首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Kristallbrocken are a characteristic centimetre- to decimetre-sized, laminated halite fabric type occurring in the Stassfurt Formation in the Zechstein Basin. Up to now, the nature of the Kristallbrocken, i.e. if they are relics of fine-grained, polycrystalline halite beds or clasts of ‘single crystal-layers’, as well as the deformation mechanisms of this halite type, were not clear from the literature. Drill core material from the salt deposit Teutschenthal at the southern rim of the Zechstein Basin now allowed investigating less intensely deformed samples for the first time. The deformational behaviour of these Kristallbrocken ranges from brittle to ductile, which is evidenced by fractured Kristallbrocken on the one hand and weakly bent or even folded Kristallbrocken on the other hand. Local X-ray texture measurements demonstrated that the Kristallbrocken are definitely single crystals and that they can be regarded as relics of formerly larger ‘single crystal-layers’ of up to several dm2 in size. The folded Kristallbrocken clearly display by their single grain texture characteristics that their crystal lattice is bent, which was most likely enabled by a kind of flexural-shear folding, and did not develop after deformation from a fine-grained aggregate by recrystallisation. Due to their monocrystallinity, their originally large size, and the solid inclusions forming the internal lamination, the Kristallbrocken have clearly stronger rheological properties than the surrounding fine- to coarse-grained polycrystalline rock salt, and thus also deform by fracturing.  相似文献   

2.
The evaporitic Hessian Zechstein Basin is a sub‐basin of the Southern Zechstein Basin, situated at its southern margin. Twelve facies groups were identified in the Zechstein Limestone and Lower Werra Anhydrite in order to better understand the sequence‐stratigraphic evolution of this sub‐basin, which contains economically important potassium salts. Four different paleogeographic depositional areas were recognized based on the regional distribution of facies. Siliciclastic‐carbonate, carbonate, carbonate‐evaporite and evaporite shallowing‐upward successions are developed. These allow the establishment of parasequences and sequences, as well as correlation throughout the Hessian Basin and into the Southern Zechstein Basin. Two depositional sequences are distinguished, Zechstein sequence 1 and Zechstein sequence 2. The former comprises the succession from the Variscan basement up to the lowermost part of the Werra Anhydrite, including the Kupferschiefer as part of the transgressive systems tract. The highstand systems tract is defined by the Zechstein Limestone, in which two parasequences are developed. In large parts of the Hessian Basin, Zechstein sequence 1 is capped by a karstic, subaerial exposure surface, interpreted as recording a type‐1 sequence boundary that formed during a distinct brine level fall. Low‐lying central areas (Central Hessian Sub‐basin, Werra Sub‐basin), however, were not exposed and show a correlative conformity. Topography was minimal at the end of sequence 1. Widely developed perilittoral, sabkha and salina shallowing‐upward successions indicate a renewed rise of brine level (interpreted as a transgressive systems tract), because of inflow of preconcentrated brines from the Southern Zechstein Basin to the north. This marks the initiation of Zechstein sequence 2, which comprises most of the Lower Werra Anhydrite. In the Central Hessian Sub‐basin, situated proximal to the brine inflow and on the ridges within the Hessian Basin, physico‐chemical conditions were well suited for sulphate precipitation to form a thick cyclic succession. It consists of four parasequences that completely filled the increased accommodation space. In contrast, only minor sulphate accumulation occurred in the Werra Sub‐basin, situated further southwards and distal to the inflow. As a result of substantially different sulphate precipitation rates during increased accommodation, water depth in the region became more variable. The Werra Sub‐basin, characterized by very low sedimentation rates, became increasingly deeper through time, trapping dense halite brines and precipitating rock salt deposits (Werra Halite). This ‘self‐organization’ model for an evaporitic basin, in which depositional relief evolves with sedimentation and relief is filled by evaporite thereafter, contradicts earlier interpretations, that call upon the existence of a tectonic depression in the Werra area, which controlled sedimentation from the beginning of the Zechstein.  相似文献   

3.
Glauberite is the most common mineral in the ancient sodium sulphate deposits in the Mediterranean region, although its origin, primary or diagenetic, continues to be a matter of debate. A number of glauberite deposits of Oligocene–Miocene age in Spain display facies characteristics of sedimentologic significance, in particular those in which a glauberite–halite association is predominant. In this context, a log study of four boreholes in the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain) was carried out. Two glauberite–halite lithofacies associations, A and B, are distinguished: association (A) is composed of bedded cloudy halite and minor amounts of massive and clastic glauberite; association (B) is made up of laminated to thin‐bedded, clear macrocrystalline, massive, clastic and contorted lithofacies of glauberite, and small amounts of bedded cloudy halite. Transparent glauberite cemented by clear halite as well as normal‐graded and reverse‐graded glauberite textures are common. This type of transparent glauberite is interpreted as a primary, subaqueous precipitate. Gypsum, thenardite or mirabilite are absent in the two associations. The depositional environment is interpreted as a shallow perennial saline lake system, in which chloride brines (association A) and sulphate–(chloride) brines (association B) are developed. The geochemical study of halite crystals (bromine contents and fluid inclusion compositions) demonstrates that conditions for co‐precipitation of halite and glauberite, or for precipitation of Na‐sulphates (mirabilite, thenardite) were never fulfilled in the saline lake system.  相似文献   

4.
Late Neoproterozoic to Early Cambrian carbonates of the Ara Group form important intra‐salt ‘stringer’ reservoirs in the South Oman Salt Basin. Differential loading of thick continental clastics above the six carbonate to evaporite cycles of the Ara Group led to the formation of salt diapirs, encasing a predominantly self‐charging hydrocarbon system within partly highly overpressured carbonate bodies (‘stringers’). These carbonates underwent a complex diagenetic evolution, with one stage of halite cementation in a shallow (early) and another in a deep (late) burial environment. Early and late halite cements are defined by their microstructural relationship with solid bitumen. The early phase of halite cementation is post‐dated by solid reservoir bitumen. This phase is most pervasive towards the top of carbonate stringers, where it plugs nearly all available porosity in facies with initially favourable poroperm characteristics. Bromine geochemistry revealed significantly higher bromine contents (up to 280 p.p.m.) in the early halite compared with the late halite (173 p.p.m.). The distribution patterns and the (high) bromine contents of early halite are consistent with precipitation caused by seepage reflux of highly saturated brines during deposition of the overlying rock salt interval. Later in burial history, relatively small quantities of early halite were dissolved locally and re‐precipitated as indicated by inclusions of streaky solid bitumen within the late halite cements. Late halite cement also seals fractures which show evidence for repeated reopening. Initially, these fractures formed during a period of hydrothermal activity and were later reopened by a crack‐seal mechanism caused by high fluid overpressures. Porosity plugging by early halite cements affects the poroperm characteristics of the Ara carbonates much more than the volumetrically less important late halite cement. The formation mechanisms and distribution patterns of halite cementation processes in the South Oman Salt Basin can be generalized to other petroliferous evaporite basins.  相似文献   

5.
SUSAN HOVORKA 《Sedimentology》1987,34(6):1029-1054
The interpretation of the depositional environments in which bedded halite is formed is a frontier of evaporite sedimentology. Facies studies, supplemented by geochemical data, define an evaporite shelf depositional environment for the halite of the San Andres Formation of the Palo Duro Basin, Texas Panhandle, that is significantly different from modern and previously described ancient halite-precipitating environments such as playas, salinas, sabkhas, and barred basins. A coastal palaeoenvironmental setting for the San Andres halite is defined by its facies position between normal marine-shelf carbonates and aeolian deposits. The San Andres brine pool extended over more than 10 000 km2 but was very shallow. Perennial brine-pool conditions (thick sequences of halite) alternated with ephemeral brine-pool conditions (halite, haloturbated mudstone-halite, mudstone interbeds, and microkarst). The depositional sequence in the perennial brine pool includes (1) flooding and minor dissolution of previously deposited halite, (2) precipitation of a thin lamina of gypsum, and (3) evaporation and precipitation of halite. Bottom-growth forms of halite, including chevrons and vertically elongated crystals, are well preserved. Cumulates of foundered, floating crystals and rafts were probably abundant but have been almost completely recrystallized. Mudstone interbeds in halite and microkarst features cut into bedded halite record the episodic interruption of brine-pool deposition and the establishment of subaerial conditions. Vertically elongated karst pits originate at the palaeosurfaces, cross-cut primary brine-pool fabrics, and are filled with geopetal sediment and coarse halite cement. Mudstone interbeds and mixtures of mudstone and halite have been haloturbated by the alternating growth and dissolution of halite reflecting conditions of fluctuating salinity. The geochemistry of halite from both ephemeral and perennial brine-pool environments reflects the frequent influx of marine brine, indicating that communication with the marine environments to the south was ‘good’ considering that restriction was sufficient to precipitate halite.  相似文献   

6.
东濮凹陷濮卫环洼带层序划分与沉积体系   总被引:6,自引:2,他引:4       下载免费PDF全文
根据地层基准面原理,通过对岩心、测井、录井资料的综合分析,将研究区Es3.3-Es3.2层段的地层划分出4个中期地层旋回(层序):MSC1,MSC2,MSC3,MSC4。其中大致发育2种类型的层序,即陆源碎屑岩层序和膏盐岩层序。陆源碎屑岩层序多形成于基准面上升期,以发育泥质岩夹浊积砂体、三角洲前缘砂质沉积为主;膏盐岩层序多形成于基准面下降期,以发育厚层的盐岩、膏盐岩、膏岩、泥膏岩、膏泥岩夹浊积席状砂为特征。识别出3种类型的沉积体系:较深水湖-浊积扇、较深水盐湖、浅湖-三角洲体系,并在层序格架内分析了各旋回的沉积体系构成和储层砂体的发育情况。综合分析生、储、盖条件后认为,在垂向上,MSC2上升半旋回为本区最有利的储集层段;在平面上,本区的油气勘探应主要寻找洼陷东、西两侧断层下降盘的浊积砂体,主要储层砂体类型为浊积水道及浊积席状砂。  相似文献   

7.
The microstructure of halite from the subhorizontal, bedded Main Röt Evaporite Member at Hengelo, The Netherlands (AKZO well 382, depth interval of 420–460 m), was studied by transmitted and reflected light microscopy of gamma-irradiation decorated samples. Primary microstructures compare favourably with those found in recent ephemeral salt pans. Large, blocky, fluid-inclusion-poor halite grains and elongated chevrons are interpreted to have formed in the saline lake stage, while void-filling clear halite is interpreted to have formed during the desiccation stage of the salt pan. In addition, in all layers the grains are rich in deformation-related substructures such as slip bands and subgrains indicating strains of a few percent. The study of gamma-irradiation decorated thin sections shows that the main recrystallization mechanism is grain boundary migration. Grain boundary migration removes primary fluid inclusions and produces clear, strain-free new grains. Differential stresses as determined by subgrain size piezometry were 0.45–0.97 MPa. The deformation of the salt layers is probably related to Cretaceous inversion in the area.  相似文献   

8.
Zechstein (Z1) rocksalt from the Fulda basin, from the immediate vicinity of the Hessen potash bed is folded into tight to isoclinal folds which are cut by an undeformed, 1 cm thick, coarse-grained halite vein. Microstructures were investigated in etched, gamma-irradiated thin sections from both the wall rock and the vein. The lack of synsedimentary dissolution structures and the widespread occurrence of plate-shaped and hopper grains in the wall-rock suggests that the sedimentary environment was perennial lake. Deformation microstructures are in good agreement with solution-precipitation creep process, and salt flow under very low differential stress. Strength contrast between anhydrite-rich and anhydrite-poor layers caused the small scale folding in the halite beds. The vein is completely sealed and composed mainly of euhedral to subhedral halite grains, which often overgrow the wall-rock grains. Those microstructures, together with the presence of occasional fluid inclusion bands, suggest that the crystals grew into a solution-filled open space. Based on considerations on the maximum value of in-situ differential stress, the dilatancy criteria, the amount of released fluids from the potash bed during metamorphism and the volume change, it is proposed that the crack was generated by hydrofracturing of the rocksalt due to the presence of the salt-metamorphic fluid at near-lithostatic pressure.  相似文献   

9.
通过资料搜集、蒸发岩野外露头地质调查、石盐岩沉积特征分析及盐类矿物学研究,对塔里木盆地塔西南坳陷中新生代蒸发岩的分布、层位、盐类矿物组合、成因进行了初步探讨。塔西南坳陷石盐岩沉积呈透镜体状,主要沿西昆仑山前分布,常含有褐红色、灰绿色泥砾,泥砾岩性与吐依洛克组下段岩性一致,推测应为吐依洛克组沉积晚期海退期成盐,其层位应归属于吐依洛克组上段。石盐岩透镜体在横向分布上不连续,反映了当时塔西南坳陷内部可能存在多个古盐湖次级凹地,其在干旱气候条件下经浓缩蒸发成盐。蒸发岩矿物除石盐、石膏外,还见有杂卤石、钙芒硝等,其中杂卤石可能为后期富钾卤水交代原生石膏的产物,而乌泊1井石盐表面大量的次生钙芒硝可能为盐湖后期石盐析出阶段含钙地下水缓慢持续补给盐湖的产物。  相似文献   

10.
Modern and ancient tidal straits are the least well understood of all tide‐dominated depositional systems. To provide an increased understanding of these systems, a facies‐based depositional model is assessed by comparing multibeam surveys of three present‐day tidally dominated seaways with a number of superbly exposed Neogene‐to‐Quaternary strait‐fill successions of Calabria (south Italy). The model points out the existence of four depositional zones, laterally adjacent from the narrowest strait centre to its terminations, distributed along symmetrical or asymmetrical seaways. These zones, whose signature is recorded in four facies associations in the Calabrian tidal straits, are as follows: (i) the strait‐centre zone, associated with the tidal current maxima and where sediments are scarce or absent; (ii) the dune‐bedded zone, where sediments form dune complexes due to tidal flow expansion; (iii) the strait‐end zone, where currents decelerate accumulating thinly bedded, fine‐grained deposits; and (iv) the strait‐margin zone, where sediment massflows descend tectonically active, steep margins towards the strait axis. In ancient, tectonically confined, narrow seaways, these facies generate a distinctive deepening‐upward vertical succession, where tidal currents are the dominant process in the sediment distribution.  相似文献   

11.
思茅盆地江城含盐带勐野井地区在“二层楼”钾盐成矿理论的指导下,逐步在侏罗系钾盐资源调查中取得重要成果,但盆地内其他含盐带研究程度薄弱。本文以整董含盐带的磨黑L2井勐野井组(K1m)盐岩样品为研究对象,通过显微镜观察、扫描电镜能谱分析、石盐矿物元素含量电子探针微区原位测试方法的建立,精细研究了样品岩相学、石盐矿物学及元素含量特征。同时,测试了江城含盐带勐野井地区MK-1井花开左组(J2h)石盐样品。对比研究两个井样品中石盐矿物微量元素K和Br含量及103Br/Cl值(质量分数比)特征,结合研究区地质演化,取得以下认识。L2井K1m(含)泥砾盐岩中石盐矿物发育两类产状:一类是胶结碎屑颗粒的主体石盐,具塑性流变特征;另一类是析出在碎屑中被盐类或黏土矿物碎屑包裹的石盐,两类包裹体特征指示均属次生成因。电子探针测得L2井K1m的主体石盐、碎屑包裹和勐野井MK-1井J2h含钾盐层石盐的K含量分别为≤0.09%、≤0.18%和≤0.13%,Br含量分别为≤60×10-6、70×10-6~410×10-6和70×10-6~500×10-6,103Br/Cl值分别为≤0.10、0.12~0.71和0.12~0.85,主体石盐显著低于后二者,处于陆源或海陆混合源石盐阶段或重结晶石盐阶段,而后二者数值接近,大多处在海源石盐阶段,小部分处在海源母液结晶钾石盐阶段和光卤石阶段。推断磨黑L2井碎屑包裹的石盐属深部古盐体刺穿贯入的证据,可能的成矿模式为深部中侏罗统海相古盐体受盐底辟作用迁移到浅层下白垩统勐野井组后,部分被盆地内侧向迁移来的中侏罗世残留海水、盆地周缘汇入的陆源水以及深部热液的共同溶蚀淋滤和混染改造形成新的卤水,部分以固体古石盐砾保留下来,在早白垩世晚期新母液卤水蒸发成盐过程中被形成的盐类和陆源碎屑矿物包裹,后期在母液结晶的主体石盐胶结下沉积成岩和成矿。以上认识完善了“二层楼”成矿理论在整董含盐带的勘探实践。  相似文献   

12.
The Lower Murrumbidgee alluvial fan at the eastern edge of the Murray Basin is comprised of high‐yielding coarse‐grained aquifers and interlayered fine‐grained deposits that exert an important control on recharge and vertical leakage of contaminants such as salt. Concerns over increasingly saline shallow groundwater, particularly in irrigation areas, has focused investigations on the depositional origin and spatial distribution of these fine‐grained deposits (aquitard units), which may constitute both a source of leachable salt and a barrier to leakage. Detailed laboratory analysis of a minimally disturbed core to 83m depth, obtained from a drillhole adjacent to an irrigation bore, was augmented with geophysical investigations from this and other boreholes near the apex of the alluvial fan. Previously mapped clay units (aquitards) are redefined as clayey silts based on clay content variation between 10% and 30%. Mineralogical and lithostratigraphic evidence for three clayey silt units is presented: a lower unit (75–83m), a middle unit (45–64m) and an upper unit (0–16m). Electrical image surveys indicate that the upper unit is discontinuous, interrupted by large palaeodrainage features probably containing sands and gravels. These palaeodrainage channels are buried beneath a veneer of clay and significantly increase recharge and leakage. Some evidence suggests an aeolian component near the surface and within the middle clayey silt unit. However, mixing with fluvial deposits and subsequent weathering has also occurred. The clayey silt units are extensively weathered and oxidised, with the degree of oxidation increasing towards the surface and adjacent to aquifers saturated with oxygenated groundwater. Post‐depositional weathering of the middle and lower units may also have been associated with leaching of salts. No salt remains in the middle and lower units, but 10.2kg/m2 is stored within 15m of the surface at the Tubbo site. The upper clayey silt unit is a significant source of leachable salt, which is associated with increasing shallow groundwater salinity at some sites.  相似文献   

13.
Modern seawater has a uniform δ37Cl value (0.0‰), with an exception in the upper current of the Bosphorus (0.4‰). Marine halite ranging in age from Cambrian to Miocene has δ37Cl values of 0.0 ± 0.9‰, with most of the data in the range 0.0 ± 0.5‰. Mean δ37Cl values differ measurably between basins, with no evident relationship to basin size or to age. Smaller evaporite bodies have the largest δ37Cl ranges. Potash facies halite has mean δ37Cl values lower than those of halite facies salt in the East Siberia and Zechstein basins. The bulk δ37Cl of bedded halite preserving sedimentary textures cannot be shifted measurably after deposition under plausible natural conditions. During the Phanerozoic, a detectable change in the δ37Cl values of the oceans is unlikely as a result of Cl fluxes to and from the mantle and evaporites. In halite, the values of δ37Cl that cannot be explained by fractionation occurring on crystallization are best explained by the addition of non-marine Cl with δ37Cl ≠ 0.0‰ to evaporite brine.  相似文献   

14.
15.
湖南澧县凹陷膏盐矿床成矿地质特征及找矿方向   总被引:1,自引:0,他引:1  
湖南省已知膏盐矿床以中新生代内陆湖相沉积矿床为主,它们的形成具有一定地质构造背景,相互间有密切的联系,在时空分布上具有一定的规律性。其中澧县凹陷膏盐矿产种类较全,储量较大。凹陷西部边坡浅滩相沉积了并经后期改造的特大型石膏硬石膏矿床,凹陷中东部即凹陷中心蒸发沉积了厚大钙芒硝、无水芒硝、石盐矿床。膏盐沉积具明显的水平和垂直分带现象。湘西北区有较多类似凹陷,具有寻找或扩大膏盐矿床规模的有利条件。  相似文献   

16.
Stoichiometric saturation is examined as a possible control on Br contents of halite and sylvite during precipitation from binary salt solutions of NaCl-NaBr and KCl-KBr, respectively. Experimental data at 25°C, assumed to represent Stoichiometric saturation, were used to predict mole fractions of NaBr in halite and KBr in sylvite in thermodynamic equilibrium with fluids as a function of aqueous activity ratios of Br:Cl. The predictions are based on the additional assumption that the aqueous activity product of the major salt component in the precipitated salt was independent of the trace Br content in the salt lattice. The extension of the predictions to diagenetic pressures and temperatures is discussed.The predicted equilibrium Br content of halite at initial halite saturation of evaporating seawater is in close agreement with that computed from the distribution coefficient of Lutz (1975), measured in slowgrowth single crystal experiments. Fluid recrystallization of halite and sylvite at near-surface temperatures is predicted to generally deplete the Br contents in the solids. Bulk Br contents in halite in cap-rock of Gulf Coast salt domes generally agree with those predicted by the recrystallization of halite in the presence of evaporative-concentrated seawater. At a constant solution composition, increasing temperature results in increasing the equilibrium Br content of halite, making less efficient Br depletion in halite by recrystallization.  相似文献   

17.
Cross‐bedded grainstones on carbonate ramps and shelves are commonly related to the locus of major wave energy absorption such as shorelines, shoals or shelf breaks. In contrast, on the Early Tortonian carbonate platform of Menorca (Balearic Islands), coarse‐grained, cross‐bedded grainstones are found at a distance from the palaeoshoreline where they were deposited below the wavebase. Excellent exposures along continuous outcrops on the sea cliffs of Menorca reveal the depositional profile and three‐dimensional distribution of the different facies belts of the Tortonian ramp depositional system. Basinward from the palaeoshoreline, fan deltas and beach deposits pass into 5‐km‐wide gently dipping bioturbated dolopackstone (inner and middle ramp), then into 12–20°‐dipping dolograinstone/rudstone clinobeds (ramp slope) and, finally, into subhorizontal fine‐grained basinal dolowackestone to dolopackstone (outer ramp). In this Miocene example, coarse‐grained grainstones exist in five different settings other than beach deposits: (1) on the middle ramp, where cross‐bedded grainstones were deposited by currents roughly parallel to the shoreline at 40–70 m estimated water depth and are interbedded with gently dipping bioturbated dolomitized packstones; (2) on the upper slope, where clinobeds are composed mostly of in situ rhodoliths and red‐algae fragments; (3) on the lower slope, as small‐scale bedforms (small three‐dimensional subaqueous dunes) migrating parallel to the slope; (4) at the transition between the lower slope and the outer ramp, where mollusc‐rich and rhodolithic rudstones and grainstones, interbedded in dolomitized laminated wackestones containing abundant planktonic foraminifera, infill slide/slump scars as upslope‐backstepping bodies (backsets); (5) at the toe of the slope, where coarse skeletal grainstones indicate bedform migration parallel to the platform margin, induced by currents at more than 150 m estimated water depth. This Late Miocene example also illustrates how changes in intrabasinal environmental conditions (nutrients and/or temperature) may produce changes in stratal patterns and facies architecture if they affect the biological system. Two depositional sequences compose the Miocene platform on Menorca, where a reef‐rimmed platform prograded onto an earlier distally steepened ramp. The transition from the ramp to the reef‐rimmed platform was effected by an increase in accommodation space caused by ecological changes, promoting a shift from a grain‐ to a framework‐producing biota.  相似文献   

18.
Geochemistry of Brines from Salt Ore Deposits in Western Tarim Basin   总被引:2,自引:0,他引:2  
In the geological evolution of the Tarim Basin, many transgressions and relictions happened. So there have been plentiful sources of salt. Moreover, because of uttermost drought, a lot of salt has been deposited. It is possible to find potash salt in this area. In our fieldwork, we have found salt and brine in western Tarim Basin. Based on a geological survey and the characteristics of sedimentary facies and paleogeography, this paper deals with the geochemical parameters and discusses the possibility of formation of potash salt in terms of the chemical analyses of samples collected from western Tarim Basin. Results of brine analysis lead to some conclusions: most of these salt brines have eluviated from very thick halite beds, mainly chloridetype salt and this kind of halite does not reach the stage of potash deposition in all aspects; WKSL (Wukeshalu) occupies a noticeable place, and we should attach importance to this district because there have been some indicators of the occurrence of potash deposits as viewed from the contents of Br and K. Finally, low Br contents are recognized in the Tarim Basin as a result of salt aggradation, and this point of view has been proved by the results of this experiment and the data available. It cannot depend upon the index of Br to judge the evolution stage of halite. We must look for other facies of potash except marine facies.  相似文献   

19.
Salt beds and salt allochthons are transient features in most sedimentary basins, which through their dissolution can carry, focus and fix base metals. The mineralisation can be subsalt, intrasalt or suprasalt, and the salt body or its breccia can be bedded or halokinetic. In all these evaporite‐associated low‐temperature diagenetic ore deposits there are four common factors that can be used to recognise suitably prepared ground for mineralisation: (i) a dissolving evaporite bed acts either as a supplier of chloride‐rich basinal brines capable of leaching metals, or as a supplier of sulfur and organics that can fix metals; (ii) where the dissolving bed is acting as a supplier of chloride‐rich brines, there is a suitable nearby source of metals that can be leached by these basinal brines (redbeds, thick shales, volcaniclastics, basalts); (iii) there is a stable redox interface where these metalliferous chloride‐rich waters mix with anoxic waters within a pore‐fluid environment that is rich in organics and sulfate/sulfide/H2S; and (iv) there is a salt‐induced focusing mechanism that allows for a stable, long‐term maintenance of the redox front, e.g. the underbelly of the salt bed or allochthon (subsalt deposits), dissolution or halokinetically maintained fault activity in the overburden (suprasalt deposits), or a stratabound intrabed evaporite dissolution front (intrasalt deposits). The diagenetic evaporite ‐ base‐metal association includes world‐class Cu deposits, such as the Kupferschiefer‐style Lubin deposits of Poland and the large accumulations in the Dzhezkazgan region of Kazakhstan. The Lubin deposits are subsalt and occur where long‐term dissolution of salt, in conjunction with upwelling metalliferous basin brines, created a stable redox front, now indicated by the facies of the Rote Faule. The Dzhezkazgan deposits (as well as smaller scale Lisbon Valley style deposits) are suprasalt halokinetic features and formed where a dissolving halite‐dominated salt dome maintained a structural focus to a regional redox interface. Halokinesis and dissolution of the salt bed also drove the subsalt circulation system whereby metalliferous saline brines convectively leached underlying sediments. In both scenarios, the resulting redox‐precipitated sulfides are zoned and arranged in the order Cu, Pb, Zn as one moves away from the zone of salt‐solution supplied brines. This redox zonation can be used as a regional pointer to both mineralisation and, more academically, to the position of a former salt bed. In the fault‐fed suprasalt accumulations the feeder faults were typically created and maintained by the jiggling of brittle overburden blocks atop a moving and dissolving salt unit. A similar mechanism localises many of the caprock replacement haloes seen in the diapiric provinces of the Gulf of Mexico and Northern Africa. Evaporite‐associated Pb–Zn deposits, like Cu deposits, are focused by brine flows associated with both bedded and halokinetic salt units or their residues. Stratabound deposits, such as Gays River and Cadjebut, have formed immediately adjacent to or within the bedded salt body, with the bedded sulfate acting as a sulfur source. In allochthon/diapir deposits the Pb–Zn mineralisation can occur both within a caprock or adjacent to the salt structure as replacements of peridiapiric organic‐rich pyritic sediments. In the latter case the conditions of bottom anoxia that allowed the preservation of pyrite were created by the presence of brine springs and seeps fed from the dissolution of nearby salt sheets and diapirs. The deposits in the peridiapiric group tend to be widespread, but individual deposits tend to be relatively small and many are subeconomic. However, their occurrence indicates an active metal‐cycling mechanism in the basin. Given the right association of salt allochthon, tectonics, source substrate and brine ponding, the system can form much less common but world‐class deposits where base‐metal sulfides replaced pyritic laminites at burial depths ranging from centimetres to kilometres. This set of diagenetic brine‐focusing mechanisms are active today beneath the floor of the Atlantis II Deep and are thought to have their ancient counterparts in some Proterozoic sedex deposits. The position of the allochthon, its lateral continuity, and the type of sediment it overlies controls the size of the accumulation and whether it is Cu or Pb–Zn dominated.  相似文献   

20.

Aragonite, low‐magnesian calcite, gypsum and halite were identified by X‐ray diffraction and electron microbeam techniques in mineral precipitates near a salt seep 50 km southwest of Charters Towers in north Queensland. The chemistry of water from the creek and from the groundwater at the salt seep shows that Mg:Ca ratios are greater than or equal to 1.5 throughout the year. The formation of halite and gypsum is due to evaporative concentration of the water at the seep and that of the carbonates, in particular aragonite, is probably due to a combination of evaporation and photosynthetic activity by diatoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号