首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study develops first-order estimates of water quality co-effects of terrestrial greenhouse gas (GHG) emission offset strategies in U.S. agriculture by linking a national level agricultural sector model (ASMGHG) to a national level water quality model (NWPCAM). The simulated policy scenario considers GHG mitigation incentive payments of $25 and $50 per tonne, carbon equivalent to landowners for reducing emissions or enhancing the sequestration of GHG through agricultural and land-use practices. ASMGHG projects that these GHG price incentives could induce widespread conversion of agricultural to forested lands, along with alteration of tillage practices, crop mix on land remaining in agriculture, and livestock management. This study focuses on changes in cropland use and management. The results indicate that through agricultural cropland about 60 to 70 million tonnes of carbon equivalent (MMTCE) emissions can be mitigated annually in the U.S. These responses also lead to a 2% increase in aggregate national water quality, with substantial variation across regions. Such GHG mitigation activities are found to reduce annual nitrogen loadings into the Gulf of Mexico by up to one half of the reduction goals established by the national Watershed Nutrient Task Force for addressing the hypoxia problem.  相似文献   

2.
The Kyoto Protocol introduces the possibility that changes in carbon stock on agricultural and forest land and soils may be counted against countries’ commitments to reduce their greenhouse gas emissions. Including activities related to land use change and forestry in the international climate change agreement may stimulate new incentives for soil-conservation practices domestically. However, a primary criteria for their inclusion relates to the level of accuracy and transparency with which carbon stock changes can be assessed. Parties will also be concerned with the wider environmental impact of different sequestration practices, and the impact of offsets on overall emissions targets. This paper examines these issues for agricultural soils, considering recent research in North America. It is argued that incentives for carbon sequestration practices may need to be implemented independently of actual stock changes because farm-level soil monitoring would be very costly. In the USA, priority should be given to establishing incentives for cover crops and to expanding conservation tillage programs. These activities provide a range of ancillary environmental benefits. In contrast, improvements in biomass yield tend to rely on higher fertilizer inputs with their related environmental costs. Carbon accumulated through any of these activities is easily lost if the practices are discontinued, and so assessment procedures are needed that would avoid overestimating sequestration. Annual accumulation in agricultural soils could be equivalent to about 10% of Annex I carbon dioxide emissions, and therefore options for limiting sink credits from soils should be considered.  相似文献   

3.
Forest management is regarded as one possible approach to reducing greenhouse gases by absorbing carbon at a relatively low cost. In Korea, the forest comprises 64% of the total land area, so forests are expected to play a key role in mitigating climate change on the one hand. On the other hand, since 70% of the forest area is owned by the private sector, there is considerable uncertainty about managing forests for the national carbon sink strategy. The objective of this study is to examine the levels of carbon incentives to private forest management for the purpose of maximizing forests’ carbon absorption. First, in the context of present forest management policies, this study discusses applicable measures for the promotion of carbon sequestration in private forests. Next, considering the implications of policies related to forestry, the study develops a hypothetical carbon incentive scheme to compensate for economic revenue loss derived from accepting a rotation period that maximizes carbon sequestration. Carbon incentive levels are estimated by assessing the difference of financial revenue between a financially optimal rotation plan and a carbon-sink maximizing rotation plan. This study found that for red pine forests, the levels of the carbon incentives vary US$2–6 at 5% discount rate and US$ 34–88 at 7% discount rate while the values for oak forests are differing US$2–22 at 5% discount rate and US$ 20–52 at 7% discount rate. The study concludes that the carbon incentive scheme could be effective for increasing the carbon sink. However, given related governmental policies, it may not be desirable to employ the scheme without considering changes in government policy toward land use and regional development.  相似文献   

4.
Terrestrial carbon pools in southeast and south-central United States   总被引:1,自引:0,他引:1  
Analyses of regional carbon sources and sinks are essential to assess the economical feasibility of various carbon sequestration technologies for mitigating atmospheric CO2 accumulation and for preventing global warming. Such an inventory is a prerequisite for regional trading of CO2 emissions. As a U.S. Department of Energy Southeast Regional Carbon Sequestration Partner, we have estimated the state-level terrestrial carbon pools in the southeast and south-central US. This region includes: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia. We have also projected the potential for terrestrial carbon sequestration in the region. Texas is the largest contributor (34%) to greenhouse gas emission in the region. The total terrestrial carbon storage (forest biomass and soils) in the southeast and south-central US is estimated to be 130 Tg C/year. An annual forest carbon sink (estimated as 76 Tg C/year) could compensate for 13% of the regional total annual greenhouse gas emission (505 Tg C, 1990 estimate). Through proper policies and the best land management practices, 54 Tg C/year could be sequestered in soils. Thus, terrestrial sinks can capture 23% of the regional total greenhouse emission and hence are one of the most cost-effective options for mitigating greenhouse emission in the region.  相似文献   

5.
Degraded or sub-standard soils and marginal lands occupy a significant proportion of boreal, temperate and tropical biomes. Management of these lands with a wide range of existing, site-specific, integrated, agroforest systems represents a significant global opportunity to reduce the accumulation of greenhouse gases in the atmosphere. Establishment of extensive agricultural, agroforest, and alternative land-use systems on marginal or degraded lands could sequester 0.82–2.2 Pg carbon (C) per year, globally, over a 50-year time-frame. Moreover, slowing soil degradation by alternative grassland management and by impeding desertification could conserve up to 0.5–1.5 Pg C annually. A global analysis of biologic and economic data from 94 nations representing diverse climatic and edaphic conditions reveals a range of integrated land-use systems which could be used to establish and manage vegetation on marginal or degraded lands. Promising land-use systems and practices identified to conserve and temporarily store C include agroforestry systems, fuelwood and fiber plantations, bioreserves, intercropping systems, and shelterbelts/windbreaks. For example, successful establishment of low-intensity agroforestry systems can store up to 70 Mg C/ha in boreal, temperate and tropical ecoregions. The mean initial cost of soil rehabilitation and revegetation ranges from $500–3,000/ha for the 94 nations surveyed. Natural regeneration of woody vegetation or agro-afforestation establishment costs were less than $1000/ha in temperate and tropical regions. The costs of C sequestration in soil and vegetation systems range from $1-69/Mg C, which compares favorably with other options to reduce greenhouse gas emissions to the atmosphere. Although agroforestry system projects were recently established to conserve and sequester C in Guatemala and Malaysia, constraints to wide-spread implementation include social conditions (demographic factors, land tenure issues, market conditions, lack of infrastructure), economic obstacles (difficulty of demonstrating benefits of alternative systems, capital requirements, lack of financial incentives) and, ecologic considerations (limited knowledge of impacts and sustainability of some systems).The information in this document has been funded by the U.S. Environmental Protection Agency. It has been subject to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement for use.  相似文献   

6.
The emissions reduction pledges made by individual countries through the 2015 Paris Agreement represent the current global commitment to mitigate greenhouse gas emissions in the face of the enduring climate crisis. Natural lands carbon sequestration and storage are critical for successful pathways to global decarbonization (i.e., as a negative emissions technology). Coastal vegetated habitats maintain carbon sequestration rates exceeding forest sequestration rates on a per unit area basis by nearly two orders of magnitude. These blue carbon habitats and their associated carbon sequestration benefits are vulnerable to losses from land-use change and sea-level rise. Incorporation of blue carbon habitats in climate change policy is one strategy for both maintaining these habitats and conserving significant carbon sequestration capabilities. Previous policy assessments have found the potential for incorporation of coastal carbon sequestration in national-level policies, yet there has – to date – been little inclusion of blue carbon in the national-scale implementation of Paris commitments. Recently, sub-national jurisdictions have gained attention as models for pathways to decarbonization. However, few previous studies have examined sub-national level policy opportunities for operationalizing blue carbon into climate decision-making. California is uniquely poised to integrate benefits from blue carbon into its coastal planning and management and its suite of climate mitigation policies. Here, we evaluated legal authorities and policy contexts addressing sequestration specifically from blue carbon habitats. We synthesized the progressive action in California’s approaches to mitigate carbon emissions including statutory, regulatory, and non-regulatory opportunities to incorporate blue carbon ecosystem service information into state- and local-level management decisions. To illustrate how actionable blue carbon information can be produced for use in decision-making, we conducted a spatial analysis of blue carbon sequestration in several locations in California across multiple agencies and management contexts. We found that the average market values of carbon sequestration services in 2100 ranged from $7,730 to $44,000 per hectare and that the social cost of carbon sequestration value was 1.3 to 2.7 times the market value. We also demonstrated that restoration of small areas with high sequestration rates can be comparable to the sequestration of existing marshes. Our results illustrate how accessible information about carbon sequestration in coastal habitats can be directly incorporated into existing policy frameworks at the sub-national scale. The incorporation of blue carbon sequestration benefits into sub-national climate policies can serve as a model for the development of future policy approaches for negative emissions technologies, with consequences for the success of the Paris Agreement and science-based decarbonization by mid-century.  相似文献   

7.
Potential Soil C Sequestration on U.S. Agricultural Soils   总被引:1,自引:0,他引:1  
Soil carbon sequestration has been suggested as a means to help mitigate atmospheric CO2 increases, however there is limited knowledge aboutthe magnitude of the mitigation potential. Field studies across the U.S. provide information on soil C stock changes that result from changes in agricultural management. However, data from such studies are not readily extrapolated to changes at a national scale because soils, climate, and management regimes vary locally and regionally. We used a modified version of the Intergovernmental Panel on Climate Change (IPCC) soil organic C inventory method, together with the National Resources Inventory (NRI) and other data, to estimate agricultural soil C sequestration potential in the conterminous U.S. The IPCC method estimates soil C stock changes associated with changes in land use and/or land management practices. In the U.S., the NRI provides a detailed record of land use and management activities on agricultural land that can be used to implement the IPCC method. We analyzed potential soil C storage from increased adoption of no-till, decreased fallow operations, conversion of highly erodible land to grassland, and increased use of cover crops in annual cropping systems. The results represent potentials that do not explicitly consider the economic feasibility of proposed agricultural production changes, but provide an indication of the biophysical potential of soil C sequestration as a guide to policy makers. Our analysis suggests that U.S. cropland soils have the potential to increase sequestered soil C by an additional 60–70 Tg (1012g) C yr– 1, over present rates of 17 Tg C yr–1(estimated using the IPCC method), with widespread adoption of soil C sequestering management practices. Adoption of no-till on all currently annually cropped area (129Mha) would increase soil C sequestration by 47 Tg C yr–1. Alternatively, use of no-till on 50% of annual cropland, with reduced tillage practices on the other 50%, would sequester less – about37 Tg C yr–1. Elimination of summer fallow practices and conversionof highly erodible cropland to perennial grass cover could sequester around 20 and 28Tg C yr–1, respectively. The soil C sequestration potentialfrom including a winter cover crop on annual cropping systems was estimated at 40Tg C yr–1. All rates were estimated for a fifteen-yearprojection period, and annual rates of soil C accumulations would be expected to decrease substantially over longer time periods. The total sequestration potential we have estimated for the projection period (83 Tg C yr–1) represents about 5% of 1999total U.S. CO2 emissions or nearly double estimated CO2 emissionsfrom agricultural production (43 Tg C yr–1). For purposes ofstabilizing or reducing CO2 emissions, e.g., by 7% of 1990 levels asoriginally called for in the Kyoto Protocol, total potential soil C sequestration would represent 15% of that reduction level from projected 2008 emissions(2008 total greenhouse gas emissions less 93% of 1990 greenhouse gasemissions). Thus, our analysis suggests that agricultural soil C sequestration could play a meaningful, but not predominant, role in helping mitigate greenhouse gas increases.  相似文献   

8.
Increasing concentrations of CO2 and other greenhouse gases (GHG) in the Earth's atmosphere have the potential to enhance the natural greenhouse effect, which may result in climatic changes. The main anthropogenic contributors to this increase are fossil fuel combustion, land use conversion, and soil cultivation. It is clear that overcoming the challenge of global climate change will require a combination of approaches, including increased energy efficiency, energy conservation, alternative energy sources, and carbon (C) capture and sequestration. The United States Department of Energy (DOE) is sponsoring the development of new technologies that can provide energy and promote economic prosperity while reducing GHG emissions. One option that can contribute to achieving this goal is the capture and sequestration of CO2 in geologic formations. An alternative approach is C sequestration in terrestrial ecosystsems through natural processes. Enhancing such natural pools (known as natural sequestration) can make a significant contribution to CO2 management strategies with the potential to sequester about 290 Tg C/y in U.S. soils. In addition to soils, there is also a large potential for C sequestration in above and belowground biomass in forest ecosystems.A major area of interest to DOE's fossil energy program is reclaimed mined lands, of which there may be 0.63 ×106 ha in the U.S. These areas are essentially devoid of soil C; therefore, they provide an excellent opportunity to sequester C in both soils and vegetation. Measurement of C in these ecosystems requires the development of new technology and protocols that are accurate and economically viable. Field demonstrations are needed to accurately determine C sequestration potential and to demonstrate the ecological and aesthetic benefits in improved soil and water quality, increased biodiversity, and restored ecosystems.The DOE's research program in natural sequestration highlights fundamental and applied studies, such as the development of measurement, monitoring, and verification technologies and protocols and field tests aimed at developing techniques for maximizing the productivity of hitherto infertile soils and degraded ecosystems.  相似文献   

9.
10.
Carbon Sequestration and the Restoration of Land Health   总被引:1,自引:0,他引:1  
Carbon sequestration, the conversion of greenhouse gas CO2 toorganic matter, offers a powerful tool with which to combat climate change. The enlargement of carbon sinks stored in soil and biota is an essential tool in buying time while mankind seeks means to reduce emissions of greenhouse gases and to reduce the elevated levels of atmospheric CO2. Carbon sequestration within the context of the Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCCC) also has great potential as an incentive for combating land degradation and desertification and restoring fertility to degraded land.Decisions regarding carbon sinks during finalization of the operational details of the Kyoto Protocol in 2001 fit well the needs of countries facing land degradation and desertification. However, incentives for such mitigation through the Clean Development Mechanism of the protocol are limited to forestry issues. Iceland provides a good example of the multiple role of carbon sequestration in meeting national commitments to UNFCCC, conserving and restoring biological diversity, combating soil erosion, revegetation of eroded land and reforestation. Linking carbon sequestration with such goals has resulted in increased funds for soil conservation and restoration of degraded land in Iceland.  相似文献   

11.
《Climate Policy》2001,1(1):41-54
One strategy for mitigating the increase in atmospheric carbon dioxide is to expand the size of the terrestrial carbon sink, particularly forests, essentially using trees as biological scrubbers. Within relevant ranges of carbon abatement targets, augmenting carbon sequestration by protecting and expanding biomass sinks can potentially make large contributions at costs that are comparable or lower than for emission source controls. The Kyoto protocol to the framework convention on climate change includes many provisions for forest and land use carbon sequestration projects and activities in its signatories’ overall greenhouse gas mitigation plans. In particular, the protocol provides a joint implementation provision and a clean development mechanism that would allow nations to claim credit for carbon sequestration projects undertaken in cooperation with other countries. However, there are many obstacles for implementing an effective program of land use change and forestry carbon credits, especially measurement challenges. This paper explains the difficulty that even impartial analysts have in assessing the carbon offset benefits of projects. When these measurement challenges are combined with self-interest, asymmetries of information, and large numbers, it prevents to a project-based forest and land use carbon credit program may be insurmountable.  相似文献   

12.
《Climate Policy》2013,13(1):41-54
Abstract

One strategy for mitigating the increase in atmospheric carbon dioxide is to expand the size of the terrestrial carbon sink, particularly forests, essentially using trees as biological scrubbers. Within relevant ranges of carbon abatement targets, augmenting carbon sequestration by protecting and expanding biomass sinks can potentially make large contributions at costs that are comparable or lower than for emission source controls. The Kyoto protocol to the framework convention on climate change includes many provisions for forest and land use carbon sequestration projects and activities in its signatories' overall greenhouse gas mitigation plans. In particular, the protocol provides a joint implementation provision and a clean development mechanism that would allow nations to claim credit for carbon sequestration projects undertaken in cooperation with other countries. However, there are many obstacles for implementing an effective program of land use change and forestry carbon credits, especially measurement challenges. This paper explains the difficulty that even impartial analysts have in assessing the carbon offset benefits of projects. When these measurement challenges are combined with self-interest, asymmetries of information, and large numbers, it prevents to a project-based forest and land use carbon credit program may be insurmountable.  相似文献   

13.
A pilot cropland carbon sequestration program within north central Montana has allowed farmers to receive carbon credit for management adjustments associated with changing from tillage-based agricultural systems to no-till. Carbon credit can also be obtained by adopting conservation reserve, where cropland is planted into perennial vegetation. Summer fallowing is also considered within the crediting process as credit is not given in years that a field is left un-vegetated. The carbon sequestration program has been advocated as a means to mitigate climate change while providing an added source of income for Montana farmers. There is lack of data, however, pertaining to the percentage of lands within this region that have not converted to no-till management, lands under certain crop intensities (e.g. those that are cropped every growing season vs. those that use a fallow-crop-fallow system), or cropland that have converted to perennial vegetation outside of the popular Conservation Reserve Program. Data is also sparse concerning the amount of soil organic carbon that might be sequestered given a conversion to no-till or conservation reserve. This study established regional percentage estimates of cropland under no-till, various degrees of crop intensity, and conservation reserve within north central Montana. Literature-based carbon sequestration estimates were used to generate carbon gain data associated with the conversation to no-till and to conservation reserve. These estimates were then applied to the area-based cropland statistics to estimate potential regional carbon sequestration associated with these management changes.  相似文献   

14.
Ecological limits to terrestrial biological carbon dioxide removal   总被引:1,自引:1,他引:0  
Terrestrial biological atmospheric carbon dioxide removal (BCDR) through bioenergy with carbon capture and storage (BECS), afforestation/reforestation, and forest and soil management is a family of proposed climate change mitigation strategies. Very high sequestration potentials for these strategies have been reported, but there has been no systematic analysis of the potential ecological limits to and environmental impacts of implementation at the scale relevant to climate change mitigation. In this analysis, we identified site-specific aspects of land, water, nutrients, and habitat that will affect local project-scale carbon sequestration and ecological impacts. Using this framework, we estimated global-scale land and resource requirements for BCDR, implemented at a rate of 1 Pg C y?1. We estimate that removing 1 Pg C y?1 via tropical afforestation would require at least 7?×?106 ha y?1 of land, 0.09 Tg y?1 of nitrogen, and 0.2 Tg y?1 of phosphorous, and would increase evapotranspiration from those lands by almost 50 %. Switchgrass BECS would require at least 2?×?108 ha of land (20 times U.S. area currently under bioethanol production) and 20 Tg y?1 of nitrogen (20 % of global fertilizer nitrogen production), consuming 4?×?1012?m3 y?1 of water. While BCDR promises some direct (climate) and ancillary (restoration, habitat protection) benefits, Pg C-scale implementation may be constrained by ecological factors, and may compromise the ultimate goals of climate change mitigation.  相似文献   

15.
Humans utilise about 40% of the earth’s net primary production (NPP) but the products of this NPP are often managed by different sectors, with timber and forest products managed by the forestry sector and food and fibre products from croplands and grasslands managed by the agricultural sector. Other significant anthropogenic impacts on the global carbon cycle include human utilization of fossil fuels and impacts on less intensively managed systems such as peatlands, wetlands and permafrost. A great deal of knowledge, expertise and data is available within each sector. We describe the contribution of sectoral carbon budgets to our understanding of the global carbon cycle. Whilst many sectors exhibit similarities for carbon budgeting, some key differences arise due to differences in goods and services provided, ecology, management practices used, land-management personnel responsible, policies affecting land management, data types and availability, and the drivers of change. We review the methods and data sources available for assessing sectoral carbon budgets, and describe some of key data limitations and uncertainties for each sector in different regions of the world. We identify the main gaps in our knowledge/data, show that coverage is better for the developed world for most sectors, and suggest how sectoral carbon budgets could be improved in the future. Research priorities include the development of shared protocols through site networks, a move to full carbon accounting within sectors, and the assessment of full greenhouse gas budgets.  相似文献   

16.
Researchers have been analyzing the costs of carbon sequestration for approximately twelve years. The purpose of this paper is to critically review the carbon sequestration cost studies of the past dozen years that have evaluated the cost-effectiveness of the forestry option. Several conclusions emerge. While carbon sequestration cost studies all contain essentially the same components they are not comparable on their face due to the inconsistent use of terms, geographic scope, assumptions, program definitions, and methods. For example, there are at least three distinct definitions for a `ton of carbon' that in turn lead to significantly different meanings for the metric `dollars per ton of carbon'. This difference in carbon accounting further complicates comparison of studies. After adjusting for the variation among the studies, it appears that carbon sequestration may play a substantial role in a global greenhouse gas emissions abatement program. In the cost range of 10 to 150 dollars per ton of carbon it may be possible to sequester 250 to 500 million tons per year in the United States, and globally upwards of 2,000 million tons per year, for several decades. However, there are two unresolved issues that may seriously affect the contribution of carbon sequestration to a greenhouse gas mitigation program, and they will likely have counteracting effects. First, the secondary benefits of agricultural land conversion to forests may be as great as the costs. If that is the case, then the unit costs essentially disappear, making carbon sequestration a no-regrets strategy. In the other direction, if leakage is a serious issue at both the national and international levels, as suggested by some studies, then it may occur that governments will expend billions of dollars in subsidies or other forms of incentives, with little or no net gain in carbon, forests or secondary benefits. Preliminary results suggest that market interactions in carbon sequestration program analyses require considerably more attention. This is especially true for interactions between the forest and agricultural land markets and between the wood product sink and the timber markets.  相似文献   

17.
Forests of the United States and Russia can play a positive role in reducing the extent of global warming caused by greenhouse gases, especially carbon dioxide. To determine the extent of carbon sequestration, physical, ecological, economic, and social issues need to be considered, including different forest management objectives across major forest ownership groups. Private timberlands in the U.S. Pacific Northwest are relatively young, well stocked, and sequestering carbon at relatively high rates. Forests in northwestern Russia are generally less productive than those in the Northwestern U.S. but cover extensive areas. A large increase in carbon storage per hectare in live tree biomass is projected on National Forest timberlands in the U.S. Pacific Northwest for all selected scenarios, with an increase of between 157–175 Mg by 2050 and a near doubling of 1970s levels. On private timberlands in the Pacific Northwest, average carbon in live tree biomass per hectare has been declining historically but began to level off near 65 Mg in 2000; projected levels by 2050 are roughly what they were in 1970 at approximately 80 Mg. In the St. Petersburg region, average carbon stores were similar to those on private lands in the Pacific Northwest: 57 Mg per hectare in 2000 and ranging from 40 to 64 Mg by 2050. Although the projected futures reflect a broad range of policy options, larger differences in projected carbon stores result from the starting conditions determined by ownership, regional environmental conditions, and past changes in forest management. However, an important change of forest management objective, such as the end of all timber harvest on National Forests in the Pacific Northwest or complete elimination of mature timber in the St. Petersburg region, can lead to substantial change in carbon stores over the next 50 years.  相似文献   

18.
We set out a dynamic model to investigate optimal time paths of emissions, carbon stocks and carbon sequestration by land conversion, allowing for non-instantaneous carbon sequestration. Previous research in a dynamic general equilibrium framework, assuming instantaneous carbon sequestration, has shown that land conversion should take place as soon as possible. On the contrary, previous research within a partial equilibrium framework has shown that, with increasing carbon prices, it is optimal to delay carbon sequestration through land conversion. We show that land use change alternatives, e.g. reforestation, have to be used as soon as possible before the singular path is reached, i.e. the unique trajectory that brings the system to the steady-state. We also show that faster increasing carbon prices can induce a reduction in the rate of reforestation, and that this may take place after an initial phase of increased reforestations or even immediately, depending upon the shape of the increase in carbon prices. Finally, we show that the type of species used is relevant and that the land conversion rate gets smaller the longer it takes the trees to grow. We analyze four different carbon accounting methods, describing the conditions that make them efficient and discussing the comparative advantages of each of them.  相似文献   

19.
Terrestrial ecosystems provide a range of important services to humans, including global and regional climate regulation. These services arise from natural ecosystem functioning as governed by drivers such as climate, atmospheric carbon dioxide mixing ratio, and land-use change. From the perspective of carbon sequestration, numerous studies have assessed trends and projections of the past and future terrestrial carbon cycle, but links to the ecosystem service concept have been hindered by the lack of appropriate quantitative service metrics. The recently introduced concept of the Greenhouse Gas Value (GHGV) accounts for the land-atmosphere exchanges of multiple greenhouse gases by taking into consideration the associated ecosystem pool sizes, annual exchange fluxes and probable effects of natural disturbance in a time-sensitive manner.We use here GHGV as an indicator for the carbon sequestration aspects of the climate regulation ecosystem service, and quantify it at global scale using the LPJ-GUESS dynamic global vegetation model. The response of ecosystem dynamics and ecosystem state variables to trends in climate, atmospheric carbon dioxide levels and land use simulated by LPJ-GUESS are used to calculate the contribution of carbon dioxide to GHGV. We evaluate global variations in GHGV over historical periods and for future scenarios (1850–2100) on a biome basis following a high and a low emission scenario.GHGV is found to vary substantially depending on the biogeochemical processes represented in LPJ-GUESS (e.g. carbon–nitrogen coupling, representation of land use). The consideration of disturbance events that occur as part of an ecosystem's natural dynamics is crucial for realistic GHGV assessments; their omission results in unrealistically high GHGV. By considering the biome-specific response to current climate and land use, and their projections for the future, we highlight the importance of all forest biomes for maintaining and increasing biogeochemical carbon sequestration. Under future climate and carbon dioxide levels following a high emission scenario GHGV values are projected to increase, especially so in tropical forests, but land-use change (e.g. deforestation) opposes this trend. The GHGV of ecosystems, especially when assessed over large areas, is an appropriate metric to assess the contribution of different greenhouse gases to climate and forms a basis for the monetary valuation of the climate regulation service ecosystems provide.  相似文献   

20.
 由土地利用、土地利用变化和林业(LULUCF)活动产生的生态系统的固碳作用,是降低大气中温室气体浓度增加速度的重要途径之一。1997-2001年,经历了长达4 a的艰苦谈判,最终达成了第一承诺期附件一国家利用LULUCF的规则。2008年开始,国际社会开始磋商第二承诺期附件一国家如何利用LULUCF活动的规则。主要缔约方就第二承诺期LULUCF规则提出了各自的观点,发达国家的观点主要包括提高开展碳汇活动的积极性、降低LULUCF规则的复杂性和减少成本、增加《京都议定书》3.4条款下的合格活动等,其目的是在第二承诺期能够利用更多的碳汇完成减排义务;发展中国家主要提出要系统地考虑土地利用造成的温室气体排放和CO2的吸收。最后,针对附件一缔约方在第二承诺期利用LULUCF活动规则,提出了我国应采取的对策建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号