物主要是滨岸海滩沉积;塔中地区由于地形复杂,沉积类型也比较复杂,底部砾岩段为河流相沉积,而块状砂岩段和砂砾岩段为河口湾和滨岸海滩沉积,不同段在成分、分选性和粒级上有较大的差异;塔里木盆地其他低平地区主要是海侵期快速的滨岸和陆架沉积。受沉积因素影响,东河砂岩有效储层的分布具有地域性,除沉积因素外,低的地温梯度和短期的深埋藏也是优质储层发育的重要控制因素。  相似文献   

19.
Sandstone bodies in the Sunnyside Delta Interval of the Eocene Green River Formation, Uinta Basin, previously considered as point bars formed in meandering rivers and other types of fluvial bars, are herein interpreted as delta mouth‐bar deposits. The sandstone bodies have been examined in a 2300 m long cliff section along the Argyle and Nine Mile Canyons at the southern margin of the Uinta lake basin. The sandstone bodies occur in three stratigraphic intervals, separated by lacustrine mudstone and limestone. Together these stratigraphic intervals form a regressive‐transgressive sequence. Individual sandstone bodies are texturally sharp‐based towards mudstone substratum. In proximal parts, the mouth‐bar deposits only contain sandstone, whereas in frontal and lateral positions mudstone drapes separate mouth‐bar clinothems. The clinothems pass gradually into greenish‐grey lacustrine mudstone at their toes. Horizontally bedded or laminated lacustrine mudstone onlaps the convex‐upward sandstone bars. The mouth‐bar deposits are connected to terminal distributary channel deposits. Together, these mouth‐bar/channel sandstone bodies accumulated from unidirectional jet flow during three stages of delta advance, separated by lacustrine flooding intervals. Key criteria to distinguish the mouth‐bar deposits from fluvial point bar deposits are: (i) geometry; (ii) bounding contacts; (iii) internal structure; (iv) palaeocurrent orientations; and (v) the genetic association of the deposits with lacustrine mudstone and limestone.  相似文献   

20.
The Lower Cretaceous Mural Limestone marks the maximum marine incursion into southeast Arizona during Aptian-Albian time and records the middle Cretaceous transition from coral-dominated to rudist-bivalve dominated reefs. Upper Mural Limestone facies are most often dominated by corals. However, rudists form significant frameworks at some localities, one of which is described in this paper. The paleoenvironmental distribution of three potential reef-builders (corals, rudists, and ‘oysters’) were studied at this patch reef locality. Corals built the framework of the inner reef core. The rudist Petalodontia initially gained a foothold in sheltered areas among corals and subsequently built a framework in the outer reef core. Caprinid rudists formed mounds in the outer reef to back reef areas. The rudists Toucasia and Monopleura and the oyster-like bivalve Chondrodonta formed beds or were scattered in the reef-flank and shelf lagoon sediments and did not contribute to the reef framework.Upper Mural Limestone reefs are important examples of the coexistence of corals and rudists during this middle Cretaceous faunal transition period. This study supports the idea that rudist-bivalves initially colonized protected back-reef areas early in the Cretaceous and only later in the Cretaceous did rudists dominate reef frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号