首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
孙凯 《天文学进展》1997,15(1):44-52
综述日冕物质抛射的观测和持性,简短的前言之后,给出CME的发现经过及统计特性,着重介绍CME与其他种类太阳活动的相关。然后介绍CME的一般特性,包括可能与CME相关的一些物理过程的观测特性。初步结论是:CME是一种演变中的磁结构现象。  相似文献   

2.
日晚物质抛射是近二十年来太阳物质研究中的一个较为活跃的课题,本文系统地阐述了这一领域研究意义、内容、方式及所取得的成果、并通过第五、六两章的分析对CMEs与耀斑及活动周的关系作了更进一步的研究。  相似文献   

3.
在本文中,我们对米波太阳射电爆发的观测和研究(Spikes以及各类爆发)进行了较全面的总结,对Spikes、米波射电爆发及基和太阳耀斑、CME(日冕物质抛射)的相互关系也给出了比较详细的讨论关加以概括;针对米波射电的未来观测和研究、米波Spikes与广泛的其它太阳耀斑现象的米波射电爆发才耀斑及CME的关系和米波射电辐射的理论问题,在理论和观测两方面提出了未来工作的设想和建议。主要观战和结论有:  相似文献   

4.
Comptonγ射线望远镜的直接解调成像   总被引:2,自引:0,他引:2  
Comptonγ射线望远镜COMPTEL/CGRO工作于0.75-30MeV能区,本应用直接解调方法分析了CGRO#1观测的COMPTEL数据,准确定出Carabγ射线源的位置,在10-30MeV能区,分辨开最大似然法所不能完全分辨的Crabγ射线源和类星体PKS0528+134,得出优于传统成像方法所得的成像结果。  相似文献   

5.
Comptonγ射线望远镜COMPTEL/CGRO工作于0.75-30MeV能区,本文应用直接解调方法分析CGRO#1观测的COMPTEL数据,准确定出Crabγ射线源的位置,在10-30MeV能区,分辨开最大似然法所不能完全分辨的Crabγ射线源和类星体PKS0528+134,得出优于传统成像方法所得的成像结果.应用直接成像方法处理γ射线脉冲星Geminga分位相数据,发现Geminga在10-30MeV能区仍存在辐射,辐射集中在Geminga第一个峰的位相区域.结果表明,应用直接解调方法对Compton望远镜数据作成像分析是完全可行的  相似文献   

6.
太阳射电爆发的起因:耀斑或/和日冕物质抛射   总被引:2,自引:0,他引:2  
本文分析了近二十年来的地面和空间太阳有关观测资料,得出太阳射电爆发的起因为耀斑和/ 或日冕物质抛射(CME) 而不仅仅是耀斑,这将有利于更深刻地了解太阳射电爆发和共生高能现象的物理过程  相似文献   

7.
竞赛试卷     
竞赛试卷一、选择题(共16题):①1994年6月~9月飞临太阳极区的宇宙探测器发现了太阳高纬区域,日球磁场的极性是紊乱的,磁场强度几乎不随日面纬度的不同而变化。这个探测器是。(A)太阳峰年使者(SMM);(B)太阳神(Helios);(C)尤利西斯(...  相似文献   

8.
本在Melrose和Kulk新发展的准线性理论基础上,继续作前面所做的工作,对spike辐射的ECM增长率做进一步的分析。  相似文献   

9.
林尼尔彗星 ,全称“C 1 999LinearS4”彗星 ,或者Linear S4、C 1 999 S4彗星 ,是美国新墨西哥州林肯实验室近地小行星研究组 (LincolnNear EarthAsteroidResearch ,简称Linear)在小行星巡天中于 1 999年 9月2 7日发现的。事实上 ,从 1 998年起 ,Linear发现了 4 0多颗新的彗星 ,但只有这颗彗星独占鳌头。发现时 ,它离太阳的距离与木星相当。它有一个长长的椭圆轨道———估计来自于遥远的奥尔特云 ,那里距太阳的距离是地球的 5万倍 ,被认为是一个巨大的彗星库。Linear彗…  相似文献   

10.
射电Ⅳ型运动爆发同日冕物质抛射(CMEs)关系极为密切。本文基于对Ⅳ型运动爆发的研究以及CMEs开放场的物理条件,探讨了CMEs形成及抛射的物理条件。由于磁通量突然喷发,能量大量释放,在CME闭合场中的等离子体被加速,导致高能质子和高能电子被大磁环捕获。随着磁环内的热压P和磁压Pm的升高,当β〉βT时磁环将炸裂,从而产生CMEs。抛射出的未离化的等离子体团将产生等离子体基波与谐波辐射。随着等离子体  相似文献   

11.
S. Bravo 《Solar physics》1995,161(1):57-65
The observation of non-corotating shock fronts in interplanetary space is always associated with the previous occurrence of a coronal mass ejection (CME), which is frequently accompanied by a flare or a prominence eruption. When looking at the solar region of origin of these events, a coronal hole is always found. Here we propose a scenario at the Sun where all these related events can find a place.  相似文献   

12.
We study the relationship between the speeds of coronal mass ejections (CMEs) obtained close to the Sun and in the interplanetary medium during the low solar-activity period from 2008 to 2010. We use a multi-spacecraft forward-modeling technique to fit a flux-rope-like model to white-light coronagraph images from the STEREO and SOHO spacecraft to estimate the geometrical configuration, propagation in three-dimensions (3D), and the radial speeds of the observed CMEs. The 3D speeds obtained in this way are used in existing CME travel-time prediction models. The results are compared to the actual CME transit times from the Sun to STEREO, ACE, and Wind spacecraft as well as to the transit times calculated using projected CME speeds. CME 3D speeds give slightly better predictions than projected CME speeds, but a large scatter is observed between the predicted and observed travel times, even when 3D speeds are used. We estimate the possible sources of errors and find a weak tendency for large interplanetary CMEs (ICMEs) with high magnetic fields to arrive faster than predicted and small, low-magnetic-field ICMEs to arrive later than predicted. The observed CME transit times from the Sun to 1?AU show a particularly good correlation with the upstream solar-wind speed. Similar trends have not been observed in previous studies using data sets near solar maximum. We suggest that near solar minimum a relatively narrow range of CME initial speeds, sizes, and magnetic-field magnitudes led to a situation where aerodynamic drag between CMEs and ambient solar wind was the primary cause of variations in CME arrival times from the Sun to 1?AU.  相似文献   

13.
In this study, we investigate the interplanetary consequences and travel time details of 58 coronal mass ejections (CMEs) in the Sun–Earth distance. The CMEs considered are halo and partial halo events of width \({>}\,120\)°. These CMEs occurred during 2009?–?2013, in the ascending phase of the Solar Cycle 24. Moreover, they are Earth-directed events that originated close to the centre of the solar disk (within about \(\pm30\)° from the Sun’s centre) and propagated approximately along the Sun–Earth line. For each CME, the onset time and the initial speed have been estimated from the white-light images observed by the LASCO coronagraphs onboard the SOHO space mission. These CMEs cover an initial speed range of \({\sim}\,260\,\mbox{--}\,2700~\mbox{km}\,\mbox{s}^{-1}\). For these CMEs, the associated interplanetary shocks (IP shocks) and interplanetary CMEs (ICMEs) at the near-Earth environment have been identified from in-situ solar wind measurements available at the OMNI data base. Most of these events have been associated with moderate to intense IP shocks. However, these events have caused only weak to moderate geomagnetic storms in the Earth’s magnetosphere. The relationship of the travel time with the initial speed of the CME has been compared with the observations made in the previous Cycle 23, during 1996?–?2004. In the present study, for a given initial speed of the CME, the travel time and the speed at 1 AU suggest that the CME was most likely not much affected by the drag caused by the slow-speed dominated heliosphere. Additionally, the weak geomagnetic storms and moderate IP shocks associated with the current set of Earth-directed CMEs indicate magnetically weak CME events of Cycle 24. The magnetic energy that is available to propagate CME and cause geomagnetic storm could be significantly low.  相似文献   

14.
This paper describes the space weather effects of a major CME which was accompanied by extremely violent events on the Sun. The signatures of the event in the interplanetary medium (IPM) sensed by Ooty Radio Telescope, the solar observations by LASCO coronagraph onboard SOHO, GOES X-ray measurements, satellite measurements of the interplanetary parameters, GPS based ionospheric measurements, the geomagnetic storm parameter Dst and ground based ionosonde data are used in the study to understand the space weather effects in the different regions of the solar-terrestrial environment. The effects of this event are compared and possible explanations attempted.  相似文献   

15.
Coronal mass ejection (CME) is the large scale magnetized plasmoid ejected from the Sun, which brings huge amount of magnetic flux and plasma into interplanetary space. An earthward CME will interact with the magnetosphere of the Earth, and invokes the substorm and the other phenomena of the space weather as it approaches to the Earth. The 2-dimensional data provided by the current observational techniques cannot describe the true magnetic structure and the plasma distribution of CMEs comprehensively. We need to look into the 3-dimensional structure and the associated three components of CME speeds in order to predict the time when an ICME (Interplanetary CME) reaches the Earth, and the potential consequent impact on the Earth and the nearby environment. In this paper, 3D reconstruction methods of CME based on existing imaging observations are introduced, including two kinds of reconstruction methods based on coronagraph data and heliosphere imager data, and CME-driven shock wave 3D reconstruction methods with high correlation with CME imaging reconstruction. Each method shows apparent advantages in dealing with specific events, but its weakness and necessary constrains to its applications exist as well. Results obtained via various methods are compared in this work, and we found that CME velocities and moving directions deduced from these methods are fairly close to one another, which shows high reliability of these methods. Finally, the hot topics related to the 3-dimensional reconstruction of CME (ICME) and the relevant development in reconstructing methods are also discussed.  相似文献   

16.
A high-speed, halo-type coronal mass ejection (CME), associated with a GOES M4.6 soft X-ray flare in NOAA AR 0180 at S12W29 and an EIT wave and dimming, occurred on 9 November 2002. A complex radio event was observed during the same period. It included narrow-band fluctuations and frequency-drifting features in the metric wavelength range, type III burst groups at metric – hectometric wavelengths, and an interplanetary type II radio burst, which was visible in the dynamic radio spectrum below 14 MHz. To study the association of the recorded solar energetic particle (SEP) populations with the propagating CME and flaring, we perform a multi-wavelength analysis using radio spectral and imaging observations combined with white-light, EUV, hard X-ray, and magnetogram data. Velocity dispersion analysis of the particle distributions (SOHO and Wind in situ observations) provides estimates for the release times of electrons and protons. Our analysis indicates that proton acceleration was delayed compared to the electrons. The dynamics of the interplanetary type II burst identify the burst source as a bow shock created by the fast CME. The type III burst groups, with start times close to the estimated electron-release times, trace electron beams travelling along open field lines into the interplanetary space. The type III bursts seem to encounter a steep density gradient as they overtake the type II shock front, resulting in an abrupt change in the frequency drift rate of the type III burst emission. Our study presents evidence in support of a scenario in which electrons are accelerated low in the corona behind the CME shock front, while protons are accelerated later, possibly at the CME bow shock high in the corona.  相似文献   

17.
We compare the temporal and spatial properties of posteruption arcades (PEAs) associated with coronal mass ejections (CMEs) at the Sun that end up as magnetic cloud (MC) and non-MC events in the solar wind. We investigate the length, width, area, tilt angle, and formation time of the PEAs associated with 22 MC and 29 non-MC events and we find no difference between the two populations. According to current ideas on the relation between flares and CMEs, the PEA is formed together with the CME flux-rope structure by magnetic reconnection. Our results indicate that at the Sun flux ropes form during CMEs in association with both MC and non-MC events; however, for non-MC events the flux-rope structure is not observed in the interplanetary space because of the geometry of the observation, i.e. the location of the spacecraft when the structure passes through it.  相似文献   

18.
The statistical relationship between the parameters of X-ray flares and coronal mass ejections on the Sun that are associated with these flares, is considered. It is shown that short X-ray flares are characterized on average by a lower mass ejection in the outer layers of the corona and interplanetary space as compared to high-energy long-duration events.  相似文献   

19.
An analytical 3-D magnetohydrodynamic (MHD) solution of a magnetic-flux rope (FR) is presented. This FR solution may explain the uniform propagation, beyond ~?0.05 AU, of coronal mass ejections (CMEs) commonly observed by today’s missions like The Solar Mass Ejection Imager (SMEI), Solar and Heliospheric Observatory (SOHO) and Solar Terrestrial Relations Observatory (STEREO), tracked to tens of times the radius of the Sun, and in some cases up to 1 AU, and/or beyond. Once a CME occurs, we present arguments regarding its evolution based on its mass and linear momentum conservation. Here, we require that the gravitational and magnetic forces balance each other in the framework of the MHD theory for a simple model of the evolution of a CME, assuming it interacts weakly with the steady solar wind. When satisfying these ansätze we identify a relation between the transported mechanical mass of the interplanetary CME with its geometrical parameters and the intensity of the magnetic field carried by the structure. In this way we are able to estimate the mass of the interplanetary CME (ICME) for a list of cases, from the Wind mission records of ICME encountered near Earth, at 1 AU. We obtain a range for masses of ~?109 to 1013 kg, or assuming a uniform distribution, of ~?0.5 to 500 cm?3 for the hadron density of these structures, a result that appears to be consistent with observations.  相似文献   

20.
日冕物质抛射(Coronal Mass Ejection, CME)的检测是建立CME事件库和实现对CME在行星际传播的预报的重要前提. 通过Visual Geometry Group (VGG) 16卷积神经网络方法对日冕仪图像进行自动分类. 基于大角度光谱日冕仪(Large Angle and Spectrometric Coronagraph Experiment, LASCO) C2的白光日冕仪图像, 根据是否观测到CME对图像进行标记. 将标记分类的数据集用于VGG模型的训练, 该模型在测试集分类的准确率达到92.5%. 根据检测得到的标签结果, 结合时空连续性规则, 消除了误判区域, 有效分类出CME图像序列. 与Coordinated Data Analysis Workshops (CDAW)人工事件库比较, 分类出的CME图像序列能够较完整地包含CME事件, 且对弱CME结构有较高的检测灵敏度. 未来先进天基太阳天文台(Advanced Space-based Solar Observatory, ASO-S)卫星的莱曼阿尔法太阳望远镜将搭载有白光日冕仪(Solar Corona Imager, SCI), 使用此分类方法将该仪器产生的日冕图像按有无CME分类. 含CME标签的图像将推送给中国的各空间天气预报中心, 对CME进行预警.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号