首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Melt inclusions and aqueous fluid inclusions in quartz phenocrysts from host felsic volcanics, as well as fluid inclusions in minerals of ores and wall rocks were studied at the Cu-Zn massive sulfide deposits in the Verkhneural’sk ore district, the South Urals. The high-temperature (850–1210°C) magmatic melts of volcanic rocks are normal in alkalinity and correspond to rhyolites of the tholeiitic series. The groups of predominant K-Na-type (K2O/Na2O = 0.3–1.0), less abundant Na-type (K2O/Na2O = 0.15–0.3), and K-type (K2O/Na2O = 1.9–9.3) rhyolites are distinguished. The average concentrations (wt %) of volatile components in the melts are as follows: 2.9 H2O (up to 6.5), 0.13 Cl (up to 0.28), and 0.09 F (up to 0.42). When quartz was crystallizing, the melt was heterogeneous, contained magnetite crystals and sulfide globules (pyrrhotite, pentlandite, chalcopyrite, bornite). High-density aqueous fluid inclusions, which were identified for the first time in quartz phenocrysts from felsic volcanics of the South Urals, provide evidence for real participation of magmatic water in hydrothermal ore formation. The fluids were homogenized at 124–245°C in the liquid phase; the salinity of the aqueous solution is 1.2–6.2 wt % NaCl equiv. The calculated fluid pressure is very high: 7.0–8.7 kbar at 850°C and 5.1–6.8 kbar at 700°C. The LA-ICP-MS analysis of melt and aqueous fluid inclusions in quartz phenocrysts shows a high saturation of primary magmatic fluid and melt with metals. This indicates ore potential of island-arc volcanic complexes spatially associated with massive sulfide deposits. The systematic study of fluid inclusions in minerals of ores and wall rocks at five massive sulfide deposits of the Verkhneural’sk district furnished evidence that ore-forming fluids had temperature of 375–115°C, pressure up to 1.0–0.5 kbar, chloride composition, and salinity of 0.8–11.2 (occasionally up to 22.8) wt % NaCl equiv. The H and O isotopic compositions of sericite from host metasomatic rocks suggest a substantial contribution of seawater to the composition of mineral-forming fluids. The role of magmatic water increases in the central zones of the feeding conduit and with depth. The dual nature of fluids with the prevalence of their magmatic source is supported by S, C, O, and Sr isotopic compositions. The TC parameters of the formation of massive sulfide deposits are consistent with the data on fluid inclusions from contemporary sulfide mounds on the oceanic bottom.  相似文献   

2.
Melt and fluid inclusions were investigated in minerals from igneous rocks and ore (Au-Ag-Pb-Zn) veins of the Stiavnica ore field in Central Slovakia. High H2O (7.1–12.0 wt %) and Cl (0.32–0.46 wt %) contents were found in silicate melt inclusions (65–69 wt % SiO2 and 5.2–5.6 wt % K2O) in plagioclase phenocrysts (An 68–36) from biotite-homblende andesites of the eastern part of the caldera. Similar high water contents are characteristic of magmatic melts (71–76 wt % SiO2 and 3.7–5.1 wt % K2O) forming the sanidine rhyolites of the Vyhne extrusive dome in the northwestern part of the Stiavnica caldera (up to 7.1 wt %) and the rhyolites of the Klotilda dike in the eastern part of the ore field (up to 11.5 wt %). The examination of primary inclusions in quartz and sanidine from the Vyhne rhyolites revealed high concentrations of N2 and CO2 in magmatic fluid (8.6 g/kg H2O and 59 g/kg H2O, respectively). Fluid pressure was estimated as 5.0 kbar on the basis of primary CO2 fluid inclusions in plagioclase phenocrysts from the Kalvari basanites. This value corresponds to a depth of 18 km and may be indicative of a deep CO2 source. Quartz from the granodiorites of the central part of the Stiavnica-Hodrusa complex crystallized from a melt with 4.2–6.1 wt % H2O and 0.24–0.80 wt % Cl. Magmatic fluid cogenetic with this silicate melt was represented by a chloride brine with a salinity of no less than 77–80 wt % NaCl equiv. Secondary inclusions in quartz of the igneous rocks recorded a continuous trend of temperature, pressure, and solution salinity, from the parameters of magmatic fluids to the conditions of formation of ore veins. The gold mineralization of the Svyatozar vein system was formed from boiling low-salinity fluids (0.3–8.0 wt % NaCl equv.) at temperatures of 365–160°C and pressures of 160–60 bar. The Terezia, Bieber, Viliam, Spitaler, and Rozalia epithermal gold-silver-base metal veins were also formed from heterogeneous low-salinity fluids (0.3–12.1 wt %) at temperatures of 380–58°C and pressures of 240–10 bar. It was found that the salt components of the solutions were dominated by chlorides (high content of fluorine, up to 0.45 mol/kg H2O, was also detected), and sulfate solutions appeared in the upper levels. The dissolved gas of ore-forming solutions was dominated by CO2 (0.1–8.4 mol %, averaging 1.3 wt %) and contained minor nitrogen (0.00–0.85 mol %, averaging 0.05 mol %) and negligible methane admixtures (0.00–0.05 mol %, averaging 0.004 mol %). These data allowed us to conclude that the magmatic melts could be sources of H2O, Cl, CO2, and N2. The formation of the epithermal mineralization of the Stiavnica ore field was associated with the mixing of magmatic fluid with low-concentration meteoric waters, and the fluid was in a heterogeneous state.  相似文献   

3.
Using various methods of melt inclusion investigation, including electron and ion microprobe techniques, we estimated the composition, evolution, and formation conditions of melts producing the trachydacites and pantellerites of the Late Paleozoic bimodal volcanic association of Dzarta-Khuduk, Central Mongolia. Primary crystalline and melt inclusions were detected in anorthoclase from trachydacites and quartz from pantellerites and pantelleritic tuffs. Among the crystalline inclusions, we identified hedenbergite, fluorapatite, and pyrrhotite in the trachydacites and F-arfvedsonite, fluorite, ilmenite, and the rare REE diorthosilicate chevkinite in the pantellerites. Melt inclusions in anorthoclase from the trachydacites are composed of glass, a gas phase, and daughter minerals (F-arfvedsonite, fluorite, villiaumite, and anorthoclase rim on the inclusion wall). Melt inclusions in quartz from the pantellerites are composed of glass, a gas phase, and a fine-grained salt aggregate consisting of Li, Na, and Ca fluorides (griceite, villiaumite, and fluorite). Melt inclusions in quartz crystalloclasts from the pantelleritic tuffs are composed of homogeneous silicate glasses. The phenocrysts of the trachydacites and pantellerites crystallized at temperatures of 1060–1000°C. During thermometric experiments with quartz-hosted melt inclusions from the pantellerites, the formation of immiscible silicate and salt (fluoride) melts was observed at a temperature of 800°C. Homogeneous melt inclusions in anorthoclase from the trachydacites have both trachydacite and rhyolite compositions (wt %): 68–70 SiO2, 12–13 Al2O3, 0.34–0.74 TiO2, 5–7 FeO, 0.4–0.9 CaO, and 9–12 Na2O + K2O. The agpaitic index ranges from 0.92 to 1.24. The glasses of homogenized melt inclusions in quartz from the pantellerites and pantelleritic tuffs have rhyolitic compositions. Compared with the homogeneous glasses trapped in anorthoclase of the trachydacites, quartz-hosted inclusions from the pantellerites show higher SiO2 (72–78 wt %) and lower Al2O3 contents (7.8–10.0 wt %). They also contain 0.14–0.26 wt % TiO2, 2.5–4.9 wt % FeO, 9–11 wt % Na2O + K2O, and 0.9–0.15 wt % CaO and show an agpaitic index of 1.2–2.05. Homogeneous melt inclusions in quartz from the pantelleritic tuffs contain 69–72 wt % SiO2. The contents of other major components, including TiO2, Al2O3, FeO, and CaO, are close to those in the homogeneous glasses of quartzhosted melt inclusions in the pantellerites. The contents of Na2O + K2O are 4–10 wt %, and the agpaitic index is 1.0–1.6. The glasses of melt inclusions from each rock group show distinctive volatile compositions. The H2O content is up to 0.08 wt % in anorthoclase of the trachydacites, 0.4–1.4 wt % in quartz of the pantellerites, and up to 5 wt % in quartz of the pantelleritic tuffs. The content of F in the glasses of melt inclusions in the phenocrysts of the trachydacites is no higher than 0.67 wt %, and up to 1.4–2.8 wt % in quartz from the pantellerites. The Cl content is up to 0.2 wt % in the glasses of melt inclusions in the minerals of the trachydacites and up to 0.5 wt % in the glasses of quartz-hosted melt inclusions from the pantellerites. The investigation of trace elements in the homogenized glasses of melt inclusions in minerals showed that the trachydacites and pantellerites were formed from strongly evolved rare-metal alkaline silicate melts with high contents of Li, Zr, Rb, Y, Hf, Th, U, and REE. The analysis of the composition of homogeneous melt inclusions in the minerals of the above rocks allowed us to distinguish magmatic processes resulting in the enrichment of these rocks in trace and rare earth elements. The most important processes are the crystallization differentiation and immiscible separation of silicate and fluoride salt melts. It was also shown that all the melts studied evolved in spatially separated magma chambers. This caused the differences in the character of melt evolution between the trachydacites and pantellerites. During the final stages of differentiation, when the magmatic system was saturated with respect to ore elements, Na-Ca fluoride melts were separated and extracted considerable amounts of Li.  相似文献   

4.
Melt inclusions were investigated in olivine phenocrysts from the New Caledonia boninites depleted in CaO and TiO2 and enriched in SiO2 and MgO. The rocks are composed of olivine and pyroxene phenocrysts in a glassy groundmass. The olivine phenocrysts contain melt inclusions consisting of glass, a fluid vesicle, and daughter olivine and orthopyroxene crystals. The daughter minerals are completely resorbed in the melt at 1200?C1300°C, whereas the complete dissolution of the fluid phase was not attained in our heating experiments. The compositions of reheated and naturally quenched melt inclusions, as well as groundmass glasses were determined by electron microprobe analysis and secondary ion mass spectrometry. Partly homogenized melts (with gas) contain 12?C16 wt % MgO. The glasses of inclusions and groundmass are significantly different in H2O content: up to 2 wt % in the glasses of reheated inclusions, up to 4 wt % in naturally quenched inclusions, and 6?C8 wt % in groundmass glasses. A detailed investigation revealed a peculiar zoning in olivine: its Mg/(Mg + Fe) ratio increased in a zone directly adjacent to the glass of inclusions. This effect is probably related to partial water (hydrogen) loss and Fe oxidation after inclusion entrapment. The numerical modeling of such a process showed that the water loss was no higher than a few tenths of percent and could not be responsible for the considerable difference between the compositions of inclusions and groundmass glasses. It is suggested that the latter were enriched in H2O after the complete solidification of the rock owing to interaction with seawater. Based on the obtained data, the compositions of primary boninite magmas were estimated, and it was supposed that variations in melt composition were related not only to olivine and pyroxene fractionation from a single primary melt but also to different degrees and (or) depths of magma derivation.  相似文献   

5.
Melt and fluid inclusions were investigated in six quartz phenocryst samples from the igneous rocks of the extrusive (ignimbrites and rhyolites) and subvolcanic (granite porphyries) facies of the Lashkerek Depression in the Kurama mining district, Middle Tien Shan. The method of inclusion homogenization was used, and glasses from more than 40 inclusions were analyzed on electron and ion microprobes. The chemical characteristics of these inclusions are typical of silicic magmatic melts. The average composition is the following (wt %): 72.4 SiO2, 0.06 TiO2, 13.3 Al2O3, 0.95 FeO, 0.03 MnO, 0.01 MgO, 0.46 CaO, 3.33 Na2O, 5.16K2O, 0.32 F, and 0.21 Cl. Potassium strongly prevails over sodium in all of the inclusions (K2O/Na2O averages 1.60). The average total of components in melt inclusions from five samples is 95.3 wt %, which indicates a possible average water content in the melt of no less than 3–4 wt %. Water contents of 2.0 wt % and 6.6 wt % were determined in melt inclusions from two samples using an ion microprobe. The analyses of ore elements in the melt inclusions revealed high contents of Sn (up to 970 ppm), Th (19–62 ppm, 47 ppm on average), and U (9–26 ppm, 18 ppm on average), but very low Eu contents (0.01 ppm). Melt inclusions of two different compositions were detected in quartz from a granite porphyry sample: silicate and chloride, the latter being more abundant. In addition to Na and K chlorides, the salt inclusions usually contain one or several anisotropic crystals and an opaque phase. The homogenization temperatures of the salt inclusions are rather high, from 680 to 820°C. In addition to silicate inclusions with homogenization temperatures of 820–850°C, a primary fluid inclusion of aqueous solution with a concentration of 3.7 wt % NaCl eq. and a very high density of 0.93 g/cm3 was found in quartz from the ignimbrite. High fluid pressure values of 6.5–8.3 kbar were calculated for the temperature of quartz formation. These estimates are comparable with values obtained by us previously for other regions of the world: 2.6–4.3 kbar for Italy, 3.7 kbar for Mongolia, 3.3–8.7 kbar for central Slovakia, and 3.3–9.6 kbar for eastern Slovakia. Unusual melt inclusions were investigated in quartz from another ignimbrite sample. In addition to a gas phase and transparent glass, they contain spherical Feoxide globules (81.2 wt % FeO) with high content of SiO2 (9.9 wt %). The globules were dissolved in the silicate melt within a narrow temperature range of 1050–1100°C, and the complete homogenization of the inclusions was observed at temperatures of 1140°C or higher. The combined analysis of the results of the investigation of these inclusions allowed us to conclude that immiscible liquids were formed in the high-temperature silicic magma with the separation of iron oxide-dominated droplets.  相似文献   

6.
Melt and fluid inclusions have been studied in olivine phenocrysts (Fo 81–79) from trachybasalts of the Southern Baikal volcanic area, Dzhida field. The melt inclusions were homogenized, quenched, and analyzed on an electron and ion microprobe. The study of homogenized glasses of nine inclusions showed that basaltic melts (SiO2 = 47.1–50.3 wt %, MgO = 5.0–7.7 wt %, CaO = 7.1–11.1 wt %) have high contents of Al2O3 (17.1–19.6 wt %), Na2O (4.1–6.2 wt %), K2O (2.2–3.3 wt %), and P2O5 (0.6–1.1 wt %). The volatile contents are low (in wt %): 0.24–0.31 H2O, 0.08 F, 0.03 Cl, and 0.02 S. Primary fluid inclusions in olivines from four trachybasalt samples contain high-density CO2 (0.73–0.87 g/cm3), indicating a CO2 fluid pressure of 4.3–6.6 kbar at 1200–1300°C and olivine crystallization depths of 16–24 km. Ion microprobe analyses of 20 glasses from melt inclusions for trace elements showed that the magmas of the Baikal rift were enriched in incompatible elements, thus differing from oceanic rift basalts and resembling oceanic island basalts. A comparison of our data on melt and fluid inclusions in olivine from trachybasalts of the Dzhida field with preexisting data on the Eastern Tuva volcanic highland in the Southern Baikal volcanic area showed that they had similar contents of volatiles, major, and trace elements.  相似文献   

7.
Melt inclusions were examined in phenocrysts in basalt, andesite, dacite, and rhyodacite from the Karymskii volcanic center in Kamchatka and dacite form Golovnina volcano in Kunashir Island, Kuriles. The inclusions were examined by homogenization and by analyzing glasses in more than 80 inclusions on an electron microscope and ion microprobe. The SiO2 concentrations in the melt inclusions in plagioclase phenocrysts from basalts from the Karymskii volcanic center vary from 47.4 to 57.1 wt %, these values for inclusions in plagioclase phenocrysts from andesites are 55.7–67.1 wt %, in plagioclase phenocrysts from the dacites and rhyodacites are 65.9–73.1 wt %, and those in quartz in the rhyodacites are 72.2–75.7 wt %. The SiO2 concentrations in melt inclusions in quartz from dacites from Golovnina volcano range from 70.2 to 77.0 wt %. The basaltic melts are characterized by usual concentrations of major components (wt %): TiO2 = 0.7–1.3, FeO = 6.8–11.4, MgO = 2.3–6.1, CaO = 6.7–10.8, and K2O = 0.4–1.7; but these rocks are notably enriched in Na2O (2.9–7.4 wt % at an average of 5.1 wt %, with the highest Na2O concentration detected in the most basic melts: SiO2 = 47.4–52.0 wt %. The concentrations of volatiles in the basic melts are 1.6 wt % for H2O, 0.14 wt % for S, 0.09 wt % for Cl, and 50 ppm for F. The andesite melts are characterized by high concentrations (wt %) of FeO (6.5 on average), CaO (5.2), and Cl (0.26) at usual concentrations of Na2O (4.5), K2O (2.1), and S (0.07). High water concentrations were determined in the dacite and rhyodacite melts: from 0.9 to 7.3 wt % (average of 15 analyses equals 4.5 wt %). The Cl concentration in these melts is 0.15 wt %, and those of F and S are 0.06 and 0.01 wt %, respectively. Melt inclusions in quartz from the dacites of Golovnina volcano are also rich in water: they contain from 5.0 to 6.7 wt % (average 5.6 wt %). The comparison of melt compositions from the Karymskii volcanic center and previously studied melts from Bezymyannyi and Shiveluch volcanoes revealed their significant differences. The former are more basic, are enriched in Ti, Fe, Mg, Ca, Na, and P but significantly depleted in K. The melts of the Karymskii volcanic center are most probably less differentiated than the melts of Bezymyannyi and Shiveluch volcanoes. The concentrations of water and 20 trace elements were measured in the glasses of 22 melt inclusions in plagioclase and quartz from our samples. Unusually high values were obtained for Li concentrations (along with high Na concentrations) in the basaltic melts from the Karymskii volcanic center: from 118 to 1750 ppm, whereas the dacite and rhyolite melts contain 25 ppm Li on average. The rhyolite melts of Golovnina volcano are much poorer in Li: 1.4 ppm on average. The melts of the Karymskii volcanic center are characterized by relative minima at Nb and Ti and maxima at B and K, as is typical of arc magmas.  相似文献   

8.
Matrix glass and melt inclusions in phenocrysts from pantellerite lavas of the Boseti volcanic complex, Ethiopia, record extreme fractionation of peralkaline silicic magma, with Al2O3 contents as low as 2.3?wt.%, FeO* contents up to 17?wt.% and SiO2 contents ~65?wt.%. The new data, and published data for natural and experimental glasses, suggest that the effective minimum composition for peralkaline silicic magmas has ~5?wt.% Al2O3, 13?wt.% FeO* and 66?±?2?wt.% SiO2. The dominant fractionating assemblage is alkali feldspar?+?fayalite?+?hedenbergite?+?oxides?±?quartz. Feldspar – melt relationships indicate that the feldspar is close to the minimum on the albite-orthoclase solid solution loop through the entire crystallization history. There is petrographic, mineralogical and geochemical evidence that magma mixing may have been a common process in the Boseti rhyolites.  相似文献   

9.
In this paper, we discuss the formation conditions of rhyolites and results of their interaction with later portions of basic magmas on the basis of the investigation of melt and fluid inclusions in minerals from a rhyolite xenolith and host neovolcanic basalts of the Cleft segment of the Juan de Fuca Ridge. In terms of bulk chemistry and the compositions of melt inclusions in pyroxene and olivine phenocrysts, the basic rocks of the southern part of this segment are typical MOR basalts. Their olivine, clinopyroxene, and plagioclase crystallized at temperatures of 1160–1280°C and a pressure range between 20 and 100 MPa. The xenolith is a leucocratic rock with negligible amounts of mafic minerals, which clearly distinguishes it from the known occurrences of silicic rocks in the rift valleys of MOR. The rhyolite melt crystallized at temperatures of 900–880°C. The final stages of rhyolite melt crystallization at temperatures of 780–800°C were accompanied by the release of a saline aqueous fluid with high chloride contents. Based on the geochemical characteristics of melt inclusions and melting products, it can be suggested that the magmatic melt was produced by melting of metamorphosed oceanic crust within the Cleft segment under the influence sof saline aqueous fluid trapped in the pores and interstices of the rock. The rock represented by the xenolith is a late differentiation product of such melts. The ultimate products of silicic melt fractionation show high volatile contents: H2O > 3.0 wt %, Cl ~ 2.0 wt %, and F ~ 0.1 wt %. The interaction of the xenolith with the host basaltic melt occurred at temperatures equal or slightly higher than those of ferrobasalt melts (1190–1180°C). During ascent the xenolith occurred for a few tens of hours in high-temperature basic magma, and diffusion exchange between the basaltic and silicic melts was very minor.  相似文献   

10.
《International Geology Review》2012,54(16):1967-1982
ABSTRACT

The Taupo Volcanic Zone (TVZ), New Zealand, is a well-documented volcanic arc characterized by explosive rhyolitic magmas within a series of caldera complexes that include the Okataina Volcanic Centre (OVC). New quartz melt inclusion and volcanic glass data from the 45 ka caldera-forming Rotoiti eruption within the OVC are compared to published studies. The new data are characterized by low K2O (~1.5–3.5 wt.%), Rb (~30–70 ppm), Sr (~40–90 ppm), U (~0.5–2.5 ppm), and Ba (~300–1000 ppm) ranges that differ significantly from other OVC systems (~3.0–4.5 wt.% K2O, ~80–150 ppm Rb, and ~2.5–5.0 ppm U). Most interestingly, the Rotoiti melt inclusion data measured in this study show a decrease in Rb, Sr, and U, although the fractionation trends originate from the same source point as published OVC data. This progressive decreasing trend is interpreted as an interaction with a less enriched rhyolitic melt (represented by the low Rb, Sr, and U of glasses) during fractionation processes from a common TVZ source. The established model for TVZ rhyolites is that they are extracted from a middle or upper crustal source (‘mush’ zone) prior to eruption. Adding to this model, new melt inclusion data suggest that all TVZ rhyolites are fractionated from this common TVZ source and, prior to eruption, the Rotoiti system was rejuvenated by this source (evidenced by the low REE glasses). Exactly what triggers the common TVZ source to fractionate remains unclear, but a proposed mechanism to account for this involves the successive melting of the upper crust by upwelling mantle induced by incremental subduction.  相似文献   

11.
I. A. Andreeva 《Petrology》2016,24(5):462-476
Melt inclusions were studied by various methods, including electron and ion microprobe analysis, to determine the compositions of melts and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey massif in Mongolia. Primary crystalline and coexisting melt inclusions were found in quartz from the rare-metal granites of intrusive phase V. Among the crystalline inclusions, we identified potassium feldspar, albite, tuhualite, titanite, fluorite, and diverse rare-metal phases, including minerals of zirconium (zircon and gittinsite), niobium (pyrochlore), and rare earth elements (parisite). The observed crystalline inclusions reproduce almost the whole suite of major and accessory minerals of the rare-metal granites, which supports the possibility of their crystallization from a magmatic melt. Melt inclusions in quartz from these rocks are completely crystallized. Their daughter mineral assemblage includes quartz, microcline, aegirine, arfvedsonite, polylithionite, a zirconosilicate, pyrochlore, and a rare-earth fluorocarbonate. The melt inclusions were homogenized in an internally heated gas vessel at a temperature of 850°C and a pressure of 3 kbar. After the experiments, many inclusions were homogeneous and consisted of silicate glass. In addition to silicate glass, some inclusions contained tiny quench zircon crystals confined to the boundary of inclusions, which indicates that the melts were saturated in zircon. In a few inclusions, glass coexisted with a CO2 phase. This allowed us to estimate the content of CO2 in the inclusion as 1.5 wt %. The composition of glasses from the homogeneous melt inclusions is similar to the composition of the rare-metal granites, in particular, with respect to SiO2 (68–74 wt %), TiO2 (0.5–0.9 wt %), FeO (2.2–4.6 wt %), MgO (0.02 wt %), and Na2O + K2O (up to 8.5 wt %). On the other hand, the glasses of melt inclusions appeared to be strongly depleted compared with the rocks in CaO (0.22 and 4 wt %, respectively) and Al2O3 (5.5–7.0 and 9.6 wt %, respectively). The agpaitic index is 1.1–1.7. The melts contain up to 3 wt % H2O and 2–4 wt % F. The trace element analysis of glasses from homogenized melt inclusions in quartz showed that the rare-metal granites were formed from extensively evolved rare-metal alkaline melts with high contents of Zr, Nb, Th, U, Ta, Hf, Rb, Pb, Y, and REE, which reflects the metallogenic signature of the Khaldzan Buregtey deposit. The development of unique rare metal Zr–Nb–REE mineralization in these rocks is related to the prolonged crystallization differentiation of melts and assimilation of enclosing carbonate rocks.  相似文献   

12.
Variations in the F, Cl and OH contents of apatite are not constrained by crystal-chemical factors (in contrast to micas and amphiboles), and thus changes in the abundance of these components provide an indicator of halogen fugacity variations and insights into the degassing history of igneous rocks. Microprobe analysis of intercumulus apatites from the Stillwater Complex reveal that Cl-rich apatites, typically containing <0.4 wt % F and >6.0 wt % Cl, occur throughout the lower 1/3 of the complex excluding the Basal series. A change from Cl-rich to more F-rich apatite occurs within olivine-bearing zone I (OB I) of the Banded series, the host zone of the platiniferous J-M Reef. Although apatite compositions are somewhat variable above the J-M Reef, more F-rich apatites predominante and typically contain >1.2 wt % F and <3.0 wt % Cl. The most F-rich apatites occur in the uppermost exposed cumulates. Pristine apatites from coeval sills and dikes from below the complex and from the Basal series are similarly F-rich. In all apatites, the Cl and F contents are lower in rocks affected by later metamorphic fluids. Rare earth element (REE) concentrations in chlorapatites show a marked peak in the olivine-rich rocks of the J-M Reef, and contain up to 2 wt % Ce2O3 + La2O3. The trend of first increasing, then decreasing Cl/F ratios with stratigraphic height is modeled by a vapor-driven zone refining process occurring within the cumulate pile causing Cl-enrichment in the interstitial melt accompanied by degassing at the top of the magma chamber causing overall loss of Cl from the magma as crystallization proceeded. The abrupt change from Cl-rich to more F-rich apatites within OB I is interpreted as the result of a breakdown of the Cl-rich zone refining front and mixing with Cl-poor supernatant melt. Any high temperature fluids that exsolved and circulated through the lower 1/3 of the complex must have been enriched in Cl and could have transported REE and trace metals.  相似文献   

13.
The data obtained on the sodic part of the SiO2-Al2O3-Na2O-K2O system with F at 800°C and 1 kbar provide the basis for constructing a phase diagram showing the region of an aluminosilicate melt. In this system, oxide and fluoride phases are identified that control the stability field of the melt and the solubility of F. Liquid immiscibility was detected in aluminous nepheline-and quartz-normative Li-bearing compositions (the latter compositions are characterized by a wider immiscibility field). Solubility of F was determined in an aluminosilicate melt saturated with respect to F, i.e., coexisting with phases rich in this element. The F concentrations in the glasses range from 2 to 20 wt %. The quartz-normative glasses are poorer in F (no more than 5 wt % F) than the nepheline-normative glasses (which contain mostly 5–10 wt % F). The maximum F concentrations (> 10 wt %) in the phase diagram lie on both sides of the albite composition point in the region of ultragpaitic nepheline-normative melts and in the region of normal syenite melts. Changes in the phase relations when Na is substituted for K were determined in the quartz-normative silicate melt.  相似文献   

14.
The fluid/melt partitioning experiments on fluorine were carried out in the system albite-H2O-HF atP = 100 MPa, 770°C ≤T≤800°C: and wt = 2% −6% conditions. The concentrations of fluorine in quenched glasses (melt) were determined by electron microprobe and those of fluorine in the coexisting aqueous fluid were calculated by the method of mass balance. The result shows that the fluorine was concentrated in granitic melt relative to the coexisting fluid. The partition coefficient DF(wt F F1 /wt F Mt ) ranges from 0.35 to 0.89. It increases with increasing fluorine content in the system. This means that there is not just one single value of partition coefficient for fluorine in the granitic melt-fluid system. The partitioning behavior of fluorine in this system depends critically on fluorine and proton (H+) concentrations. Our data suggest that F-rich granitic melts exist in nature and that fluorine may not be an important complexing agent of metal elements in F-bearing fluids. The project was financially supported by both the National Natural Science Foundation of China (No. 49603048) and the State Key Laboratory of Mineral Deposit Research, Nanjing University.  相似文献   

15.
The results of melt inclusion study are reported for chromites of the Klyuchevsky ultramafic massif, which is the most representative of all Ural ultramafic massifs localized beyond the Main Ural Fault Zone. The massif is composed of a dunite-harzburgite complex (tectonized mantle peridotite) and a dunite-wehrlite-clinopyroxenite-gabbro complex (layered portion of the ophiolitic section). The studied Kozlovsky chromite deposit is located in the southeastern part of the Klyuchevsky massif and hosted in serpentinized dunite as a series of lenticular bodies and layers up to 7–8 m thick largely composed of disseminated and locally developed massive ore. Melt inclusions have been detected in chromites of both ore types. The heated and then quenched into glass melt inclusions and host minerals were analyzed on a Camebax-Micro microprobe. The glasses of melt inclusions contain up to 1.06 wt % Na2O + K2O and correspond to melts of normal alkalinity. In SiO2 content (49–56 wt %), they fit basalt and basaltic andesite. The melt inclusions are compared with those from chromites of the Nurali massif in the southern Urals and the Karashat massif in southern Tuva. The physicochemical parameters of magmatic systems related to the formation of disseminated and massive chromite ores of the Klyuchevsky massif are different. The former are characterized by a wider temperature interval (1185–1120°C) in comparison with massive chromite ore (1160–1140°C).  相似文献   

16.
Clinopyroxene phenocrysts in fergusite from a diatreme in the Dunkel’dyk potassic alkaline complex in the southeastern Pamirs, Tajikistan, and from carbonate veinlets cutting across this rock contain syngenetic carbonate, silicate, and complex melt inclusions. The homogenization of the silicate and carbonate material of the inclusions with the complete dissolution of daughter crystalline phases and fluid in each of them occur simultaneously at 1150?1180°C. The pressures estimated using fluid inclusions and mineral geobarometers were 0.5–0.7 GPa. The behavior of the inclusions during their heating and their geochemistry are in good agreement with the origin of carbonate melts via liquid immiscibility. Carbonatite magma was segregated at the preservation of volatile components (H2O, CO2, F, Cl, and S) in the melt, and this resulted in the crystallization of H2O-rich minerals and carbonates and testifies that the magma was not intensely degassed during its ascent to the surface. The silicate melts are rich in alkalis (up to 4 wt % Na2O and 12 wt % K2O), H2O, F, Cl, and REE (up to 1000 ppm), LREE, Ba, Th, U, Li, B, and Be. The diagrams of the concentrations of incompatible elements of these rocks typically show deep Nb, Ta, and Ti minima, a fact making them similar to the unusual type of ultrapotassic magmas: lamproites of the Mediterranean type. These magmas are thought to be generated in relation to subduction processes, first of all, the fluid transport of various components from a down-going continental crustal slab into overlying levels of the mantle wedge, from which ultrapotassic magmas are presumably derived.  相似文献   

17.
During the onset of caldera cluster volcanism at a new location in the Snake River Plain (SRP), there is an increase in basalt fluxing into the crust and diverse silicic volcanic products are generated. The SRP contains abundant and compositionally diverse hot, dry, and often low-δ18O silicic volcanic rocks produced through time during the formation of individual caldera clusters, but more H2O-rich eruptive products are rare. We report analyses of quartz-hosted melt inclusions from pumice clasts from the upper and lower Arbon Valley Tuff (AVT) to gain insight into the initiation of caldera cluster volcanism. The AVT, a voluminous, caldera-forming rhyolite, represents the commencement of volcanism (10.44 Ma) at the Picabo volcanic field of the Yellowstone hotspot track. This is a normal δ18O rhyolite consisting of early and late erupted members (lower and upper AVT, respectively) with extremely radiogenic Sr isotopes and unradiogenic Nd isotopes, requiring that ~50 % of the mass of these elements is derived from melts of Archean upper crust. Our data reveal distinctive features of the early erupted lower AVT melt including: variable F concentrations up to 1.4 wt%, homogenous and low Cl concentrations (~0.08 wt%), H2O contents ranging from 2.3 to 6.4 wt%, CO2 contents ranging from 79 to 410 ppm, and enrichment of incompatible elements compared to the late erupted AVT, subsequent Picabo rhyolites, SRP rhyolites, and melt inclusions from other metaluminous rhyolites (e.g., Bishop Tuff, Mesa Falls Tuff). We couple melt inclusion data with Ti measurements and cathodoluminescence (CL) imaging of the host quartz phenocrysts to elucidate the petrogenetic evolution of the AVT rhyolitic magma. We observe complex and multistage CL zoning patterns, the most critical being multiple truncations indicative of several dissolution–reprecipitation episodes with bright CL cores (higher Ti) and occasional bright CL rims (higher Ti). We interpret the high H2O, F, F/Cl, and incompatible trace element concentrations in the context of a model involving melting of Archean crust and mixing of the crustal melt with basaltic differentiates, followed by multiple stages of fractional crystallization, remelting, and melt extraction. This multistage process, which we refer to as distillation, is further supported by the complex CL zoning patterns in quartz. We interpret new Δ18O(Qz-Mt) isotope measurements, demonstrating a 0.4 ‰ or ~180 °C temperature difference, and strong Sr isotopic and chemical differences between the upper and lower AVT to represent two separate eruptions. Similarities between the AVT and the first caldera-forming eruptions of other caldera clusters in the SRP (Yellowstone, Heise and Bruneau Jarbidge) suggest that the more evolved, lower-temperature, more H2O-rich rhyolites of the SRP are important in the initiation of a caldera cluster during the onset of plume impingement.  相似文献   

18.
Oldoinyo Lengai, located in the Gregory Rift in Tanzania, is a world-famous volcano owing to its uniqueness in producing natrocarbonatite melts and because of its extremely high CO2 flux. The volcano is constructed of highly peralkaline [PI = molar (Na2O + K2O)/Al2O3 > 2–3] nephelinite and phonolites, both of which likely coexisted with carbonate melt and a CO2-rich fluid before eruption. Results of a detailed melt inclusion study of the Oldoinyo Lengai nephelinite provide insights into the important role of degassing of CO2-rich vapor in the formation of natrocarbonatite and highly peralkaline nephelinites. Nepheline phenocrysts trapped primary melt inclusions at 750–800 °C, representing an evolved state of the magmas beneath Oldoinyo Lengai. Raman spectroscopy, heating-quenching experiments, low current EDS and EPMA analyses of quenched melt inclusions suggest that at this temperature, a dominantly natritess-normative, F-rich (7–14 wt%) carbonate melt and an extremely peralkaline (PI = 3.2–7.9), iron-rich nephelinite melt coexisted following degassing of a CO2 + H2O-vapor. We furthermore hypothesize that the degassing led to re-equilibration between the melt and liquid phases that remained and involved 1/ mixing between the residual (after degassing) alkali carbonate liquid and an F-rich carbonate melt and 2/ enrichment of the coexisting nephelinite melt in alkalis. We suggest that in the geological past similar processes were responsible for generating highly peralkaline silicate melts in continental rift tectonic settings worldwide.  相似文献   

19.
Experimental data indicate that high F concentrations in leucocratic aluminosilicate melts (of granite and nepheline syenite composition) bring about the crystallization of F-rich minerals (topaz, villiaumite, and cryolite) on the liquidus. The crystallization of the minerals is controlled by the silicity, agpaitic coefficient, and proportions of alkalis in the system SiO2-Al2O3-Na2O-K2O-F-H2O. Our earlier experimental data on this system are compared with petrographic and petrochemical data on granites and nepheline syenites containing accessory topaz, cryolite, and villiaumite. The composition of topaz- and cryolite-bearing rocks is proved to correspond to the experimentally established equilibrium fields of F-rich aluminosilicate melt with these minerals. It is proved that the high-F minerals can crystallize from melt. The partial substitution of K and Na for Li modifies phase relations in the system, first of all, significantly expands the equilibrium field of aluminosilicate melt and alkaline aluminofluoride melts. The two melts are proved to be immiscible within broad compositional ranges in the SiO2-Al2O3-Na2O-Li2O-F-H2O system at 800–650°C and 1 kbar. Experimental data indicate that fluoride brine can coexist with aluminosilicate melts in nature. This finds support data on melt inclusions in granites and alkaline rocks whose contents of major components, water and fluorine are close to those in the experimental glasses. Our data lend support to the hypothesis that large cryolite bodies at the Ivigtut, Pitinga, Ulog-Tanzek, and other deposits were formed by fluoride salt melts that separated from F-rich aluminosilicate magmas late in the course of their differentiation. It is experimentally established that fluoride salt melts are able to concentrate valuable trace elements, such as Li, W, Nb, Hf, Sc, U, Th, and REE, which suggests that such melts can play an important role in the origin of rare-metal deposits genetically related to rocks that crystallize from magmas rich in F.  相似文献   

20.
An Early Cretaceous (120 ± 5 Ma) trachyrhyolite lava sheet in the Nyalga basin, Central Mongolia, includes a domain (~0.5 km2) of unusual fluorite-enriched rocks with anomalously high concentrations of CaO (1.2–25.7 wt %) and F (0.6–15 wt %). The textures and structures of the rocks suggest that they were produced by two immiscible melts: fluoride–calcium (F–Ca) and trachyrhyolitic. Data on mineral-hosted inclusions and SEM EDS studies of the matrixes of the rocks indicate that a F–Ca melt occurred in the trachyrhyolitic magmas during its various evolutionary episodes, starting from the growth of minerals in a magmatic chamber and ending with eruptions on the surface. Elevated fluorine concentrations (up to 1.5–2 wt %) in local domains of the trachyrhyolitic melt may have resulted in the onset of its liquid immiscibility and the exsolution of a F–Ca liquid phase. This was associated with the redistribution of trace elements: REE, Y, Sr, and P were preferably concentrated in the F–Ca melt, while Zr, Hf, Ta, and Nb were mostly redistributed into the immiscible silicate liquid. The F–Ca melt contained oxygen and aqueous fluid and remained mobile until vitrification of the trachyrhyolitic magma. The oxygen-enriched F–Ca phase was transformed into fluorite at 570–780°? and a high oxygen fugacity Δlog fO2 (0.9–1.7) relative to the NNO buffer. Ferrian ilmenite, monazite-group As-bearing minerals, and cerianite crystallized under oxidizing conditions, and the titanomagnetite was replaced by hematite. The Ca- and F-enriched rocks were affected by low-density (0.05–0.1 g/cm3) aqueous fluid, which was released from the crystallizing trachyrhyolitic melt, and this led to the partial removal of REE from the F–Ca phase. The chondrite-normalized REE and Y patterns of the fluidmodified rocks show positive Y anomalies and W-shaped minima from Gd to Ho. A composition of the F–Ca phase close to the original one is conserved in mineral-hosted inclusions and in relict isolations in the rocks matrix. It is so far unclear why fluorite did not crystallize from the F–Ca melt contained in the trachyrhyolitic magma. Conceivably, this was favored by high-temperature oxidizing conditions under which the melt accommodated oxygen and aqueous fluid. The possible origin of mobile oxygen-bearing fluorite–calcic melt at subsolidus temperature should be taken into account when magmatic rocks and ores are studied. Fluorite and accompanying ore mineralization might have been formed in certain instances not by hydrothermal–metasomatic processes but during the fluid–magmatic stage as a result of the transformation of F–Ca melt enriched in REE, Y, and other trace elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号