首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
Physical models of subduction investigate the impact of regional mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The initial mantle flow direction beneath the overriding plate can be horizontal or vertical, depending on its location with respect to the asthenospheric flow field. Imposed mantle flow produces either over or underpressure on the lower surface of the slab depending on the initial mantle flow pattern (horizontal or vertical, respectively). Overpressure promotes shallow dip subduction while underpressure tends to steepen the slab. Horizontal mantle flow with rates of 1–10 cm yr−1 provides sufficient overpressure on a dense subducting lithosphere to obtain a subduction angle of  ∼60°  , while the same lithospheric slab sinks vertically when no flow is imposed. Vertical drag force (due to downward mantle flow) exerted on a slab can result in steep subduction if the slab is neutrally buoyant but fails to produce steep subduction of buoyant oceanic lithosphere. The strain regime in the overriding plate due to the asthenospheric drag force depends largely on slab geometry. When the slab dip is steeper than the interplate zone, the drag force produces negative additional normal stress on the interplate zone and tensile horizontal stress in the overriding plate. When the slab dip is shallower than the interplate zone, an additional positive normal stress is produced on the interplate zone and the overriding plate experiences additional horizontal compressive stress. However, the impact of the mantle drag force on interplate pressure is small compared to the influence of the slab pull force since these stress variations can only be observed when the slab is dense and interplate pressure is low.  相似文献   

2.
In young suduction zones we observe steady uplift of island arcs. The steady uplift of island arcs is always accompanied by surface erosion. The long duration of uplift and erosion effectively transports heat at depth to shallower parts by advection. If the rates of uplift and erosion are sufficiently large, such a process of heat transportation will strongly affect thermal structure in subduction zones. First, we quantitatively examine the effects of uplift and erosion on thermal structure by using a simple 1-D heat conduction model, based on the assumption that the initial thermal state is in equilibrium. The results show that temperature increase, Δ T  , due to uplift and erosion can be approximately evaluated by Δ T  = ν e tβ at depth, where ν e is the rate of uplift (erosion), t is the duration of uplift (erosion), and β is the gradient of the geotherm in the initial state. Next, considering the effects of vertical crustal movements such as uplift and erosion in island arcs and subsidence and sedimentation in ocean trenches, in addition to the effects of radioactive heat generation in the crust, frictional heating at plate boundaries and accretion of oceanic sediments to overriding continental plates, we numerically simulate the evolution process of the thermal structure in subduction zones. The result shows that the temperature beneath the island arc gradually increases as a result of uplift and erosion as plate subduction progresses. Near the ocean trench, on the other hand, the low-temperature region gradually expands as a result of sedimentation and accretion in addition to direct cooling by the cold descending slab. The surface heat flow expected from this model is low in fore-arc basins, high in island arcs and moderately high in back-arc regions.  相似文献   

3.
At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction contact: one based on a fault and the other based on a subduction channel. Using a finite element method, we determine the specific signatures of both states of the subduction contact. We pay particular attention to the overriding plate. In a tectonic setting of converging plates, where the subducting plate is freely moving, the subduction channel reduces compression relative to the fault model. In a land-locked basin setting, where the relative motion between the far field of the plates is zero, the subduction channel model produces tensile stress regime in the overriding plate, even though the amount of slab roll-back is small. The fault model shows a stronger development of slab roll-back and a compressive stress regime in the upper plate. Based on a consistent comparison of fault and channel numerical models, we find that the nature of the plate contact is one of the controlling factors in developing or not of backarc extension. We conclude that, the type of plate contact plays a decisive role in controlling the backarc state of stress. To obtain backarc extension, roll-back is required as an underling geodynamic process, but it is not always a sufficient condition.  相似文献   

4.
We use data from the Chile Argentina Geophysical Experiment (CHARGE) broad-band seismic deployment to refine past observations of the geometry and deformation within the subducting slab in the South American subduction zone between 30°S and 36°S. This region contains a zone of flat slab subduction where the subducting Nazca Plate flattens at a depth of ∼100 km and extends ∼300 km eastward before continuing its descent into the mantle. We use a grid-search multiple-event earthquake relocation technique to relocate 1098 events within the subducting slab and generate contours of the Wadati-Benioff zone. These contours reflect slab geometries from previous studies of intermediate-depth seismicity in this region with some small but important deviations. Our hypocentres indicate that the shallowest portion of the flat slab is associated with the inferred location of the subducting Juan Fernández Ridge at 31°S and that the slab deepens both to the south and the north of this region. We have also determined first motion focal mechanisms for ∼180 of the slab earthquakes. The subhorizontal T -axis solutions for these events are almost entirely consistent with a slab pull interpretation, especially when compared to our newly inferred slab geometry. Deviations of T -axes from the direction of slab dip may be explained with a gap within the subducting slab below 150 km in the vicinity of the transition from flat to normal subducting geometry around 33°S.  相似文献   

5.
Shear wave splitting measurements from S arrivals of local earthquakes recorded at the Incorporated Research Institutions for Seismology (IRIS) broadband sensor SNZO are used to determine a basic anisotropic structure for the subduction zone in the Wellington region. With the use of high-frequency filters, fast anisotropic polarization ( φ ) and splitting time ( δt ) measurements typical of crustal anisotropy are evident, but the larger splitting expected from the mantle is often not resolved. The small splitting seen agrees well with the results of previous studies concerning shallow crustal anisotropy. With the use of lower-frequency filters, measurements more consistent with mantle anisotropy are made. Anisotropy of 4.4 ± 0.9 per cent with a fast polarization of 29° ± 38° is calculated for the subducting slab, from 20 to 70  km depth. Using this result in addition to the results of previous studies, a model is proposed. The model requires a frequency-dependent anisotropy of less than 1.4 per cent when measured with a period of ~2  s to be present in the sub-slab mantle.
Separate from this population, a band of events in northern Cook Strait with an 86° ± 10° fast polarization is seen. This is at about 40° from the strike of the Hikurangi margin, and suggests a source of shear strain 40° removed from that found in the majority of the region. The cause of this is probably a deformation in the subducting slab in this region, as it moves towards a greater incline to the south.  相似文献   

6.
Earthquake arrival time data from a 36-station deployment of portable seismographs on the Raukumara Peninsula have been used to determine the 3-D Vp and Vp/Vs structure of this region of shallow subduction. A series of inversions have been performed, starting with an inversion for 1-D structure, then 2-D, and finally 3-D. This procedure ensures a smooth regional model in places of low resolution. The subducted plate is imaged as a northwest-dipping feature, with Vp consistently greater than 8.5  km  s−1 in the uppermost mantle of the plate. Structure in the overlying plate changes significantly along strike. In the northeast, there is an extensive low-velocity zone in the lower crust underlying the most rapidly rising part of the Raukumara Range. It is bounded on its arcward side by an upwarp of high velocity. A viable explanation for the low-velocity zone is that it represents an accumulation of underplated subducted sediment, while serpentinization of the uppermost mantle may be responsible for the adjacent high-velocity region. The low-velocity zone decreases and the adjacent high-velocity region is less extensive in the southwest. This change is interpreted to be related to a change in the thickness of the crust of the overlying plate. In the northeast the crust is thinner, and subducted sediment ponds against relatively strong uppermost mantle, while in the southwest the crust is thicker, and the relatively weak lower crust allows sediment subduction to greater depths. A narrow zone of high Vp/Vs parallels the shallow part of the plate interface. This suggests elevated fluid pressures, with the distribution of earthquakes about this zone further suggesting that these pressures may be close to lithostatic. The plate interface at 20  km depth beneath the Raukumara Peninsula may thus be a closed system for fluid flow, similar to that seen at much shallower depths in other subduction décollements.  相似文献   

7.
We present a series of 2-D numerical models of viscous flow in the mantle wedge induced by a subducting lithospheric plate. We use a kinematically defined slab geometry approximating the subduction of the Philippine Sea plate beneath Eurasia. Through finite element modelling we explore the effects of different rheological and thermal constraints (e.g. a low-viscosity region in the wedge corner, power law versus Newtonian rheology, the inclusion of thermal buoyancy forces and a temperature-dependent viscosity law) on the velocity and finite strain field in the mantle wedge. From the numerical flow models we construct models of anisotropy in the wedge by calculating the evolution of the finite strain ellipse and combining its geometry with appropriate elastic constants for effective transversely isotropic mantle material. We then predict shear wave splitting for stations located above the model domain using expressions derived from anisotropic perturbation theory, and compare the predictions to ∼500 previously published shear wave splitting measurements from seventeen stations of the broad-band F-net array located in southwestern Japan. Although the use of different model parameters can have a substantial effect on the character of the finite strain field, the effect on the average predicted splitting parameters is small. However, the variations with backazimuth and ray parameter of individual splitting intensity measurements at a given station for different models are often different, and rigorous analysis of details in the splitting patterns allows us to discriminate among different rheological models for flow in the mantle wedge. The splitting observed in southwestern Japan agrees well with the predictions of trench-perpendicular flow in the mantle wedge along with B-type olivine fabric dominating in a region from the wedge corner to about 125 km from the trench.  相似文献   

8.
Joint inversion of active and passive seismic data in Central Java   总被引:2,自引:0,他引:2  
Seismic and volcanic activities in Central Java, Indonesia, the area of interest of this study, are directly or indirectly related to the subduction of the Indo-Australian plate. In the framework of the MERapi AMphibious EXperiments (MERAMEX), a network consisting of about 130 seismographic stations was installed onshore and offshore in Central Java and operated for more than 150 days. In addition, 3-D active seismic experiments were carried out offshore. In this paper, we present the results of processing combined active and passive seismic data, which contain traveltimes from 292 local earthquakes and additional airgun shots along three offshore profiles. The inversion was performed using the updated LOTOS-06 code that allows processing for active and passive source data. The joint inversion of the active and passive data set considerably improves the resolution of the upper crust, especially in the offshore area in comparison to only passive data. The inversion results are verified using a series of synthetic tests. The resulting images show an exceptionally strong low-velocity anomaly (−30 per cent) in the backarc crust northward of the active volcanoes. In the upper mantle beneath the volcanoes, we observe a low-velocity anomaly inclined towards the slab, which probably reflects the paths of fluids and partially melted materials in the mantle wedge. The crust in the forearc appears to be strongly heterogeneous. The onshore part consists of two high-velocity blocks separated by a narrow low-velocity anomaly, which can be interpreted as a weakened contact zone between two rigid crustal bodies. The recent Java M w= 6.3 earthquake (2006/05/26-UTC) occurred at the lower edge of this zone. Its focal strike slip mechanism is consistent with the orientation of this contact.  相似文献   

9.
The thermomechanic evolution of the lithosphere–upper mantle system during Calabrian subduction is analysed using a 2-D finite element approach, in which the lithosphere is compositionally stratified into crust and mantle. Gravity and topography predictions are cross-checked with observed gravity and topography patterns of the Calabrian region. Modelling results indicate that the gravity pattern in the arc-trench region is shaped by the sinking of light material, belonging to both the overriding and subduction plates. The sinking of light crustal material, up to depths of the order of 100–150 km is the ultimate responsible for the peculiar gravity signature of subduction, characterized by a minimum of gravity anomaly located at the trench, bounded by two highs located on the overriding and subducting plates, with a variation in magnitude of the order of 200 mGal along a wavelength of 200 km, in agreement with the isostatically compensated component of gravity anomaly observed along a transect crossing the Calabrian Arc, from the Tyrrhenian to the Ionian Seas. The striking agreement between the geodetic retrieved profiles and the modelled ones in the trench region confirms the crucial role of compositional stratification of the lithosphere in the subduction process and the correctness of the kinematic hypotheses considered in our modelling, that the present-day configuration of crust–mantle system below the Calabrian arc results from trench's retreat at a rate of about 3 cm yr−1, followed by gravitational sinking of the subducted slab in the last 5 Myr.  相似文献   

10.
Slab low-velocity layer in the eastern Aleutian subduction zone   总被引:1,自引:0,他引:1  
Local earthquakes in the vicinity of the Alaskan Peninsula's Shumagin Islands often produce arrivals between the main P and S arrivals not predicted by standard traveltime tables. Based on traveltime and polarization, these anomalous arrivals appear to be from P -to- S conversions at the surface of the subducted Pacific Plate beneath the recording stations. The P -to- S conversion occurs at the top of a low-velocity layer which extends to at least 150 km depth and is 8 ˜ 2 per cent slower than the overlying mantle. The slab is ˜ 7 per cent faster than the mantle. The low-velocity layer contains the foci of the earthquakes in the upper plane of the double seismic zone and confines PS ray paths to lie within it. These observations indicate that layered structures persist to positions well past the surface location of the volcanic front. Reactions forming high-pressure minerals do not yield slab-like velocities until beyond the point that subduction zone magma genesis occurs. If the subducted oceanic crust forms the layer, it is subducted essentially intact.  相似文献   

11.
Signature of remnant slabs in the North Pacific from P-wave tomography   总被引:1,自引:0,他引:1  
A 3-D ray-tracing technique was used in a global tomographic inversion in order to obtain tomographic images of the North Pacific. The data reported by the Geophysical Survey of Russia (1955–1997) were used together with the catalogues of the International Seismological Center (1964–1991) and the US Geological Survey National Earthquake Information Center (1991–1998), and the recompiled catalogue was reprocessed. The final data set, used for following the inversion, contained 523 430 summary ray paths. The whole of the Earth's mantle was parametrized by cells of 2° × 2° and 19 layers. The large and sparse system of observation equations was solved using an iterative LSQR algorithm.
A subhorizontal high-velocity anomaly is revealed just above the 660 km discontinuity beneath the Aleutian subduction zone. This high-velocity feature is observed at latitudes of up to ~70°N and is interpreted as a remnant of the subducted Kula plate, which disappeared through ridge subduction at about 48 Ma. A further positive velocity perturbation feature can be identified beneath the Chukotka peninsula and Okhotsk Sea, extending from ~300 to ~660 km depth and then either extending further down to ~800 km (Chukotka) or deflecting along the 660 km discontinuity (Okhotsk Sea). This high-velocity anomaly is interpreted as a remnant slab of the Okhotsk plate accreted to Siberia at ~55 Ma.  相似文献   

12.
Summary. Bulletins of the International Seismological Centre (ISC) show very large residuals, up to 15 s early, for arrivals from events in the Tonga–Kermadec subduction zone to the New Zealand network of seismometers. The very early arrivals are confined to events south of about 22°S, and shallower than about 350 km. The waveforms show two distinct phases: an early, emergent, first phase with energy in the high-frequency band 2–10 Hz, and a distinct second phase, containing lower frequency energy, arriving at about the time predicted by JB tables.
The residuals are attributed to propagation through the cold, subducted lithosphere, which has a seismic velocity 5 per cent faster, on average, than normal. Ray tracing shows that the ray paths lie very close to the slab for events south of 22°S, but pass well beneath the slab for events further north, corresponding to the change in residual pattern. This characteristic of the ray paths is due to the curved shape of the seismic zone, and in particular to the bend in the zone where the Louisville ridge intersects the trench at 25°S.
The residuals can only be explained if the high velocity anomaly extends to a depth of 450 km in the region of the gap in deep seismicity from 32 to 36°S. The very high-frequency character of the first phase requires the path from the bottom of the slab to the stations to be of high Q , and to transmit 2–10 Hz energy with little attenuation.
The absence of low-frequency energy in the first phase is due to the narrowness of the high-velocity slab, which transmits only short-wavelength waves. The second phase, which contains low frequencies, is identified as a P -wave travelling beneath the subducted slab in normal mantle. There is no need to invoke any special structures, such as low-velocity waveguides or reflectors, to explain any of the observations. The S -wave arrivals show similar effects.  相似文献   

13.
Viscous and viscoelastic models for a subduction zone with a faulted lithosphere and internal buoyancy can self-consistently and simultaneously predict long-wavelength geoid highs over slabs, short-wavelength gravity lows over trenches, trench-forebulge morphology, and explain the high apparent strength of oceanic lithosphere in trench environments. The models use two different free-surface formulations of buoyancy-driven flows (see, for example, Part I): Lagrangian viscoelastic and pseudo-free-surface viscous formulations. The lower mantle must be stronger than the upper in order to obtain geoid highs at long wavelengths. Trenches are a simple consequence of the negative buoyancy of slabs and a large thrust fault, decoupling the overriding from underthrusting plates. The lower oceanic lithosphere must have a viscosity of less than to24 Pa s in order to be consistent with the flexural wavelength of forebulges. Forebulges are dynamically maintained by viscous flow in the lower lithosphere and mantle, and give rise to apparently stiffer oceanic lithosphere at trenches. With purely viscous models using a pseudo-free-surface formulation, we find that viscous relaxation of oceanic lithosphere, in the presence of rapid trench rollback, leads to wider and shallower back-arc basins when compared to cases without viscous relaxation. Moreover, in agreement with earlier studies, the stresses necessary to generate forebulges are small (∼ 100 bars) compared to the unrealistically high stresses needed in classic thin elastic plate models.  相似文献   

14.
We invert differential SdS-SS traveltime residuals measured from stacked waveforms and finite-frequency sensitivity kernels for topography on the 410- and 660-km discontinuities. This approach yields higher resolution images of transition zone thickness than previous stacking methods, which simply average/smooth over topographic features. Apparent structure measured using simple stacking is highly dependent upon the bin size of each stack. By inverting for discontinuity topography with a variety of bin sizes, we can more accurately calculate the true structure. The inverted transition zone model is similar to simple stack models with an average thickness of 242 km, but the lateral variations in thickness are larger in amplitude and smaller in scale. Fast seismic velocities in 3-D mantle models such as SB4L18 correlate with areas of thicker transition zone. The elongated curvilinear regions of thickened transition zone that occur near subduction zones are narrow and high amplitude, which suggests relatively little lateral spreading and warming of subducted lithosphere within the transition zone. The anomalously thin transition zone regions are laterally narrow, and not broadly continuous. If these variations in transition zone thickness are interpreted as thermal in nature, then this model suggests significant temperature variations on small lateral scales.  相似文献   

15.
Flexure of subducted slabs   总被引:2,自引:0,他引:2  
The subducted lithosphere is regarded as a thin elastic plate that bends as a consequence of slab pull, the pressure of the asthenospheric flow induced by the subduction motion and the pressure exerted by the asthenospheric motion relative to the lithosphere. In westward subductions the latter factor enhances the slab pull, but in eastward subductions it opposes it. As a result, the subduction angle changes continuously with depth, following an elastic profile: it is smaller in eastward subductions and larger in those having a westward direction. The application of the model to 13 subducted slabs shows a good fit between the observed and the calculated shapes of the slabs.  相似文献   

16.
Summary. This paper explores the middle ground between complex thermally-coupled viscous flow models and simple corner flow models of island arc environments. The calculation retains the density-driven nature of convection and relaxes the geometrical constraints of corner flow, yet still provides semianalytical solutions for velocity and stress. A novel aspect of the procedure is its allowance for a coupled elastic lithosphere on top of a Newtonian viscous mantle. Initially, simple box-like density drivers illustrate how vertical and horizontal forces are transmitted through the mantle and how the lithosphere responds by trench formation. The flexural strength of the lithosphere spatially broadens the surface topography and gravity anomalies relative to the functional form of the vertical flow stresses applied to the plate base. I find that drivers in the form of inclined subducting slabs cannot induce self-driven parallel flow; however, the necessary flow can be provided by supplying a basal drag of 1–5 MPa to the mantle from the oceanic lithosphere. These basal drag forces create regional lithospheric stress and they should be quantifiable through seismic observations of the neutral surface. The existence of a shallow elevated phase transition is suggested in two slab models of 300 km length where a maximum excess density of 0.2 g cm−3 was needed to generate an acceptable mantle flow. A North New Hebrides subduction model which satisfies flow requirements and reproduces general features of topography and gravity contains a high shear stress zone (75 MPa) around the upper slab surface to a depth of 150 km and a deviatoric tensional stress in the back arc to a depth of 70 km. The lithospheric stress state of this model suggests that slab detachment is possible through whole plate fracture.  相似文献   

17.
Summary. Five major convergent plate boundaries (South America, Izu–Bonin–Marianas, New Hebrides, Tonga–Kermadec and Indonesia) show strong variations in levels of background seismicity on scales ranging from tens to thousands of kilometres. These variations were tested using two statistical approaches and we conclude that small earthquakes are not distributed randomly along these zones.
Two types of large-scale seismicity variations (termed first order) were recognized. First, regions with dimensions on the order of 100 km with extremely high seismicity levels (first-order actives). One such region was recognized in each of the zones studied. Second, large-scale (500 to several thousand kilometres) differences in the level of background seismicity along a given plate boundary. Regions with consistent levels of background seismicity are termed first-order segments.
We examined each first-order segment for smaller scale variations. Ten regions ranging in length from 40 to 170 km with anomalously high seismicity levels were recognized. Fifty-three regions ranging in length from 25 to 355 km were found to have anomalously low seismicity levels. Thus, areas with anomalously high levels of activity are rare in subduction zones.
These observations indicate that background seismicity in subduction zones is not randomly distributed along the strike of the zones. It seems likely that the observed variations reflect tectonic differences. In fact, many of the seismicity variations which we observed appear to be spatially related to features on the seafloor or on the overriding plate. If this is so, then they may provide a powerful tool for characterizing subduction zones and understanding the mechanisms of earthquake generation.  相似文献   

18.
The dispersive properties of surface waves are used to infer earth structure in the Eastern Mediterranean region. Using group velocity maps for Rayleigh and Love waves from 7 to 100 s, we invert for the best 1-D crust and upper-mantle structure at a regular series of points. Assembling the results produces a 3-D lithospheric model, along with corresponding maps of sediment and crustal thickness. A comparison of our results to other studies finds the uncertainties of the Moho estimates to be about 5 km. We find thick sediments beneath most of the Eastern Mediterranean basin, in the Hellenic subduction zone and the Cyprus arc. The Ionian Sea is more characteristic of oceanic crust than the rest of the Eastern Mediterranean region as demonstrated, in particular, by the crustal thickness. We also find significant crustal thinning in the Aegean Sea portion of the backarc, particularly towards the south. Notably slower S -wave velocities are found in the upper mantle, especially in the northern Red Sea and Dead Sea Rift, central Turkey, and along the subduction zone. The low velocities in the upper mantle that span from North Africa to Crete, in the Libyan Sea, might be an indication of serpentinized mantle from the subducting African lithosphere. We also find evidence of a strong reverse correlation between sediment and crustal thickness which, while previously demonstrated for extensional regions, also seems applicable for this convergence zone.  相似文献   

19.
About 50 000 P and S arrival times and 25 000 values of t * recorded at seismic arrays operated in the Central Andes between 20°S and 25°S in the time period from 1994 to 1997 have been used for locating more than 1500 deep and crustal earthquakes and creating 3-D P , S velocity and Qp models. The study volume in the reference model is subdivided into three domains: slab, continental crust and mantle wedge. A starting velocity distribution in each domain is set from a priori information: in the crust it is based on the controlled sources seismic studies; in slab and mantle wedge it is defined using relations between P and S velocities, temperature and composition given by mineral physics. Each iteration of tomographic inversion consists of the following steps: (1) absolute location of sources in 3-D velocity model using P and S arrival times; (2) double-difference relocation of the sources and (3) simultaneous determination of P and S velocity anomalies, P and S station corrections and source parameters by inverting one matrix. Velocity parameters are computed in a mesh with the density of nodes proportional to the ray density with double-sided nodes at the domain boundaries. The next iteration is repeated with the updated velocity model and source parameters obtained at the previous step. Different tests aimed at checking the reliability of the obtained velocity models are presented. In addition, we present the results of inversion for Vp and Vp/Vs parameters, which appear to be practically equivalent to Vp and Vs inversion. A separate inversion for Qp has been performed using the ray paths and source locations in the final velocity model. The resulting Vp , Vs and Qp distributions show complicated, essentially 3-D structure in the lithosphere and asthenosphere. P and S velocities appear to be well correlated, suggesting the important role of variations of composition, temperature, water content and degree of partial melting.  相似文献   

20.
Summary. The upper boundary of the descending oceanic plate is located by using PS -waves (converted from P to S at the boundary) in the Tohoku District, the north-eastern part of Honshu, Japan. the observed PS-P time data are well explained by a two-layered oceanic plate model composed of a thin low-velocity upper layer whose thickness is less than 10 km and a thick high-velocity lower layer; the upper and lower layers respectively have 6 per cent lower and 6 per cent higher velocity than the overriding mantle. the estimated location of the upper boundary is just above the upper seismic plane of the double-planed deep seismic zone. This result indicates that events in the upper seismic plane, at least in the depth range from 60 to 150 km, occur within the thin low-velocity layer on the surface of the oceanic plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号