首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shallow slope failures induced by rainfall infiltration occur frequently, and the relevant triggering mechanisms have been widely studied.Rainfall-induced landslides are widely recognized to be caused by increases in soil weight, seepage force and pore water pressure or decreases in soil mechanical properties. However, even when all these factors are considered, some landslides still cannot be explained well. The increased pore water pressure in a slope reduces the effective stress of the soil and may trigger slope failure. Similarly, the pore gas pressure in a slope also reduces the effective stress of the soil but has been neglected in previous studies. As the viscosity of air is nearly negligible when compared with that of water, the pore gas pressure spreads faster, and its influence is wider, which is harmful for the stability of the slope. In this paper, the effects of pore gas pressure are considered in a shallow slope stability analysis, and a self-designed experiment is conducted to validate the force transfer mechanism.Numerical simulation results show that the pore gas pressure in the slope increases sharply at different locations under heavy rainfall conditions and that the pore gas pressure causes a rapid decrease in the slope safety factor. Laboratory experimental results show that the pore gas pressure throughout the whole unsaturated zone has the same value, which indicates that the gas pressure could spread quickly to the whole sample.  相似文献   

2.
Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model. The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments. However, whether a slope can actually seal pore air continues to be debated by researchers. In this study, a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope, and a field experiment is conducted to realistically test the sealing conditions of a slope. According to the numerical simulation, the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the "inhalation zone" and "overflow zone", respectively. Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level, and it causes pore air pressure to reach the cm level. A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration. Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process. The monitoring results show that the pore air pressure in the slope changed, which indicates that the slope can seal air. Moreover, the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall, which agrees well with the numerical simulation results.  相似文献   

3.
The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay’s strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The de- formations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deforma- tion and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.  相似文献   

4.
The production of runoff in the source area of a debris flow is the consequence of a reduction in soil strength. Gravel soil is widely distributed in the source region, and the influence of its clay content on soil strength is one of the important questions regarding the formation mechanism of debris flows. In this paper, the clay content in gravel soil is divided into groups of low clay content(1%, 2, 5%), moderate clay content(3.75%, 5.00%, 6.25%, 7.5%) and high clay content(10.0%, 12.5%, 15%). Tests of the unconsolidated undrained shear strength and consolidated drained shear strength were performed. The unconsolidated undrained shearing(UU) experiment simulates the rapid shear failure of loose gravel soil under the conditions of brief heavy rainfall. The consolidated drained shearing(CD) experiment simulates creep failure of consolidated sediment during extended rainfall. The pore water pressure first increased and then decreased as the clay content increased, and the increase in pore pressure was relatively high in the gravel soil sample when the clay content is in the range of 3.25-7.50%, and stress in the gravel soil is relatively low for a moderate clay content. Gravelly soils with a moderate clay content are moreprone to debris-flow initiation. This paper presents a mathematical formula for the maximum shear stress and clay content of gravel soil under two conditions. The key processes whereby the soil fails and triggers a debris flow—volume contraction of soil, expansion of clay soil, and rise of pore pressure―cause reductions in the soil friction force and enhancement of the water content in the clay particles, and subsurface erosion of soil reduces the soil viscosity, which eventually reduces the soil strength so that the soil loses its stability, liquefies and generates a debris flow.  相似文献   

5.
Initiation and development of water film by seepage   总被引:1,自引:1,他引:0  
When water seeps upwards through a saturated soil layer,the soil layer may become instability and water films occur and develop.Water film serves as a natural sliding surface because of its very small friction.Accordingly,debris flow may happen.To investigate this phenomenon,a pseudothree-phase media is presented first.Then discontinuity method is used to analyze the expansion velocity of water film.Finally,perturbation method is used to analyze the case that a water flow is forced to seep upwards through the soil layer while the movement of the skeleton may be neglected relative to that of water.The theoretical evolutions of pore pressure gradient,effective stress,water velocity,the porosity and the eroded fine grains are obtained.It can be seen clearly that with the erosion and redeposited of fine grains,permeability at some positions in the soil layer becomes smaller and smaller and,the pore pressure gradient becomes bigger and bigger,while the effective stress becomes smaller and smaller.When the effective stress equals zero,e.f.liquefaction,the water film occurs.It is shown also that once a water film occurs,it will be expanded in a speed of U(t)(1-ε).  相似文献   

6.
An ancient landslide, situated in Deqin County, Yunnan Province, China, was used to investigate the reactivation by water infiltration. This study considers the infiltration process and landslide stability using finite-element method(FEM)-based models. The results show that the reactivation of old landslide deposit was triggered by the long-term leakage of diversion ditch before October 2012, and the reactivation was triggered again by the intense rainfall on 7-9 October 2012. The old cracks, which formed in the earlier reactivation of landslide, played a key role for the rainfall infiltration. They offered a preferential path for much more rainfall to infiltrate fast into deep soil, and caused wetting front to move down faster in landslide. The old slip zone with lower permeability was another important factor to cause the infiltrated water to accumulate and form a high pore water pressure above slip zone. Then the high pore water pressure decreased the shear strength of slip zone and triggered the reactivation of the old landslide deposit again.  相似文献   

7.
本文以Biot的固结理论为基础,利用有限单元法,对水布垭水库未来蓄水后地壳岩石中由于附加水荷载所产生的各种力学效应进行了数值计算。计算中沿清江从招徕河到恩施之间共取剖面48个。认为:(1)水体荷载产生的附加应力场、孔压场和形变场在库岸附近造成压应力差和位移差,特别是分布有附加的张应力,促使库水向外渗透和扩散,导致孔压改变、有效应力降低或增大;(2)水布垭库坝区的张性断裂和喀斯特较发育的地段,由于水体荷载效应和库水的渗透及扩散作用,易沟通地下水的动力联系,使岩体失稳并在浅层易产生倾斜型或倾斜型兼走滑型滑动;(3)孔压和位移一般在库基下几公里深度区域内多形成一个高值孔压和低值位移的变换带,是应力易于集中的场所;(4)水荷载产生的各种附加效应,受蓄水方式和蓄水时间的影响。  相似文献   

8.
以黄冈地区青石镇政府后山堆积层滑坡为例,在分析了其工程地质特征及地质结构特征的基础上,采用有限元法研究了非饱和土瞬态体积含水量及孔隙水压力的分布,采用考虑孔隙水压力的Janbu法分析计算了降雨对堆积层滑坡安全系数的影响。研究结果表明:①降雨入渗导致坡体孔隙水压力升高,滑面抗剪强度降低,安全系数也随之逐渐降低,其中在降雨前期,两侧的抗剪强度下降速率比中部快,而到了后期中部的抗剪强度下降速率明显快于两侧;②安全系数变化表现为前19 d以0.008/d的速率缓慢下降,19~30 d以0.03/d的速率缓慢下降,30 d以后下降速度降低,至36 d之后不再发生变化,其中在0~11 d两侧抗剪强度变化对滑坡整体稳定性变化的贡献比中部大,19~36 d中部抗剪强度变化对滑坡整体稳定性变化的贡献要比两侧大;③降雨入渗过程中,地下水从坡体表层和两侧流向坡体中部,负孔压区面积向中部不断压缩,中部地下水变化受到两侧及上层的制约,体积含水量及孔隙水压力变化相对滞后;④该滑坡的防治重点是做好降雨前期坡体后缘地下水截流以及前缘地下水排泄工作,同时,做好地表排水,减少降雨入渗。   相似文献   

9.
In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong River in Bomi, Tibet on April 9, 2000 as the background. According to the motion characteristics of high-speed and long distance motion landside, the mechanism is studied under different conditions such as shear speed, consolidated drained and consolidated undrained status. Results show that high speed shearing process hinders and delays the dissipation of pore pressure, and drives pore water migrating to shear zone slowly. Both of water content and fine particle content at shear zone are obviously higher than those in other layers; and soil liquefaction occurs at shear zone in the saturated consolidated undrained ring shear tests. The effective internal friction angle of the consolidated undrained soil is much lower than that of the consolidated drained soil under ring shearing. The results also indicate that the shearing speed affecting the strength of soil to some extent. The higher the ring shearing speed is, the lower the strength of soil is. This investigation provides a preliminary interpretation of the mechanism of the motion and acceleration process of the Yigong landslide, occurred in Tibet in 2000.  相似文献   

10.
In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heights respectively. The study showed that water waves propagating over silty seabed can induce significant change of pore water pressure, and the amplitude of pore pressure depends on depth of buried soil layer, clay content and wave height, which are considered as the three influencing factors for pore water pressure change. The pressure will attenuate according to exponential law with increase of soil layer buried depth, and the attenuation being more rapid in those soil layers with higher clay content and greater wave height. The pore pressure in silty seabed increases rapidly in the initial stage of wave action, then decreases gradually to a stable value, depending on the depth of buried soil layer, clay content and wave height. The peak value of pore pressure will increase if clay content or depth of buried soil layer decreases, or wave height increases. The analysis indicated that these soils with 5% clay content and waves with higher wave height produce instability in bed easier, and that the wave energy is mostly dissipated near the surface of soils and 5% clay content in soils can prevent pore pressure from dissipating immediately.  相似文献   

11.
Natural consolidation characteristics of viscous debris flow deposition   总被引:1,自引:0,他引:1  
Pore water pressure and water content are important indicators to both deposition and consolidation of debris flows, enabling a direct assessment of consolidation degree. This article gained a more comprehensive understanding about the entire consolidation process and focused on exploring pore water pressure and volumetric water content variations of the deposit body during natural consolidation under different conditions taking the viscous debris flow mass as a study subject and by flume experiments. The results indicate that, as the color of the debris changed from initial dark green to grayish-white color, the initial deposit thickness declined by 3% and 2.8% over a permeable and impermeable sand bed, respectively. A positive correlation was observed between pore water pressure and depth in the deposit for both scenarios, with deeper depths being related to greater pore water pressure. For the permeable environment, the average dissipation rate of pore water pressure measured at depths of 0.10 m and 0.05 m were 0.0172 Pa/d and 0.0144 Pa/d, respectively, showing a positivechanging trend with increasing depth. Under impermeable conditions, the average dissipation rates at different depths were similar, while the volumetric water content in the deposit had a positive correlation with depth. The reduction of water content in the deposit accelerated with depth under impermeable sand bed boundary conditions, but was not considerably correlated with depth under permeable sand bed boundary conditions. However, the amount of discharged water from the deposit was greater and consolidation occurred faster in permeable conditions. This indicates that the permeability of the boundary sand bed has a significant impact on the progress of consolidation. This research demonstrates that pore water and pressure dissipations are present during the entire viscous debris consolidation process. Contrasting with dilute flows, pore pressure dissipation in viscous flows cannot be completed in a matter of minutes or even hours, requiring longer completion time — 3 to 5 days and even more. Additionally, the dissipation of the pore water pressure lagged the reduction of the water content. During the experiment, the dissipation rate fluctuated substantially, indicating a close relationship betweenthe dissipation process and the physical properties of broadly graded soils.  相似文献   

12.
Pore water pressure has an important influence on mechanical properties of soil. The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure. The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading. What is more, the pore water pressure coefficient of mucky soil is less than 1. As the compactness of soil increases and moisture content reduces, the value of B reduces. There is a staggered dissipating in the process of consolidation, in which it is a mutate point when U/P is 80%. It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation.  相似文献   

13.
Pore water pressure has an important influence on mechanical properties of soil. The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure. The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading. What is more, the pore water pressure coefficient of mucky soil is less than 1. As the compactness of soil increases and moisture content reduces, the value of B reduces. There is a staggered dissipating in the process of consolidation, in which it is a mutate point when U/P is 80%. It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation.  相似文献   

14.
Discontinuous slope failures and pore-water pressure variation   总被引:1,自引:1,他引:0  
Field experiments were conducted under artificial rainfalls to investigate the processes of soil failures on slope. It is found that the failures were temporally discontinuous and spatially discrete, with a wide range of magnitudes, accompanied by variations of soil moisture and pore-water pressure. Specifically, the experiments indicate that soil failures are more likely to occur on slope with high content of fine particles; the pore-pressure varies in response to soil failures in that the failures evidently affect the pore of the underlying soil. Migration of fine particles from upper to lower part of the slope also impacts the pore-water pressure variations in the slope profile. It is concluded that soil heterogeneity has a significant effect on variation in pore-water pressure, and fine particles transportation influences the building of pore-water pressure, as well as the mass depth, initial porosity, which is key to understanding the spatial characteristics of slope failures.  相似文献   

15.
The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inverted triangular profiles was designed, and the Green-Ampt model was employed for the process simulation. The results indicate that (1) the wetting front in coarse texture soils transports faster than in fine texture soils; (2) for the homogeneous case, the wetting front in triangularshaped soils transports faster than the inverted triangular type, but the triangular-shaped soils show a lower infiltration rate; (3) in the initial step, the wetting front in triangular-shaped soils shows higher transport speed, but depicts lower speed with increase in the time; (4) both the wetting front and infiltration rate show a significant exponential relation with the time. From these findings, an empirical model was developed which agrees well with the observed data and provides a useful method for this field of soil research.  相似文献   

16.
碳酸盐岩声波传播特征具有重要的应用价值,系统性地分析流体类型、流体压力、温度及围压对碳酸盐岩声波速度与频谱特性影响的研究仍需加强。选取四川盆地合川-潼南地区灯影组缝洞碳酸盐岩,开展了不同条件下的声波透射实验,分析了围压、孔隙压力、压力差、温度及流体类型对碳酸盐岩样品声波速度的影响及不同条件下透射声波的主频特征。研究结果表明:饱和地层水时声波速度对压力变化的敏感度较饱和氮气时低。压力变化过程中,声波速度变化幅度与岩样孔隙度为正相关关系。实验温度范围内,随着温度逐渐升高,饱和地层水、氮气岩心纵波速度、横波速度均小幅降低。当差应力较低时,通过改变孔隙压力来改变差应力的方式对应的声波速度大于通过改变围压来改变差应力方式对应的声波速度,当差应力较高时,结论相反。相同差应力条件下,声波速度对围压变化较孔隙压力变化更为敏感。定围压变孔隙压力与定孔压变围压曲线所对应的2条声波速度-差应力关系曲线的夹角及斜率差可定性反映岩样动态Biot有效应力系数相对大小。随着差应力增大,孔隙压力对有效应力的贡献逐渐降低。随着孔隙压力增大,纵波主频幅值、横波主频幅值均逐渐下降,随着围压增大,纵波主频幅值、横波主频幅值均...  相似文献   

17.
在三轴条件下,对饱和土(砂土和黏土)进行排水与不排水条件下的冲击试验及冲击后再固结试验,对比研究了不同渗透性土在不同排水条件下的冲击动力响应和冲击后再固结性状.结果表明:饱和黏土不排水冲击时的孔隙水压力随冲击击数增加而升高并逐渐稳定,排水冲击时的孔隙水压力则是先达到峰值然后有所下降;砂土不排水冲击时的冲击能量对孔隙水压力影响最明显;饱和砂土不排水冲击时的轴向应变与冲击击数呈近似线性关系,饱和黏土冲击及饱和砂土排水冲击则呈近二次曲线关系;饱和砂土不排水冲击后再固结阶段的孔隙水压力立即消散为0,同时体变迅速增大到一定值;饱和黏土在冲击后再固结阶段的孔隙水压力在一定时间内逐渐消散完毕,同时体变逐渐增大;饱和黏土排水冲击时,冲击阶段产生的体变占冲击引起总体变的39%~49%,冲击后再固结阶段产生的体变占51%~61%;砂土和黏土的总体变均表现为排水冲击明显大于不排水冲击,改善冲击时的排水条件有利于提高加固效果.  相似文献   

18.
The Heifangtai platform in Northwest China is famous for irrigation-induced loess landslides. This study conducted a centrifuge model test with reference to an irrigation-induced loess landslide that occurred in Heifangtai in 2011. The loess slope model was constructed by whittling a cubic loess block obtaining from the landslide site. The irrigation water was simulated by applying continuous infiltration from back of the slope. The deformation, earth pressure, and pore pressure were investigated during test by a series of transducers. For this particular study, the results showed that the failure processes were characterized by retrogressive landslides and cracks. The time dependent reductions of cohesion and internal friction angle at basal layer with increasing pore-water pressure were responsible for these failures. The foot part of slope is very important for slope instability and hazard prevention in the study area, where concentration of earth pressure and generation of high pore-water pressures would form before failures. The measurements of earth pressure and pore-water pressure might be effective for early warning in the study area.  相似文献   

19.
The impacts of no-tillage (NT) and moldboard plough (MP) managements on infiltration rate and preferential flow were characterized using a combined technique of double-ring device and dye tracer on a black soil (Mollisols) in Northeast China. The objective of this study is to evaluate how tillage practices enhance soil water infiltration and preferential flow in favor of soil erosion control in the study area. The steady infiltration rates under NT management are 1.6 and 2.1 times as high as those under MP management in the 6th and 8th years of the tillage management in place, while the infiltrated water amounts under NT management are 1.4 and 2.0 times as high as those under MP management, respectively. The depth of methylene blue penetrated into NT soil increases from 43 cm in the 6th year to 57 cm in the 8th year, which are 16 cm and 19 cm deeper than those in MP soil, respectively. The results of morphologic image show that more biological macro-pores occur in NT soil than in MP soil. These macro-pores play a key role in enhancing preferential flow in NT soil, which in turn promotes water infiltration through preferential pathways in NT soil. The results are helpful to policy-making in popularizing NT and have the implications for tillage management in regard to soil erosion control in black soil region of China.  相似文献   

20.
计算古冶5.1级地震震前、同震、震后唐山地区9口流体井的孔压分布和实测井水位升降情况。结果表明:1)震前,唐山古冶地区处于应力累积的状态,压缩区为近东西向,拉张区为近南北向,实测的井水位升、降情况基本与压缩、拉张情况一致;2)震时,压缩、拉张区没有改变,但应力有所释放,实测的井水升、降情况存在与压缩、拉张情况不一致的现象;3)震后,压缩区演变为拉张区,拉张区演变为压缩区,实测的井水位升、降情况也基本与压缩、拉张情况一致。本文较为全面地解释了地震静应力从震前到震后的调整过程,通过计算震前、震时、震后的井孔压分布得知,井孔压在走滑断层破裂带周边呈四象限分布,这种变化特征可用震前闭锁剪力模型解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号