共查询到20条相似文献,搜索用时 15 毫秒
1.
塔里木北部二叠纪长英质火山岩年代学及地球化学特征 总被引:3,自引:2,他引:3
大面积分布于塔里木盆地的二叠纪玄武岩构成了面积250000km2的大火成岩省(LIP),长英质火山岩的发现为塔里木二叠纪火山作用的研究打开了新的窗口。本文从塔北地区约5000m深的钻井中收集了4件二叠纪长英质火山岩的样品。通过对其进行锆石U-Pb同位素测试,得出其形成时代为274~282Ma,为塔里木大火成岩省晚期岩浆作用的产物。岩石具有高钾的特征K2O+Na2O=7.29%~8.34%,K2O/Na2O>1,大部分属于高钾钙碱性系列,且属于过铝质(A/CNK=1.32~1.53)。具有富集LREE和Zr、Hf、Y,亏损Sr、P、Ti、Nb、Ta等特征,微量元素分布曲线形态与地壳相近,具有右倾的稀土元素配分曲线,且显示出一定的负铕异常。通过Sr-Nd-Pb同位素的分析得出其源区有大量地壳物质,这与其具有较高的Th、U含量和与地壳平均值相似的Nb/La、Nb/U、Th/Ta相一致。综合年代学、地球化学特征及构造环境的判断,认为塔北地区二叠纪长英质火山岩形成于地幔柱活动背景下的地壳物质的部分熔融。 相似文献
2.
Geochemical data are presented for primitive alkaline rocks from the Kutch region, north–northwest of Deccan Volcanic Province (DVP) of west central India, which is generally regarded as related to the Reunion Plume. The trace element systematics of these rocks are similar to those of ocean-island basalts, but there is considerable compositional variation, which is related to a strong overprint from the lithosphere on plume-derived magmas. This subcontinental lithospheric mantle (SCLM) component has geochemical characteristics that overlap those observed in spinel lherzolite xenoliths entrained in these rocks. Phlogopite and apatite in the SCLM are of metasomatic origin attributed to the infiltrating fluids and/or melts derived from rising mantle plume material. The composition of the alkaline rocks is consistent with a regional upwelling of deep mantle related to marginal rifting and with OIB-type geochemical characteristics. Thermal inhomogeneities within such plume swath resulted in small diapirs, which may have undergone melt segregation at the base of the lithosphere (100 km) and incorporated varying amounts of SCLM during ascent. 相似文献
3.
Xing Yu 《International Geology Review》2020,62(10):1343-1357
ABSTRACT The Permian Tarim large igneous province (TLIP) is located in the Tarim basin, NW China. Although the flood basalt of the TLIP has been intensively studied, other igneous components within TLIP have not yet been sufficiently investigated. The Wajilitag igneous complex is outcropped with a rather limited exposure by regional tectonic uplift. However, various igneous rocks, both mafic–ultramafic and syenitic, can be observed as either intrusions or extrusions in this area. It is an ideal location for studying the magmatic evolution of different components within the TLIP. We systematically examine the geological, geochronological, and geochemical characteristics of the Wajilitag complex, to further constrain the petrogenesis of each component and their interrelationships, as well as the implications to the petrogenetic model of TLIP. The igneous rocks in Wajilitag complex can be classified into two series based on their geochemical features: Series A and Series B. Series A are more alkalic, more trace element enriched and more isotopically depleted than Series B. Series A includes nephelinite, aegirine–nepheline syenite (ANS), and syenite porphyry (SP), whereas the Series B consists of clinopyroxenite, gabbro, diorite, hornblende-bearing syenite (HS), and quartz syenite (QSN). Dolerites can either belong to Series A or Series B depend on its geochemistry. Kimberlitic rocks are independent of the Wajilitag complex geologically, geochemically, and geochronogically. The temporal sequences of Wajilitag complex would be clinopyroxenite→gabbro→ diorite/syenite→nephelinite. The dolerite can be emplaced later than the syenite but can extend to an earlier period. In contrast to the Tarim basalts, the Wajilitag complex belongs to the second stage of magmatism in the TLIP. The mantle source for the Tarim basalts, the Series B and Series A gradually changed from SCLM-dominated to plume-dominated component. 相似文献
4.
塔西南玄武岩年代学和地球化学特征及其对二叠纪地幔柱岩浆演化的制约 总被引:7,自引:13,他引:7
本文通过对塔西南达木斯剖面中玄武岩进行K-Ar同位素定年,获得年龄为289.6Ma,并结合Ar-Ar坪年龄结果(290.1Ma)和古生物以及沉积特征,认为290Ma的年龄代表了塔西南玄武岩形成于早二叠世,对应于盆地内下二叠统库普库兹满组下段层位的年龄.地球化学特征显示塔西南熔岩为分异的碱性玄武岩并含45%SiO2和4%MgO含量.塔西南玄武岩与盆地内柯坪玄武岩具有相近的主量元素含量和稀土配分与微量元素蜘蛛网图型、无Eu异常、富集轻稀土元素、较高的其它不相容元素(如高场强元素).但塔西南玄武岩比柯坪玄武岩具有较高的A12O2和CaO含量及稀土总量(288×10-6~358×10-6),偏低的Na2O,P2O5和FeO含量.K、Rb和Cs丰度的无系统性变化主要受这些元素丰度本身变化的影响.对其它不活动组分,塔西南玄武岩具有高Ti(Ti/Y=522~624)和Nb含量(30×10-6~40×10-6)及低zr/Nb比值,暗示其来自富集的地幔源区.其Nb含量相对La含量无显著变化以及相对低的Nb/U(近30)和Ce/Pb比值(近15),指示塔西南玄武熔岩来自大陆岩石圈或受一定程度的地壳混染.塔里木盆地大规模的火山喷发以及富集不相容元素的地球化学特征支持这样一种假设,即塔西南玄武岩来自地幔柱火山作用,或由于地幔柱的供热和上升导致富集的岩石圈地幔部分熔融而形成.且岩浆作用过程以部分熔融为主,结晶分异作用较弱.基于塔西南玄武岩和柯坪玄武岩相近的时代、源区成分和/或岩浆作用过程以及处于陆内稳定构造环境,笔者认为塔里木二叠纪玄武岩的分布范围可以从塔里木盆地内的塔中、柯坪一带一直延伸到塔西南地区. 相似文献
5.
西准噶尔是近年来中亚造山带的研究热点地区之一,发育多条蛇绿混杂岩带。随着研究的深入,蛇绿岩混杂岩带中不断有碱性洋岛玄武岩被识别出来。本文对克拉玛依及达尔布特蛇绿混杂岩中的晚泥盆世枕状玄武岩进行详细的岩石地球化学及Sr?Nd同位素组成研究。结果表明西准噶尔晚泥盆世枕状玄武岩属于碱性玄武岩系列,岩石具有高TiO2 (2.3%~3.8%)及P2O5 (0.38%~0.91%),低MgO (2.41%~4.97%),轻、重稀土元素分异较为明显,(La/Yb)N = 5.1~14.5,无明显Eu异常(Eu/Eu* = 0.96~1.1),相对富集Rb、Th、U,亏损Ba、K、Sr,没有明显Nb、Ta负异常,这些地球化学特征与洋岛玄武岩(OIB)极其相似。克拉玛依及达尔布特蛇绿混杂岩中枕状玄武岩具正εNd(t)值(3.3~4.4)及年轻的模式年龄(0.83~0.72 Ga),表明其来源于亏损地幔源区,通过同位素及微量元素研究认为源区可能为富辉石的橄榄岩,或不含橄榄石的辉石岩和角闪石岩,克拉玛依及达尔布特蛇绿混杂岩中的晚泥盆世枕状玄武岩形成于大洋板内与地幔柱有关的海山/大洋岛屿环境。这些明显不同于大陆板内具有富集特征的塔里木大火成岩省,它们分别属于两个明显不同的同位素地球化学省,即以富集型地幔为同位素组成的南部省及以亏损型地幔为同位素组成的北部省。 相似文献
6.
巴楚辉绿岩墙的岩石成因及其对塔里木大火成岩省岩浆演化的启示 总被引:1,自引:0,他引:1
早二叠世塔里木大火成岩省主要有两期岩浆活动:以柯坪玄武岩为代表的喷出岩形成较早(~290Ma),以巴楚超基性-基性-长英质侵入体和岩墙为代表的侵入岩形成较晚(~280Ma)。本研究选取代表晚期岩浆活动的巴楚辉绿岩墙为研究对象,旨在为认识塔里木地幔柱活动及与岩石圈的相互作用提供更多信息。巴楚辉绿岩XHZ-10样品中的锆石均为继承性锆石,不能用来限定其侵位时代。然而,野外关系表明巴楚辉绿岩墙属于塔里木大火成岩省的第二期岩浆活动。巴楚辉绿岩墙经历了橄榄石、辉石和磁铁矿的分离结晶。Nd同位素比值与SiO2和La/Nb比值的相关性以及继承性锆石年龄(2480~717Ma,主要集中在~800Ma)表明,新元古代基底的同化混染作用可以解释其εNd具有较大的变化范围(-2.6~+5.1)。受混染程度最小的样品具有与洋岛玄武岩(OIB)极其相似的微量元素特征,并且具有亏损的Nd同位素组成(εNd=~+5),暗示其来源于富集的对流地幔源区,与早期(~290Ma)具有岩石圈地幔源区特征的玄武岩形成鲜明对比。本文提出地幔柱侧向流动模型以解释两期岩浆的时空分布和地球化学差异:当地幔柱上升至塔里木岩石圈底部时,巨厚的岩石圈地幔(>140km)会阻碍其减压熔融;但不断积累在岩石圈底部的地幔柱物质提供足够的热,促使早期富集交代的岩石圈地幔发生部分熔融,形成~290Ma的玄武岩;地幔柱物质将向岩石圈厚度较薄的边缘地区侧向流动,发生减压熔融,形成的熔体侵位到地壳中形成超基性-基性-长英质侵入岩和辉绿岩墙,并诱发地壳的熔融形成长英质火山岩。 相似文献
7.
Marc K. Reichow A.D. Saunders R.V. White A.I. Al'Mukhamedov A.Ya. Medvedev 《Lithos》2005,79(3-4):425-452
New major and trace element data for the Permo–Triassic basalts from the West Siberian Basin (WSB) indicate that they are strikingly similar to the Nadezhdinsky suite of the Siberian Trap basalts. The WSB basalts exhibit low Ti/Zr (50) and low high-field-strength element abundances combined with other elemental characteristics (e.g., low Mg#, and negative Nb and Ti anomalies on mantle-normalised plots) typical of fractionated, crustally contaminated continental flood basalts (CFBs). The major and trace element data are consistent with a process of fractional crystallisation coupled with assimilation of incompatible-element-enriched lower crust. Relatively low rates of assimilation to fractional crystallisation (0.2) are required to generate the elemental distribution observed in the WSB basalts. The magmas parental to the basalts may have been derived from source regions similar to primitive mantle (OIB source) or to the Ontong Java Plateau source. Trace element modelling suggests that the majority of the analysed WSB basalts were derived by large degrees of partial melting at pressures less than 3 GPa, and therefore within the garnet-spinel transition zone or the spinel stability field.
It seems unlikely that large-scale melting in the WSB was induced through lithospheric extension alone, and additional heating, probably from a mantle plume, would have been required. We argue that the WSB basalts are chemically and therefore genetically related to the Siberian Traps basalts, especially the Nadezhdinsky suite found at Noril'sk. This suite immediately preceded the main pulse of volcanism that extruded lava over large areas of the Siberian Craton. Magma volume and timing constraints strongly suggest that a mantle plume was involved in the formation of the Earth's largest continental flood basalt province. 相似文献
8.
西准噶尔克拉玛依OIB型枕状玄武岩地球化学及其地质意义研究 总被引:14,自引:14,他引:14
克拉玛依西山的枕状玄武岩与浊积岩-凝灰岩共生,厚度大于400米的枕状玄武岩层被火山角砾岩-安山岩-硅质岩.凝灰岩覆盖。岩枕之间充填着硅质泥岩。锆石SHRIMP定年结果表明,枕状玄武岩可能在早寒武世形成(〉517Ma,这套地层曾经一直被认为属于石炭系)。枕状玄武岩的稀土元素含量(117.4×10^-6~153.6×10^-6)和配分模式与洋岛玄武岩(OIB)基本一致。枕状玄武岩中大离子亲石元素(Cs、Rb、Ba、K、Pb和Sr)的含量变化较大(明显偏离OIB),高场强元素(Nb、Ta、Zr、Hf、Ti和P)相对OIB和原始地幔没有表现出明显异常[e.g.,(Nb/Ta)PM=0.92-O.98,(Zr/Hf)PM=1.08-1.18]。西准噶尔地区存在这套OIB型海相火山.沉积建造说明古亚洲洋在西准噶尔地区于寒武纪就已经存在。这套海相玄武岩岩枕中存在大量古元古代一新太古代(1883—2536Ma)岩浆锆石的事实说明,早古生代洋岛玄武岩岩浆源区存在古老大陆地壳物质。 相似文献
9.
塔里木二叠纪基性-中性-酸性岩浆岩的年代学及其地质意义 总被引:4,自引:9,他引:4
塔里木西部柯坪地区出露的早二叠纪玄武岩与盆地内其他地区广泛分布的玄武岩共同构成一个面积约0.25Mkm2的溢流玄武岩省。巴楚地区出露的早二叠纪辉绿岩、正长岩、石英正长岩与石英正长斑岩等多种岩浆岩构成了连续的基性-中性-酸性岩浆序列。野外露头观察表明,巴楚麻扎尔塔格地区的基性-中性-酸性岩浆岩为近同时侵位。柯坪塔格开派兹雷克组顶部层位玄武岩的锆石SHRIMP U-Pb年龄为279.0±4.5Ma, 该年龄值可限定该区二叠纪溢流玄武岩喷发的最晚时限。巴楚麻扎尔塔格石英正长斑岩脉的锆石SHRIMP U-Pb年龄为273.0±3.7Ma, 与前人测定的巴楚辉绿岩脉和正长岩的锆石年龄在误差范围内一致,表明巴楚地区的基性-中性-酸性岩浆岩为近同时侵位,时间在275Ma左右。综合已发表的塔里木二叠纪岩浆岩高精度年代数据,本文提出:整个塔里木大火成岩省岩浆作用的持续时间约为20Myrs; 291~287Ma喷发的巨量溢流玄武岩可能构成塔里木大火成岩省的主体,是地幔柱头部熔融的直接产物; 283~272Ma侵位的巴楚、一间房和塔北地区的其它类型岩浆岩体积较小,为塔里木大火成岩省晚期岩浆作用的产物。 相似文献
10.
We report carbonate- and silicate-rich globules and andradite from the Wajilitage kimberlitic rocks in the northwestern Tarim large igneous province, NW China. The carbonate-rich globules vary in size from 1 to 3 mm, and most have ellipsoidal or round shape, and are composed of nearly pure calcite. The silicate-rich globules are elliptical to round in shape and are typically larger than the carbonate-rich globules ranging from 2 to several centimeters in diameter. They are characterized by clear reaction rims and contain several silicate minerals such as garnet, diopside and phlogopite. The silicate-rich globules, reported here for the first time, are suggested to be related to the origin of andradite within the kimberlitic rocks. Our results show that calcite in the carbonate-rich globules has a high XCa (>0.97) and is characterized by extremely high concentrations of the total rare earth elements (up to 1500 ppm), enrichment in Sr (8521–10,645 ppm) and LREE, and remarkable depletion in Nd, Ta, Zr, Hf and Ti. The calcite in the silicate-rich globules is geochemically similar to those in the carbonate-rich globules except the lower trace element contents. Garnet is dominantly andradite (And59.56–92.32Grs5.67–36.03Pyr0.36–4.61Spe0–0.33) and is enriched in light rare earth elements (LREEs) and relatively depleted in Rb, Ba, Th, Pb, Sr, Zr and Hf. Phlogopite in the silicate-rich globules has a high Mg# ranging from 0.93 to 0.97. The composition of the diopside is Wo45.82–51.39En39.81–49.09Fs0.88–0.95 with a high Mg# ranging from 0.88 to 0.95. Diopside in the silicate-rich globules has low total rare earth element (REE) contents (14–31 ppm) and shows middle REE- (Eu to Gd), slight light REE- and heavy REE-enrichment with elevated Zr, Hf and Sr contents and a negative Nb anomaly in the normalized diagram. The matrix of the kimberlitic rocks are silica undersaturated (27.92–29.31 wt.% SiO2) with low Al2O3 (4.51–5.15 wt.%) and high CaO (17.29–17.77 wt.%) contents. The samples are characterized by incompatible element enrichment with high (La/Yb)N values (41–58) and remarkable negative anomalies in HFSEs (e.g. Ta, Zr, Hf). Our new data suggest that the carbonate-rich globule most likely crystallized at high-temperature and does not represent immiscible liquids, whereas the silicate-rich globules are related to carbonate-rich deuteric hydrothermal fluids during the later-stage of melt evolution. The fluids reacted with the surrounding silicate melts resulting in the formation of skarn minerals such as phlogopite, diopside and andradite. The presence of the carbonate-bearing globules indicates that the Wajilitage kimberlitic rocks are carbonate-rich and most likely derived from an enriched mantle with abundant carbonate. We correlate the carbonated mantle to metasomatism by the migration of deep-seated fluids (carbonate-rich) in response to the impingement of the early Permian mantle plume. 相似文献
11.
12.
塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区 总被引:5,自引:2,他引:5
对塔里木和中亚造山带西段二叠纪玄武质岩石地质、年龄、元素地球化学、同位素组成的系统总结表明,二叠纪火成岩在分布面积、岩石类型(以玄武岩占绝对优势)、活动时间(以275Ma左右为峰期)等方面均与世界典型的大火成岩省一致,将其命名为巴楚大火成岩省(Bachu LIP)。元素和同位素地球化学特征表明,塔里木玄武岩来自长期富集的岩石圈地幔,来源深度为60~80km。塔里木基性岩墙和超镁铁-镁铁杂岩的原始岩浆可能来自软流圈地幔(OIB)部分熔融。中亚造山带西段的玄武岩、基性岩墙和超镁铁-镁铁杂岩主要来自被俯冲带熔体交代的强烈亏损的岩石圈地幔,其中部分地区可能有软流圈物质的加入,如东天山和阿勒泰南缘高Ti系列的玄武质岩石。根据元素和同位素地球化学资料,将巴楚大火成岩省分为2个地幔省(mantledomain),即塔里木省和中亚省。这2个不同地幔省的成矿系列也有显著的差异,塔里木省为钒-钛磁铁矿矿床,而中亚则以铜-镍-(铂族金属)硫化物矿床为主,成矿作用的差异和岩浆地幔源区的差异是完全对应的。综合地质、地球化学和成矿作用,认为巴楚大火成岩省的形成和二叠纪地幔柱密切相关。 相似文献
13.
Permian bimodal dyke of Tarim Basin, NW China: Geochemical characteristics and tectonic implications 总被引:10,自引:3,他引:10
Shu-Feng Yang Zilong Li Hanlin Chen M. Santosh Chuan-Wan Dong Xing Yu 《Gondwana Research》2007,12(1-2):113
This study reports for the first time the occurrence of bimodal dyke in the Shuigongtuan area of Bachu County, Tarim Basin, NW China. Here, quartz syenite porphyry and diabase dykes occur in direct contact showing bimodal feature. The quartz syenitic porphyry is metaluminous, enriched in K2O + Na2O (10–11 wt.%) and total rare earth elements (REE), with low Mg/(Mg + Fe) ratios, high LREE/HREE, and negative Eu anomalies. The chemical characteristics and tectonic discriminative diagrams show that the rocks have geochemical affinity with A-type granites. The diabase dyke shows 45–52 wt.% SiO2 and Mg/(Mg + Fe) ratio in the range of, with high total REE, high LREE/HREE ratios and lack of Eu anomalies, broadly corresponding to tholeiitic composition. Based on low Y/Nb (as low as 0.4, and less than 1.2), enrichment in LILE and HFSE, and uniform Nb-enrichment patterns in spider diagram for the quartz syenitic porphyry, together with the geochemical patterns of the diabases, this biomodal association is interpreted to be derived from a mantle source and formed under typical within-plate environment. The quartz syenitic porphyry and diabase have Daly gap of 46 wt.%–67 wt.% in SiO2, which is explained through formation under bimodal rifting. The quartz syenitic dyke probably formed during Early Permian (277 Ma) and has geochemical affinity with the Xiaohaizi syenitic body. We propose that magmas sourced from the mantle intruded into middle–upper crust and were emplaced as dykes, which indicate large-scale extension during the Permian in Tarim Basin. The bimodal dyke has genetic affinity with the huge volume of Permian basalts and igneous rocks (248–292 Ma) that occur in the Tarim Basin. The magmatism manifests the culmination of the major thermal event in the Tarim Basin. 相似文献
14.
塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区 总被引:3,自引:0,他引:3
对塔里木和中亚造山带西段二叠纪玄武质岩石地质、年龄、元素地球化学、同位素组成的系统总结表明,二叠纪火成岩在分布面积、岩石类型(以玄武岩占绝对优势)、活动时间(以275Ma左右为峰期)等方面均与世界典型的大火成岩省一致,将其命名为巴楚大火成岩省(Bachu LIP)。元素和同位素地球化学特征表明,塔里木玄武岩来自长期富集的岩石圈地幔,来源深度为60~80km。塔里木基性岩墙和超镁铁-镁铁杂岩的原始岩浆可能来自软流圈地幔(OIB)部分熔融。中亚造山带西段的玄武岩、基性岩墙和超镁铁-镁铁杂岩主要来自被俯冲带熔体交代的强烈亏损的岩石圈地幔,其中部分地区可能有软流圈物质的加入,如东天山和阿勒泰南缘高Ti系列的玄武质岩石。根据元素和同位素地球化学资料,将巴楚大火成岩省分为2个地幔省(mantle domain),即塔里木省和中亚省。这2个不同地幔省的成矿系列也有显著的差异,塔里木省为钒-钛磁铁矿矿床,而中亚则以铜-镍-(铂族金属)硫化物矿床为主,成矿作用的差异和岩浆地幔源区的差异是完全对应的。综合地质、地球化学和成矿作用,认为巴楚大火成岩省的形成和二叠纪地幔柱密切相关。 相似文献
15.
塔西南其木干剖面棋盘组玄武岩是塔里木盆地早二叠世大火成岩省西南部的重要组成部分,根据其下伏和上覆砂岩地层的碎屑锆石U-Pb年龄分析可以限定其喷发于~284Ma,相应于柯坪地区开派兹雷克组玄武岩的形成时代。其木干玄武岩的主量元素和Cr、Ni等相容元素含量变化较大,表明其曾经历广泛的橄榄石、辉石和长石结晶分异作用;所研究样品相对富集Th、U和LREE,具有弱-中等程度的Eu负异常 (Eu/Eu*=0.82~0.99),在微量元素蛛网图上显示Nb-Ta负异常;较低的εNd(t) (-4.8~-3.9) 和εHf(t) (-2.4~-1.6) 值、较高的 (87Sr/86Sr)i (0.7078~0.7086)和存在Hf-Nd同位素解耦等特征表明,其木干玄武岩的源区为受远洋沉积物组分交代富集的岩石圈地幔,该富集过程主要与Rodinia超大陆聚合过程有关。总体上,其木干玄武岩的地球化学特征类似于柯坪地区的开派兹雷克组玄武岩,但具有更为富集的Sr-Nd-Hf同位素,暗示了塔里木板块周缘比板内地区可能经受了更强烈的远洋沉积物组分的交代富集。 相似文献
16.
Jianping Zheng Min Sun Guochun Zhao Paul T. Robinson Fangzheng Wang 《Journal of Asian Earth Sciences》2007,29(5-6):778-794
The basement beneath the Junggar basin has been interpreted either as a micro-continent of Precambrian age or as a fragment of Paleozoic oceanic crust. Elemental and Sr–Nd–Pb isotopic compositions and zircon Pb–Pb ages of volcanic rocks from drill cores through the paleo-weathered crust show that the basement is composed mainly of late Paleozoic volcanic rock with minor shale and tuff. The volcanic rocks are mostly subalkaline with some minor low-K rocks in the western Kexia area. Some alkaline lavas occur in the central Luliang uplift and northeastern Wulungu depression. The lavas range in composition from basalts to rhyolites and fractional crystallization played an important role in magma evolution. Except for a few samples from Kexia, the basalts have low La/Nb (<1.4), typical for oceanic crust derived from asthenospheric melts. Zircon Pb–Pb ages indicate that the Kexia andesite, with a volcanic arc affinity, formed in the early Carboniferous (345 Ma), whereas the Luliang rhyolite and the Wucaiwan dacite, with syn-collisional to within-plate affinities, formed in the early Devonian (395 and 405 Ma, respectively). Positive εNd(t) values (up to +7.4) and low initial 87Sr/86Sr isotopic ratios of the intermediate-silicic rocks suggest that the entire Junggar terrain may be underlain by oceanic crust, an interpretation consistent with the juvenile isotopic signatures of many granitoid plutons in other parts of the Central Asia Orogenic Belt. Variation in zircon ages for the silicic rocks, different Ba, P, Ti, Nb or Th anomalies in the mafic rocks, and variable Nb/Y and La/Nb ratios across the basin, suggest that the basement is compositionally heterogeneous. The heterogeneity is believed to reflect amalgamation of different oceanic blocks representing either different evolution stages within a single terrane or possibly derivation from different terranes. 相似文献
17.
Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China 总被引:15,自引:0,他引:15
Lin-Qi Xia Zu-Chun Xia Xue-Yi Xu Xiang-Min Li Zhong-Pin Ma 《Journal of Asian Earth Sciences》2008,31(4-6):357-378
The Tianshan Carboniferous–Permian rift-related volcanism in northwestern China represents a newly recognized large igneous province extending over at least 1.5 × 106 km2. The volcanic successions comprise thick piles of basaltic lavas and subordinate intermediate and silicic lavas and pyroclastics, and are interpreted to result from a mantle plume head with component of εNd(t) ≈ +5, 87Sr/86Sr(t) ≈ 0.704 and La/Nb ≈ 0.9. On the basis of petrogeochemical data, the Carboniferous basic lavas can be generally incorporated into low-Ti/Y (LT, Ti/Y < 500) magma type that can be further divided into three subtypes: LT1, LT2 and LT3. The chemical evolution of the LT1, LT2 (in central Tianshan) and LT3 (in western Tianshan and Jungar) lavas is controlled by an olivine (ol) + clinopyroxene (cpx) fractionation, but gabbroic fractionation accounts for the chemical variation of the LT3 lavas from eastern Tianshan. Elemental and isotopic data suggest that the chemical variation of Tianshan Carboniferous basic lavas cannot be explained by crystallization from a common parental magma.The Sr–Nd isotopic variation of the crustally contaminated LT3 lavas is related to the nature of lithosphere through which the plume-derived melts have erupted. The involvement of an older (Precambrian) lithosphere led the LT3 lavas in western Tianshan to have lower to negative εNd(t) (−1.2 to +6.1) and variable 87Sr/86Sr(t) (0.7036–0.7061), whereas the LT3 lavas from eastern Tianshan and Jungar are characterized by high εNd(t) (+4.2 to +9.7) and low 87Sr/86Sr(t) (0.7035–0.7044), that are related to the contamination of upper crust containing early Paleozoic and Devonian arc-basin volcanic rocks and/or to a pre-Carboniferous subduction enrichment of the lithospheric mantle source region. The observed geochemical variations in the Tianshan data are consistent with an AFC process.The Tianshan Carboniferous rift-related volcanic rocks display a spatial petrogeochemical variation in which predominantly uncontaminated LT1 and less-contaminated LT2 tholeiitic lavas erupted in central Tianshan rift and predominantly the strongly contaminated LT3 tholeiites erupted in the circumjacent regions of the central Tianshan rift. The LT1 and LT2 lavas were generated by a higher degree (10–30%) of partial melting in the garnet stability field of the mantle plume compared to the LT3 lavas. The lower degree (<10%) of partial melting in the spinel–garnet transition zone of the mantle plume, as is characteristic of the LT3 lavas, may be the result of a relatively lower geotherm. 相似文献
18.
The Mazaertag layered intrusion is located in the northwestern part of the Tarim large igneous province where several early Permian layered mafic-ultramafic intrusions host important Fe-Ti oxide deposits. The intrusion covers an area of ~0.13 km~2 and has a vertical stratigraphic thickness of at least300 m. It consists chiefly of olivine clinopyroxenite, and is cut through by the nearby mafic-ultramafic dykes. In this paper, we report new mineral chemistry data and whole-rock chemical and isotopic compositions for the Mazaertag intrusion along with whole-rock isotopic compositions for the nearby mafic dykes. The averaged compositions of cumulus olivine, clinopyroxene and intercumulus plagioclase within individual samples range from Fo_(71-73),Mg~# = 76 to 79 and An_(65-75) but they do not define sustained reversals. The observed mineral compositions are consistent with the differentiation of a single batch of magma in a closed system. Rocks of the Mazaertag intrusion are characterized by enrichment in light REE relative to heavy REE, positive Nb and Ta anomalies and a small range of age-corrected ε_(Nd)(t)(-0.1 to +0.9) and initial ~(87)Sr/~(86)Sr values(0.7044 to 0.7068). The slightly lower ε_(Nd)(t), initial ~(206)Pb/~(204)Pb and higher initial ~(87)Sr/~(86)Sr values of the intrusion compared to those of the least contaminated dykes[ε_(Nd)(t) =+2.8 to +3.4;(~(206)Pb/~(204)Pb)_i = 18.516-18.521;(~(87)Sr/~(86)Sr)_i = 0.7038-0.7041] imply that the Mazaertag magma was subjected to small to modest degrees of contamination by the upper crust. The Sr-Nd isotopic compositions of the least contaminated dykes are consistent with derivation from a FOZO-like mantle source. The parental magma of the Mazaertag intrusion, estimated from clinopyroxene compositions using mineral-melt partition coefficients, has trace element compositions similar to some of the most primitive mafic dykes in the same area. This suggests that the Mazaertag intrusion and mafic dykes shared a similar mantle source. Therefore, the parental magma of the Mazaertag intrusion was interpreted to have originated from a mantle plume. Based on the Cr_2 O_3 contents in titanomagnetite and less-evolved characteristics of the Mazaertag intrusion compared to the Wajilitag Fe-Ti oxide deposit in Bachu, it is speculated that there might not be a potential to find economic Fe-Ti oxide mineralization in the intrusion. 相似文献
19.
塔里木盆地西北缘出露的辉绿岩墙的SiO2含量为44.34%~49.34%,Na2O K2O(4.32%~6.04%)和Na2O/K2O均较高(2.23~9.15),主量元素反映板内玄武岩的特点。稀土总量较低(∑REE=35.71~47.95μg/g),(La/Yb)N高达11.66~14.77,呈轻稀土强烈富集的稀土配分型式,基本不显示明显的Eu异常,具有富集地幔源的地球化学特点。对辉绿岩的40Ar/39Ar年龄测定为235.6Ma和203.7Ma。结合塔里木盆地西部,特别是西邻塔吉克盆地和卡拉库姆盆地三叠—侏罗纪沉积与构造背景的综合分析表明,塔里木盆地西部三叠—侏罗纪时期是白垩纪—古近纪强烈沉降作用的前奏,主体处于伸展背景下的隆起状态。 相似文献