首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
X-ray binaries     
Summary The various types and classes of X-ray binary are reviewed high-lighting recent results. The high mass X-ray binaries (HMXRBs) can be used to probe the nature of the mass loss from the OB star in these systems. Absorption measurements through one orbital cycle of the supergiant system X1700-37 are well modelled by a radiation driven wind and also require a gas stream trailing behind the X-ray source. In Cen X-3 the gas stream is accreted by the X-ray source via an accretion disk. Changes in the gas stream can cause the disk to thicken and the disk to obscure the X-ray source. How close the supergiant is to corotation seems to be as much a critical factor in these systems as how close it is to filling its Roche lobe. In the Be star X-ray binaries a strong correlation between the neutron stars rotation period and its orbital period has been explained as due to the neutron star being immersed in a dense, slow moving equatorial wind from the Be star. For the X-ray pulsars in the transient Be X-ray binaries a centrifugal barrier to accretion is important in determining the X-ray lightcurve and the spin evolution. The X-ray orbital modulations from the low mass X-ray binaries, LMXRBs, include eclipses by the companion and/or periodic dipping behaviour from structure at the edge of the disk. The corresponding optical modulations show a smooth sinusoidal like component and in some cases a sharp eclipse by the companion. The orbital period of the LMXRB XB1916-05 is 1% longer in the optical compared to that given by the X-ray dip period. The optical period has been interpreted as the orbital period, but this seems inconsistent with the well established view of the origin of the X-ray modulations in LMXRB. A new model is presented that assumes the X-ray dip period is the true orbital period. The 5.2 h eclipsing LMXRB XB2129+47 recently entered a low state and optical observations unexpectedly reveal an F star which is too big to fit into the binary. This is probably the first direct evidence that an X-ray binary is part of a hierarchical triple. Finally the class of X-ray binaries containing black hole candidates is reviewed focusing on the value of using X-ray signatures to identify new candidates.  相似文献   

5.
6.
Superhumps in low-mass X-ray binaries   总被引:1,自引:0,他引:1  
We propose a mechanism for the superhump modulations observed in optical photometry of at least two black-hole X-ray transients (SXTs). As in extreme mass-ratio cataclysmic variables (CVs), superhumps are assumed to result from the presence of the 3:1 orbital resonance in the accretion disc. This causes the disc to become non-axisymmetric and precess. However, the mechanism for superhump luminosity variations in low-mass X-ray binaries (LMXBs) must differ from that in CVs, where it is attributed to a tidally-driven modulation of the disc's viscous dissipation, varying on the beat between the orbital and disc precession period. By contrast in LMXBs, tidal dissipation in the outer accretion disc is negligible: the optical emission is overwhelmingly dominated by reprocessing of intercepted central X-rays. Thus a different origin for the superhump modulation is required. Recent observations and numerical simulations indicate that in an extreme mass-ratio system the disc area changes on the superhump period. We deduce that the superhumps observed in SXTs arise from a modulation of the reprocessed flux by the changing area. Therefore, unlike the situation in CVs, where the superhump amplitude is inclination-independent, superhumps should be best seen in low-inclination LMXBs, whereas an orbital modulation from the heated face of the secondary star should be more prominent at high inclinations. Modulation at the disc precession period (10 s of days) may indicate disc asymmetries such as warping. We comment on the orbital period determinations of LMXBs, and the possibility and significance of possible permanent superhump LMXBs.  相似文献   

7.
Several X-ray binaries(XRBs) have been identified to be associated with supernova remnants(SNRs). Because of the short lifetimes of SNRs, this leaves them to be the youngest known XRBs.This small group of binaries provides valuable information on the formation of compact stars under the framework of massive binary evolution. In this paper we review the observational characteristics of these youngest XRBs and discuss their possible implications on the initial conditions of compact stars and their interaction with the companion stars.  相似文献   

8.
9.
The interest in X/γ-ray Astronomy has grown enormously in the last decades thanks to the ability to send X-ray space missions above the Earth’s atmosphere. There are more than half a million X-ray sources detected and over a hundred missions (past and currently operational) devoted to the study of cosmic X/γ rays. With the improved sensibilities of the currently active missions new detections occur almost on a daily basis. Among these, neutron-star X-ray binaries form an important group because they are among the brightest extra-solar objects in the sky and are characterized by dramatic variability in brightness on timescales ranging from milliseconds to months and years. Their main source of power is the gravitational energy released by matter accreted from a companion star and falling onto the neutron star in a relatively close binary system.  相似文献   

10.
The six best known X-ray binaries are investigated according to the two different assumptions on the mechanism of matter supply. From the model of a semi-detached system with a point-like component, rather good estimates for the masses of the stars and the radius of the optical component can be deduced. The stellar wind model appears to be generally insufficient for driving the X-luminosity. Therefore, according to the mass-ratios, the stars may be at the beginning of mass-exchange. Only 3U 1700-37 shows inconsistent observational data.In the frame of the Roche model, the values of the contact phase angles, in the case of one star filling its lobe and a point-like companion, are given in tabular form in the Appendix, as a function of the mass-ratio and the orbital inclination angle. The limiting minimum inclination angle to have an eclipse is also given.This work has been partly supported by a contract of the Consiglio Nazionale delle Ricerche (CNR).  相似文献   

11.
We report the discovery of a decay in the superorbital period of the binary X-ray pulsar LMC X-4. Combining archival data and published long term X-ray light curves, we have found a decay in the third period in this system (P ∼ 30.3 day, P ∼ −2 × 10−5 s s−1). Along with this result, a comparison of the superorbital intensity variations in LMC X-4, Her X-1 and SMC X-1 is also presented.  相似文献   

12.
13.
The behaviour of the hardness ratio in low-mass X-ray binaries (LMXRB) indicates that at some value of mass accretion rate , the X-ray intensity decreases with increasing . It is suggested here that, at some , wind from the accretion disk becomes appreciable and depletes the mass accretion on to the neutron star and thus reduces the X-ray intensity. This explains the behaviour of the hardness ratio in LMXRB. Possible implications of this on quasi-periodic oscillations are discussed.  相似文献   

14.
15.
During two observation periods in 1984 and 1985 we monitored the faint optical counterparts of seven X-ray binaries with a CCD camera attached to the Cassegrain-focus of the 2.2 m telescope at Calar Alto, Spain. The observation periods were 1984, September 25–27, and 1985, August 8–15.The transient sources 4U0042+32 and 4U0115+63 showed no active state.The search for an optical candidate of 4U0142+62 did not reveal any objectm v 24 within the EXOSAT error box.Within the EXOSAT error box of EXO2030+37 the reddest object was found to be very faint in blue in contrast to the blue Palomar plate.The analysis of the other three observed sources 4U1837+04, 1H1929+509, and 4U2129+47 is not yet finalized, but no unexpected bright or faint state of the sources has been found, 4U2129+47 is still in its present low state (m v =18), lasting at least since 1983.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

16.
17.
We perform binary population-synthesis calculations to investigate the incidence of low-mass X-ray binaries (LMXBs) and their birth rate in the Galaxy. We use a binary-evolution algorithm that models all the relevant processes including tidal circularization and synchronization. Parameters in the evolution algorithm that are uncertain and may affect X-ray binary formation are allowed to vary during the investigation. We agree with previous studies that under standard assumptions of binary evolution the formation rate and number of black hole (BH) LMXBs predicted by the model are more than an order of magnitude less than what is indicated by observations. We find that the common-envelope process cannot be manipulated to produce significant numbers of BH LMXBs. However, by simply reducing the mass-loss rate from helium stars adopted in the standard model, to a rate that agrees with the latest data, we produce a good match to the observations. Including LMXBs that evolve from intermediate-mass systems also leads to favourable results. We stress that constraints on the X-ray binary population provided by observations are used here merely as a guide as surveys suffer from incompleteness and much uncertainty is involved in the interpretation of results.  相似文献   

18.
We study the radiation-driven warping of accretion discs in the context of X-ray binaries. The latest evolutionary equations are adopted, which extend the classical alpha theory to time-dependent thin discs with non-linear warps. We also develop accurate, analytical expressions for the tidal torque and the radiation torque, including self-shadowing.
We investigate the possible non-linear dynamics of the system within the framework of bifurcation theory. First, we re-examine the stability of an initially flat disc to the Pringle instability. Then we compute directly the branches of non-linear solutions representing steadily precessing discs. Finally, we determine the stability of the non-linear solutions. Each problem involves only ordinary differential equations, allowing a rapid, accurate and well-resolved solution.
We find that radiation-driven warping is probably not a common occurrence in low-mass X-ray binaries. We also find that stable, steadily precessing discs exist for a narrow range of parameters close to the stability limit. This could explain why so few systems show clear, repeatable 'superorbital' variations. The best examples of such systems, Her X-1, SS 433 and LMC X-4, all lie close to the stability limit for a reasonable choice of parameters. Systems far from the stability limit, including Cyg X-2, Cen X-3 and SMC X-1, probably experience quasi-periodic or chaotic variability as first noticed recently by Wijers and Pringle. We show that radiation-driven warping provides a coherent and persuasive framework but that it does not provide a generic explanation for the long-term variabilities in all X-ray binaries.  相似文献   

19.
20.
We have obtained high time resolution (seconds) photometry of LMC X-2 in 1997 December, simultaneously with the Rossi X-ray Timing Explorer ( RXTE ), in order to search for correlated X-ray and optical variability on time-scales from seconds to hours. We find that the optical and X-ray data are correlated only when the source is in a high, active X-ray state. Our analysis shows evidence for the X-ray emission leading the optical with a mean delay of <20 s. The time-scale for the lag can be reconciled with disc reprocessing, driven by the higher-energy X-rays, only by considering the lower limit for the delay. The results are compared with a similar analysis of archival data of Sco X-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号