首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Layers of Ca-rich garnet–clinopyroxene rocks enclosedin a serpentinite body at Hujialin, in the Su–Lu terraneof eastern China, preserve igneous textures, relict spinel ingarnet, and exsolution lamellae of Ca-rich garnet, ilmenite/magnetite,Fe-rich spinel, and also amphibole in clinopyroxene. In termsof their major and trace element compositions, the studied samplesform a trend from arc cumulates towards Fe–Ti gabbros.Reconstructed augite compositions plot on the trend for clinopyroxenein arc cumulates. These data suggest that the rocks crystallizedfrom mantle-derived magmas differentiated to various extentsbeneath an arc. The Ca-rich garnet + diopside assemblage isinferred to have formed by compressing Ca-rich augite, whereasthe relatively Mg-rich cores of garnet porphyroblasts may haveformed at the expense of spinel. The protolith cumulates weresubducted from near the crust–mantle boundary (c. 1 GPa)deep into the upper mantle (4·8 ± 0·6 GPaand 750 ± 50°C). Negatively sloped P–T pathsfor the garnet–clinopyroxene rocks and the corollary ofcorner flow induced subduction of mantle wedge peridotite arenot supported by the available data. Cooling with, or without,decompression of the cumulates after the igneous stage probablyoccurred prior to deep subduction. KEY WORDS: arc cumulates; Ca-rich garnet; garnet–clinopyroxene rocks; Su–Lu terrane; UHP metamorphism  相似文献   

2.
Biotite + plagioclase + quartz (BPQ) is a common assemblagein gneisses, metasediments and metamorphosed granitic to granodioriticintrusions. Melting experiments on an assemblage consistingof 24 vol. % quartz, 25 vol. % biotite (XMg = 0·38–0·40),42 vol. % plagioclase (An26–29), 9 vol. % alkali feldsparand minor apatite, titanite and epidote were conducted at 10,15 and 20 kbar between 800 and 900°C under fluid-absentconditions and with small amounts (2 and 4 wt %) of water addedto the system. At 10 kbar when 4 wt % of water was added tothe system the biotite melting reaction occurred below 800°Cand produced garnet + amphibole + melt. At 15 kbar the meltingreaction produced garnet + amphibole + melt with 2 wt % addedwater. At 20 kbar the amphibole occurred only at high temperature(900°C) and with 4 wt % added water. In this last case themelting reaction produced amphibole + clinopyroxene ±garnet + melt. Under fluid-absent conditions the melting reactionproduced garnet + plagioclase II + melt and left behind a plagioclaseI ± quartz residuum, with an increase in the modal amountof garnet with increasing pressure. The results show that itis not possible to generate hornblende in such compositionswithout the addition of at least 2–4 wt % H2O. This reflectsthe fact that conditions of low aH2O may prevent hornblendefrom being produced with peraluminous granitic liquids fromthe melting of biotite gneiss. Thus growth of hornblende inanatectic BPQ gneisses is an indication of addition of externalH2O-rich fluids during the partial melting event. KEY WORDS: biotite; dehydration; gneisses; hornblende; melt  相似文献   

3.
Ultra-calcic ankaramitic magmas or melt inclusions are ubiquitousin arc, ocean-island and mid-ocean ridge settings. They areprimitive in character (XMg > 0·65) and have highCaO contents (>14 wt %) and CaO/Al2O3 (>1·1). Experimentson an ankaramite from Epi, Vanuatu arc, demonstrate that itsliquidus surface has only clinopyroxene at pressures of 15 and20 kbar, with XCO2 in the volatile component from 0 to 0·86.The parental Epi ankaramite is thus not an unfractionated magma.However, forcing the ankaramite experimentally into saturationwith olivine, orthopyroxene and spinel results in more magnesian,ultra-calcic melts with CaO/Al2O3 of 1·21–1·58.The experimental melts are not extremely Ca-rich but high inCaO/Al2O3 and in MgO (up to 18.5 wt %), and would evolve tohigh-CaO melts through olivine fractionation. Fractionationmodels show that the Epi parent magma can be derived from suchultra-calcic experimental melts through mainly olivine fractionation.We show that the experimental ultra-calcic melts could formthrough low-degree melting of somewhat refractory mantle. Thelatter would have been depleted by previous melt extraction,which increases the CaO/Al2O3 in the residue as long as someclinopyroxene remains residual. This finding corrects the commonassumption that ultra-calcic magmas must come from a Ca-richpyroxenite-type source. The temperatures necessary for the generationof ultra-calcic magmas are  相似文献   

4.
Multianvil melting experiments in the system CaO–MgO–Al2O3–SiO2–CO2(CMAS–CO2) at 3–8 GPa, 1340–1800°C, involvingthe garnet lherzolite phase assemblage in equilibrium with CO2-bearingmelts, yield continuous gradations in melt composition betweencarbonatite, kimberlite, melilitite, komatiite, picrite, andbasalt melts. The phase relations encompass a divariant surfacein PT space. Comparison of the carbonatitic melts producedat the low-temperature side of this surface with naturally occurringcarbonatites indicates that natural magnesiocarbonatites couldbe generated over a wide range of pressures >2·5 GPa.Melts analogous to kimberlites form at higher temperatures alongthe divariant surface, which suggests that kimberlite genesisrequires more elevated geotherms. However, the amount of waterfound in some kimberlites has the potential to lower temperaturesfor the generation of kimberlitic melts by up to 150°C,provided no hydrous phases are present. Compositions resemblinggroup IB and IA kimberlites are produced at pressures around5–6 GPa and 10 GPa, respectively, whereas the compositionsof some other kimberlites suggest generation at higher pressuresstill. At pressures <4 GPa, an elevated geotherm producesmelilitite-like melt in the CMAS–CO2 system rather thankimberlite. Even when a relatively CO2-rich mantle compositioncontaining 0·15 wt % CO2 is assumed, kimberlites andmelilitites are produced by <1% melting and carbonatitesare generated by even smaller degrees of melting of <0·5%. KEY WORDS: carbonatite; CO2; kimberlite; melilitite; melt generation  相似文献   

5.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   

6.
Dehydration melting experiments of alkali basalt associatedwith the Kenya Rift were performed at 0·7 and 1·0GPa, 850–1100°C, 3–5 wt % H2O, and fO2 nearnickel–nickel oxide. Carbon dioxide [XCO2 = molar CO2/(H2O+ CO2) = 0·2–0·9] was added to experimentsat 1025 and 1050°C. Dehydration melting in the system alkalibasalt–H2O produces quartz- and corundum-normative trachyandesite(6–7·5 wt % total alkalis) at 1000 and 1025°Cby the incongruent melting of amphibole (pargasite–magnesiohastingsite).Dehydration melting in the system alkali basalt–H2O–CO2produces nepheline-normative tephriphonolite, trachyandesite,and trachyte (10·5–12 wt % total alkalis). In thelatter case, the solidus is raised relative to the hydrous system,less melt is produced, and the incongruent melting reactioninvolves kaersutite. The role of carbon dioxide in alkalinemagma genesis is well documented for mantle systems. This studyshows that carbon dioxide is also important to the petrogenesisof alkaline magmas at the lower pressures of crustal systems.Select suites of continental alkaline rocks, including thosecontaining phonolite, may be derived by low-pressure dehydrationmelting of an alkali basalt–carbon dioxide crustal system. KEY WORDS: alkali basalt; alkaline rocks; carbon dioxide; dehydration melting; phonolite  相似文献   

7.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

8.
Olivine-rich rocks containing olivine + orthopyroxene + spinel+ Ca-amphibole ± clinopyroxene ± garnet are presentin the central Ötztal–Stubai crystalline basementassociated with eclogites of tholeiitic affinity. These rockscontain centimetre-sized garnet layers and lenses with garnet+ clinopyroxene ± corundum. Protoliths of the olivine-richrocks are thought to be olivine + orthopyroxene + spinel dominatedcumulates generated from an already differentiated Fe-rich () tholeiitic magma that was emplaced into shallowcontinental crust. Protoliths of the garnet-rich rocks are interpretedas layers enriched in plagioclase and spinel intercalated ina cumulate rock sequence that is devoid of, or poor in, plagioclase.U–Pb sensitive high-resolution ion microprobe dating ofzircons from a garnet layer indicates that emplacement of thecumulates took place no later than 517 ± 7 Myr ago. Aftertheir emplacement, the cumulates were subjected to progressivemetamorphism, reaching eclogite-facies conditions around 800°Cand >2 GPa during a Variscan metamorphic event between 350and 360 Ma. Progressive high-P metamorphism induced breakdownof spinel to form garnet in the olivine-rich rocks and of plagioclase+ spinel to form garnet + clinopyroxene ± corundum inthe garnet layers. Retrogressive metamorphism at T 650–680°Cled to the formation of Ca-amphibole, chlorite and talc in theolivine-rich rocks. In the garnet layers, högbomite formedfrom corundum + spinel along with Al-rich spinel, Ca-amphibole,chlorite, aspidolite–preiswerkite, magnetite, ilmeniteand apatite at the interface between olivine-rich rocks andgarnet layers at P < 0·8 GPa. Progressive desiccationof retrogade fluids through crystallization of hydrous phasesled to a local formation of saline brines in the garnet layers.The presence of these brines resulted in a late-stage formationof Fe- and K-rich Ca-amphibole and Sr-rich apatite, both characterizedby extremely high Cl contents of up to 3·5 and 6·5wt % Cl, respectively. KEY WORDS: cumulates; Variscan metamorphism; SHRIMP dating; högbomite; saline brines  相似文献   

9.
CaO-rich, Al2O3-poor ultracalcic primitive melts occur at mid-ocean-ridges, back-arc basins, ocean islands and volcanic arcs. They are subdivided into a nepheline-normative alkaline-rich, silica-poor group uniquely found in arcs and in hypersthene-normative fairly refractory melts which occur in all of the above environments. The high CaO contents (to 19.0 wt%) and CaO/Al2O3 ratios (to 1.8) exclude an origin from fertile lherzolites at volatile-absent conditions. Experimental investigation of the liquidus of a hypersthene-normative and a nepheline-normative ultracalcic melt results in quite distinct pressure-temperature conditions of multiple saturation: whereas the hypersthene-normative liquid saturates in olivine + clinopyroxene at 1.2 GPa and 1,410°C, this occurs at 0.2 GPa and 1,220°C for the nepheline-normative ultracalcic liquid. Our results in combination with melting experiments from the literature suggest that hypersthene-normative melts result from melting of a refractory olivine + clinopyroxene ± orthopyroxene source at elevated mantle temperatures. Contrasting, nepheline-normative ultracalcic melts form from wehrlitic cumulates in the arc crust; to account for the high alkaline and low silica contents, and the relatively low temperatures, source wehrlites must have contained amphibole.  相似文献   

10.
Zoned garnet and amphibole occur in metabasites of the KraubathMassif, Eastern Alps, that contain relic magmatic clinopyroxene.The amphibole composition gradually changes from core (XMg =0·83) to rim (XMg = 0·6–0·7). A numberof compositional varieties of garnet occur in the metabasite.An older porphyroblastic garnet (Py23–27, Alm41–43,Grs29–33) has two different compositional domains, onerelatively rich in Mg (Py27–30) and the other rich inCa (Grs35–38) with a low Mg (Py20–25) content. Theyoungest variety, which forms rims on, or microveins in, theporphyroblastic garnet, has high Ca and low Mg (Grs40–57,Py2–7, Alm46–51). The amphibole cores and garnetporphyroblasts are interpreted to represent minerals formedduring Variscan regional metamorphism under amphibolite-faciesconditions. Alpine metamorphism is represented by the most recentCa-rich and Mg-poor variety of garnet that coexists with theamphibole rims, epidote and chlorite. Fracturing in the porphyroblasticgarnet probably originated during retrogression of the Variscanamphibolite-facies assemblages. Textural relations suggest thatthe garnet in the microveins formed by dehydration of hydrousphases during an Alpine metamorphic overprint that reached PTconditions of 550–583°C at 1·0 GPa. KEY WORDS: microveins; garnet; metabasites; Kraubath Massif; Eastern Alps  相似文献   

11.
Mantle-derived xenoliths from the Marsabit shield volcano (easternflank of the Kenya rift) include porphyroclastic spinel peridotitescharacterized by variable styles of metasomatism. The petrographyof the xenoliths indicates a transition from primary clinopyroxene-bearingcryptically metasomatized harzburgite (light rare earth element,U, and Th enrichment in clinopyroxene) to modally metasomatizedclinopyroxene-free harzburgite and dunite. The metasomatic phasesinclude amphibole (low-Ti Mg-katophorite), Na-rich phlogopite,apatite, graphite and metasomatic low-Al orthopyroxene. Transitionalsamples show that metasomatism led to replacement of clinopyroxeneby amphibole. In all modally metasomatized xenoliths melt pockets(silicate glass containing silicate and oxide micro-phenocrysts,carbonates and empty vugs) occur in close textural relationshipwith the earlier metasomatic phases. The petrography, majorand trace element data, together with constraints from thermobarometryand fO2 calculations, indicate that the cryptic and modal metasomatismare the result of a single event of interaction between peridotiteand an orthopyroxene-saturated volatile-rich silicate melt.The unusual style of metasomatism (composition of amphibole,presence of graphite, formation of orthopyroxene) reflects lowP –T conditions (850–1000°C at < 1·5GPa) in the wall-rocks during impregnation and locally low oxygenfugacities. The latter allowed the precipitation of graphitefrom CO2. The inferred melt was possibly derived from alkalinebasic melts by melt–rock reaction during the developmentof the Tertiary–Quaternary Kenya rift. Glass-bearing meltpockets formed at the expense of the early phases, mainly throughincongruent melting of amphibole and orthopyroxene, triggeredby infiltration of a CO2-rich fluid and heating related to themagmatic activity that ultimately sampled and transported thexenoliths to the surface. KEY WORDS: graphite; peridotite xenoliths; Kenya Rift; modal metasomatism; silicate glass  相似文献   

12.
We report the results of a geochemical study of the Jijal andSarangar complexes, which constitute the lower crust of theMesozoic Kohistan paleo-island arc (Northern Pakistan). TheJijal complex is composed of basal peridotites topped by a gabbroicsection made up of mafic garnet granulite with minor lensesof garnet hornblendite and granite, grading up-section to hornblendegabbronorite. The Sarangar complex is composed of metagabbro.The Sarangar gabbro and Jijal hornblende gabbronorite have melt-like,light rare earth element (LREE)-enriched REE patterns similarto those of island arc basalts. Together with the Jijal garnetgranulite, they define negative covariations of LaN, YbN and(La/Sm)N with Eu* [Eu* = 2 x EuN/(SmN + GdN), where N indicateschondrite normalized], and positive covariations of (Yb/Gd)Nwith Eu*. REE modeling indicates that these covariations cannotbe accounted for by high-pressure crystal fractionation of hydrousprimitive or derivative andesites. They are consistent withformation of the garnet granulites as plagioclase–garnetassemblages with variable trapped melt fractions via eitherhigh-pressure crystallization of primitive island arc basaltsor dehydration-melting of hornblende gabbronorite, providedthat the amount of segregated or restitic garnet was low (<5wt %). Field, petrographic, geochemical and experimental evidenceis more consistent with formation of the Jijal garnet granuliteby dehydration-melting of Jijal hornblende gabbronorite. Similarly,the Jijal garnet-bearing hornblendite lenses were probably generatedby coeval dehydration-melting of hornblendites. Melting modelsand geochronological data point to intrusive leucogranites inthe overlying metaplutonic complex as the melts generated bydehydration-melting of the plutonic protoliths of the Jijalgarnet-bearing restites. Consistent with the metamorphic evolutionof the Kohistan lower arc crust, dehydration-melting occurredat the mature stage of this island arc when shallower hornblende-bearingplutonic rocks were buried to depths exceeding 25–30 kmand heated to temperatures above c. 900°C. Available experimentaldata on dehydration-melting of amphibolitic sources imply thatthickening of oceanic arcs to depths >30 km (equivalent toc. 1·0 GPa), together with the hot geotherms now postulatedfor lower island arc crust, should cause dehydration-meltingof amphibole-bearing plutonic rocks generating dense garnetgranulitic roots in island arcs. Dehydration-melting of hornblende-bearingplutonic rocks may, hence, be a common intracrustal chemicaland physical differentiation process in island arcs and a naturalconsequence of their maturation, leading to the addition ofgranitic partial melts to the middle–upper arc crust andformation of dense, unstable garnet granulite roots in the lowerarc crust. Addition of LREE-enriched granitic melts producedby this process to the middle–upper island arc crust maydrive its basaltic composition toward that of andesite, affordinga plausible solution to the ‘arc paradox’ of formationof andesitic continental-like crust in island arc settings. KEY WORDS: island arc crust; Kohistan complex; Jijal complex; amphibole dehydration-melting; garnet granulite; continental crustal growth  相似文献   

13.
High-pressure Partial Melting of Mafic Lithologies in the Mantle   总被引:17,自引:2,他引:15  
We review experimental phase equilibria associated with partialmelting of mafic lithologies (pyroxenites) at high pressuresto reveal systematic relationships between bulk compositionsof pyroxenite and their melting relations. An important aspectof pyroxenite phase equilibria is the existence of the garnet–pyroxenethermal divide, defined by the enstatite–Ca-Tschermakspyroxene–diopside plane in CaO–MgO–Al2O3–SiO2projections. This divide appears at pressures above 2 GPa inthe natural system where garnet and pyroxenes are the principalresidual phases in pyroxenites. Bulk compositions that resideon either side of the divide have distinct phase assemblagesfrom subsolidus to liquidus and produce distinct types of partialmelt ranging from strongly nepheline-normative to quartz-normativecompositions. Solidus and liquidus locations are little affectedby the location of natural pyroxenite compositions relativeto the thermal divide and are instead controlled chiefly bybulk alkali contents and Mg-numbers. Changes in phase volumesof residual minerals also influence partial melt compositions.If olivine is absent during partial melting, expansion of thephase volume of garnet relative to clinopyroxene with increasingpressure produces liquids with high Ca/Al and low MgO comparedwith garnet peridotite-derived partial melts. KEY WORDS: experimental petrology; mantle heterogeneity; partial melting; phase equilibrium; pyroxenite  相似文献   

14.
Sediment Melts at Sub-arc Depths: an Experimental Study   总被引:14,自引:0,他引:14  
The phase and melting relations in subducted pelites have beeninvestigated experimentally at conditions relevant for slabsat sub-arc depths (T = 600–1050°C, P = 2·5–4·5GPa). The fluid-present experiments produced a dominant paragenesisconsisting of garnet–phengite–clinopyroxene–coesite–kyanitethat coexists with a fluid phase at run conditions. Garnet containsdetectable amounts of Na2O (up to 0·5 wt%), P2O5 (upto 0·56 wt%), and TiO2 (up to 0·9 wt%) in allexperiments. Phengite is stable up to 1000°C at 4·5GPa and is characterized by high TiO2 contents of up to 2 wt%.The solidus has been determined at 700°C, 2·5 GPaand is situated between 700 and 750°C at 3·5 GPa.At 800°C, 4·5 GPa glass was present in the experiments,indicating that at such conditions a hydrous melt is stable.In contrast, at 700°C, 3·5 and 4·5 GPa, asolute-rich, non-quenchable aqueous fluid was present. Thisindicates that the solidus is steeply sloping in PT space.Fluid-present (vapour undersaturated) partial melting of thepelites occurs according to a generalized reaction phengite+ omphacite + coesite + fluid = melt + garnet. The H2O contentof the produced melt decreases with increasing temperature.The K2O content of the melt is buffered by phengite and increaseswith increasing temperature from 2·5 to 10 wt%, whereasNa2O decreases from 7 to 2·3 wt%. Hence, the melt compositionschange from trondhjemitic to granitic with increasing temperature.The K2O/H2O increases strongly as a function of temperatureand nature of the fluid phase. It is 0·0004–0·002in the aqueous fluid, and then increases gradually from about0·1 at 750–800°C to about 1 at 1000°C inthe hydrous melt. This provides evidence that hydrous meltsare needed for efficient extraction of K and other large ionlithophile elements from subducted sediments. Primitive subduction-relatedmagmas typically have K2O/H2O of 0·1–0·4,indicating that hydrous melts rather than aqueous fluids areresponsible for large ion lithophile element transfer in subductionzones and that top-slab temperatures at sub-arc depths are likelyto be 700–900°C. KEY WORDS: experimental petrology; pelite; subduction; UHP metamorphism; fluid; LILE  相似文献   

15.
Scapolite and other halogen-rich minerals (phlogopite, amphibole,apatite, titanite and clinohumite) occur in some high-pressureamphibolite facies calc-silicates and orthopyroxene-bearingrocks at Sare Sang (Sar e Sang or Sar-e-Sang), NE Afghanistan.The calc-silicates are subdivided into two groups: garnet-bearingand garnet-free, phlogopite-bearing. Besides garnet and/or phlogopite,the amphibolite facies mineral assemblages in the calc-silicatesinclude clinopyroxene, calcite, quartz and one or more of theminerals scapolite, plagioclase, K-feldspar, titanite, apatiteand rarely olivine. Orthopyroxene-bearing rocks consist of clinopyroxene,garnet, plagioclase, scapolite, amphibole, quartz, calcite andaccessory dolomite and alumosilicate (kyanite?). Retrogradephases in the rocks are plagioclase, scapolite, calcite, amphibole,sodalite, haüyne, lazurite, biotite, apatite and dolomite.The clinopyroxene is mostly diopside and rarely also hedenbergite.Aegirine and omphacite with a maximum jadeite content of 29mol % were also found. Garnet from the calc-silicates is Grs45–95Py0–2and from the orthopyroxene-bearing rocks is Grs10–15Py36–43.Peak P–T metamorphic conditions, calculated using availableexchange thermobarometers and the TWQ program, are 750°Cand 1·3–1·4 GPa. Depending on the rock type,the scapolite exhibits a wide range of composition (from EqAn= 0·07, XCl =0·99 to EqAn = 0·61, XCl =0·07).Equilibria calculated for scapolite and coexisting phases atpeak metamorphic conditions yield XCO2 = 0·03–0·15.XNaCl (fluid), obtained for scapolite, ranges between 0·04and 0·99. Partitioning of F and Cl between coexistingphases was calculated for apatite–biotite and amphibole–biotite.Fluorapatite is present in calc-silicates, but orthopyroxene-bearingrocks contain chlorapatite. Cl preferentially partitions intoamphibole with respect to biotite. All these rocks have sufferedvarious degrees of retrogression, which resulted in removalof halogens, CO2 and S. Halogen- and S-bearing minerals formedduring retrogression and metasomatism are fluorapatite, sodalite,amphibole, scapolite, clinohumite, haüyne, pyrite, andlazurite, which either form veins or replace earlier formedphases. KEY WORDS: scapolite; fluid composition; high-pressure; amphibolite facies; Western Hindukush; Afghanistan  相似文献   

16.
We explore the partial melting behavior of a carbonated silica-deficienteclogite (SLEC1; 5 wt % CO2) from experiments at 3 GPa and comparethe compositions of partial melts with those of alkalic andhighly alkalic oceanic island basalts (OIBs). The solidus islocated at 1050–1075 °C and the liquidus at 1415 °C.The sub-solidus assemblage consists of clinopyroxene, garnet,ilmenite, and calcio-dolomitic solid solution and the near solidusmelt is carbonatitic (<2 wt % SiO2, <1 wt % Al2O3, and<0·1 wt % TiO2). Beginning at 1225 °C, a stronglysilica-undersaturated silicate melt (34–43 wt % SiO2)with high TiO2 (up to 19 wt %) coexists with carbonate-richmelt (<5 wt % SiO2). The first appearance of carbonated silicatemelt is 100 °C cooler than the expected solidus of CO2-freeeclogite. In contrast to the continuous transition from carbonateto silicate melts observed experimentally in peridotite + CO2systems, carbonate and silicate melt coexist over a wide temperatureinterval for partial melting of SLEC1 carbonated eclogite at3 GPa. Silicate melts generated from SLEC1, especially at highmelt fraction (>20 wt %), may be plausible sources or contributingcomponents to melilitites and melilititic nephelinites fromoceanic provinces, as they have strong compositional similaritiesincluding their SiO2, FeO*, MgO, CaO, TiO2 and Na2O contents,and CaO/Al2O3 ratios. Carbonated silicate partial melts fromeclogite may also contribute to less extreme alkalic OIB, asthese lavas have a number of compositional attributes, suchas high TiO2 and FeO* and low Al2O3, that have not been observedfrom partial melting of peridotite ± CO2. In upwellingmantle, formation of carbonatite and silicate melts from eclogiteand peridotite source lithologies occurs over a wide range ofdepths, producing significant opportunities for metasomatictransfer and implantation of melts. KEY WORDS: carbonated eclogite; experimental phase equilibria; partial melting; liquid immiscibility; ocean island basalts  相似文献   

17.
Peak metamorphism (800–850°C, 8–10 kbar) inthe Harts Range Meta-Igneous Complex (Harts Range, central Australia)was associated with localized partial melting by the reactionhornblende + plagioclase + quartz + H2O = garnet + clinopyroxene+ titanite + melt. In situ trace-element determinations of prograde,peak and retrograde minerals in migmatitic metabasites and associatedtonalitic melts using laser-ablation ICP–MS has allowedmonitoring of a range of partial-melting processes (melting,melt segregation and back-reaction between crystallizing meltand restitic minerals). Mass balance calculations indicate thattitanite is a major carrier of trace elements such as Ti, Nb,Ta, Sm, U and Th, and therefore may be an important accessoryphase to control the redistribution of these elements duringthe partial melting of amphibolites. Titanite preferentiallyincorporates Ta over Nb and, hence, residual titanite mightassist in the formation of melts with high Nb/Ta. The fact thatsingle minerals record different rare earth element (REE) patterns,from prograde to peak to retrograde conditions, demonstratesthat REE diffusion is not significant up to 800°C. Therefore,trace-element analysis in minerals can be a powerful tool toinvestigate high-grade metamorphic processes beyond the limitsgiven by major elements. KEY WORDS: Harts Range; laser-ablation ICP–MS; metabasites; partial melting; trace elements  相似文献   

18.
The 456 ± 4 Ma Skattøra migmatite complex in thenorth Norwegian Caledonides consists of migmatitic nepheline-normativemetagabbros and amphibolites that are net-veined by numerousnepheline-normative anorthositic and leucodioritic dykes. Plagioclase(An20–50) is the dominant mineral (85–100%) in thedykes and the leucosome, but amphibole is generally presentin amounts up to 15%. The following observations strongly suggestformation of the anorthositic magma by anatexis of the surroundinggabbro in the presence of an H2O-bearing fluid phase: (1) themigmatites have plagioclase-rich (anorthositic) leucosomes andamphibole-rich restites; (2) crystallization of amphibole inthe anorthositic and leucodioritic dykes suggests high H2O activity;(3) the presence of coarse-grained to pegmatitic dykes and miaroliticcavities indicates a fluid-rich magma; (4) hydration zones thatsurround many anorthosite dykes suggest that the magma probablyexpelled H2O-rich fluids during crystallization. Water-saturatedmelting experiments at 0·5–1·5 GPa and temperaturesfrom 800 to 1000°C have been performed on a nepheline-normativegabbro to test the proposed petrogenesis of the Skattøraanorthosites. The glasses produced close to the solidus aretonalitic in composition, but they become richer in plagioclaseat higher temperatures. At and below 1·0 GPa, the residuesare composed of amphibole. Experiments above 1·0 GPaproduced residual garnet and/or zoisite in addition to amphibole,suggesting that the anorthositic dykes in the Skattøramigmatite complex formed below 1·25 GPa. The experimentsshow that the high Na2O content of the anorthosite dykes canonly be produced if Na is added to the charges. The glass thatbest fits the composition of the Skattøra dykes was producedat 1·0 GPa and 900°C with 2 wt % Na(OH) added. KEY WORDS: anorthosite; dyke swarm; anatexis; experimental petrology  相似文献   

19.
Fluid-saturated subsolidus experiments from 2·0 to 6·5GPa, and from 680 to 800°C have been performed on threemodel peridotites in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O(NCFMASH). Amphibole and chlorite coexist up to 2·4 GPa,700°C. Chlorite persists to 4·2 GPa at 680°C.Starting from 4·8 GPa, 680°C a 10 Å phase structurereplaces chlorite in all compositions. The 10 Å phasestructure contains significant Al2O3 (up to 10·53 wt%) deviating from the MgO–SiO2–H2O 10 Å phase(MSH 10 Å phase). A mixed layered structure (chlorite–MSH10 Å phase) is proposed to account for aluminium observed.In the Tinaquillo lherzolite amphibole breakdown occurs viathe reaction Thermal stabilityof chlorite (chlorite + orthopyroxene = forsterite + garnet+ H2O) is shifted towards lower temperatures, compared withthe system MASH. Furthermore, the chlorite thermal breakdownis also related to the degenerate reaction Chlorite and the Al-10 Å phase structurecontribute significantly to the water budget in subduction zonesin the depth range relevant for arc magmatism, whereas amphibole-relatedfluid release is restricted to the forearc region. Chloriteand Al-10 Å phase breakdowns might explain the occurrenceof a double seismic zone by dehydration embrittlement. KEY WORDS: amphibole; chlorite; high pressure; peridotites; subduction zones  相似文献   

20.
Experimental Constraints on the Origin of the 1991 Pinatubo Dacite   总被引:12,自引:2,他引:12  
Crystallization (dacite) and interaction (dacite–peridotite)experiments have been performed on the 1991 Pinatubo dacite(Luzon Island, Philippines) to constrain its petrogenesis. Inthe dacite–H2O system at 960 MPa, magnetite and eitherclinopyroxene (low H2O) or amphibole (high H2O) are the liquidusphases. No garnet is observed at this pressure. Dacite–peridotite interaction at 920 MPa produces massive orthopyroxenecrystallization, in addition to amphibole ± phlogopite.Amphibole crystallizing in dacite at 960 MPa has the same compositionas the aluminium-rich hornblende preserved in the cores of amphibolephenocrysts in the 1991 dacite, suggesting a high-pressure stageof dacite crystallization with high melt H2O contents (>10wt %) at relatively low temperature (<950°C). The compositionsof plagioclase, amphibole and melt inclusion suggest that thePinatubo dacite was water-rich, oxidized and not much hotterthan 900°C, when emplaced into the shallow magma reservoirin which most phenocrysts precipitated before the onset of the1991 eruption. The LREE-enriched REE pattern of the whole-rockdacite demands garnet somewhere during its petrogenesis, whichin turn suggests high-pressure derivation. Partial melting ofsubducted oceanic crust yields melts unlike the Pinatubo dacite.Interaction of these slab melts with sub-arc peridotite is unableto produce a Pinatubo type of dacite, nor is a direct mantleorigin conceivable on the basis of our peridotite–daciteinteraction experimental results. Dehydration melting of underplatedbasalts requires unrealistically high temperatures and doesnot yield dacite with the low FeO/MgO, and high H2O, Ni andCr contents typical of the Pinatubo dacite. The most plausibleorigin of the Pinatubo dacite is via high-pressure fractionationof a hydrous, oxidized, primitive basalt that crystallized amphiboleand garnet upon cooling. Dacite melts produced in this way weredirectly expelled from the uppermost mantle or lower crust toshallow-level reservoirs from which they erupted occasionally.Magmas such as the Pinatubo dacite may provide evidence forthe existence of particularly H2O-rich conditions in the sub-arcmantle wedge rather than the melting of the young, hot subductingoceanic plate. KEY WORDS: Pinatubo dacite; slab melt; experimental petrology; arc magmas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号