首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present new stratigraphic, sedimentological, and chronological data for a suite of tectonically raised beaches dating to Marine Isotope Stages 5, 4, and 3 along the Estremadura coast of west-central Portugal. The beach deposits are found in association with ancient tidal channels and coastal dunes, pollen bearing mud and peat, and Middle Paleolithic archaeological sites that confirm occupation of the coastal zone by Neanderthal populations. The significance of these deposits is discussed in terms of the archaeological record, the tectonic and geomorphic evolution of the coast, and correlation with reconstructions of global climate and eustatic sea-level change. Direct correlation between the Estremadura beach sections is complicated by the tectonic complexity of the area and the age of the beach deposits (which are near or beyond the limit of radiocarbon dating). Evidence from multiple sites dated by AMS radiocarbon and optical luminescence methods suggests broad synchroneity in relative sea-level changes along this coast during Marine Isotope Stage 3. Two beach complexes with luminescence and radiocarbon age control date to about 35 ka and 42 ka, recording a rise in relative sea level around the time of Heinrich Event 4 at 39 ka. Depending on assumptions about eustatic sea level at the time they were deposited, we estimate that these beaches have been uplifted at rates of 0.4–4.3 mm yr?1 by the combined effects of tectonic, halokinetic, and isostatic processes. Uplift rates of 1–2 mm yr?1 are likely if the beaches represent sea level stands at roughly 40 m below modern, as suggested by recent eustatic sea level reconstructions. Evidence from coastal bluffs and the interior of the study area indicates extensive colluvial, fluvial, and aeolian sedimentation beginning around 31 ka and continuing into the Holocene. These geomorphic adjustments are related to concomitant changes in climate and sea level, providing context that improves our understanding of Late Pleistocene landscape change and human occupation on the western Iberian margin.  相似文献   

2.
In this paper we present geological evidence from the Larsemann Hills (Lambert Glacier – Amery Ice Shelf region, East Antarctica) of marine sediments at an altitude of c. 8 m a.s.l., as revealed by diatom, pigment and geochemical proxies in a lake sediment core. The sediments yielded radiocarbon dates between c. 26 650 and 28 750 14C yr BP (31 366–33 228 cal yr BP). This information can be used to constrain relative sea level adjacent to the Lambert Glacier at the end of Marine Isotope Stage 3. These data are compared with the age and altitude of Marine Isotope Stage 3 marine deposits elsewhere in East Antarctica and discussed with reference to late Quaternary ice sheet history and eustatic sea-level change.  相似文献   

3.
Facies analyses of Pleistocene deposits from southern coastal Tanzania (Lindi District) document that sediments formed in a wetland evolving on a coastal terrace in the Lindi Fracture Zone foreland. The exposed succession shows a marked sedimentary change from tidal to terrestrial facies. 14C analyses on gastropod shells indicate the emergence of the Lindi coast at ∼ 44 14C ka BP. Emergence and subsequent elevation of terraces to 21 m above present-day sea level was linked to the falling eustatic sea level prior to the last glacial maximum, and to a periodic elevation due to extensional tectonic episodes in the eastern branch of the East African Rift System (EARS). Since ∼ 44 14C ka BP tectonic uplift at the coast was 80-110 m, comparable to that in the extreme uplift areas of the EARS.  相似文献   

4.
Tropical peatlands of SE-Asia represent a significant terrestrial carbon reservoir of an estimated 65 Gt C. In this paper we present a comprehensive data synthesis of radiocarbon dated peat profiles and 31 basal dates of ombrogenous peat domes from the lowlands of Peninsular Malaysia, Sumatra and Borneo and integrate our peatland data with records of past sea-level and climate change in the region. Based on their developmental features three peat dome regions were distinguished: inland Central Kalimantan (Borneo), Kutai basin (Borneo) and coastal areas across the entire region. With the onset of the Holocene the first peat domes developed in Central Kalimantan as a response to rapid post-glacial sea-level rise over the Sunda Shelf and intensification of the Asian monsoon. Peat accumulation rates in Central Kalimantan strongly declined after 8500 cal BP in close relation to the lowering rate of the sea-level rise and possibly influenced by the regional impact of the 8.2 ka event. Peat growth in Central Kalimantan apparently ceased during the Late Holocene in association with amplified El Niño activity as exemplified by several truncated peat profiles. Peat domes from the Kutai basin are all younger than ~8300 cal BP. Peat formation and rates of peat accumulation were driven by accretion rates of the Mahakam River and seemingly independent of climate. Most coastal peat domes, the largest expanse of SE-Asian peatlands, initiated between 7000 and 4000 cal BP as a consequence of a Holocene maximum in regional rainfall and the stabilisation and subsequent regression of the sea-level. These boundary conditions induced the highest rates of peat accumulation of coastal peat domes. The Late Holocene sea-level regression led to extensive new land availability that allowed for continued coastal peat dome formation until the present. The time weighted mean Holocene peat accumulation rate is 0.54 mm yr?1 for Central Kalimantan, 1.89 mm yr?1 for Kutai and 1.77 mm yr?1 for coastal domes of Sumatra and Borneo. The mean Holocene carbon sequestration rates amount to 31.3 g C m?2 yr?1 for Central Kalimantan and 77.0 g C m?2 yr?1 for coastal sites, which makes coastal peat domes of south-east Asia the spatially most efficient terrestrial ecosystem in terms of long term carbon sequestration.  相似文献   

5.
Paleoclimatic records from the climatically sensitive Canadian prairies are relatively rare due to the scarcity of study sites with continuous Holocene stratigraphic sequences. Oro Lake, a meromictic lake in the dry grasslands of Saskatchewan (Canada), contains a continuous Holocene diatom record spanning the last 10,000 years. Here we present analyses at three different time scales and resolution: (1) 1–3 yr resolution of the past 80 years, (2) century-scale analysis of the Holocene, and (3) decadal-scale analysis of the past 7000 years. Recent changes in the diatom assemblages and their respective salinity inferences were significantly related to measured effective moisture (precipitation minus evaporation, P−ET). The droughts of the 1930s, and a wet period during the 1950s are clearly evident in the diatom record, suggesting the Oro Lake record contains a sensitive archive of past climatic conditions. Century-scale analysis of the diatom record during the Holocene is consistent with a cool and moist climate in the early Holocene (prior to ca 9700 cal yr BP, 8600 14C yr BP). An abrupt increase in diatom-inferred salinity at 9600 cal yr BP (8500 14C yr BP) indicates the onset of an arid climate, with continuing arid conditions throughout the mid-Holocene. Decadal-scale analysis of the past 7000 years suggests that the mid-Holocene was more complex, with extended periods of increased variability in precipitation, particularly between ca 5800–3600 cal yr BP (5000–3200 14C yr BP) which is characterized by intervals of increased effective moisture. The past 2000 years is characterized by reduced salinities and generally wetter conditions in comparison to the mid-Holocene. The combination of the different scales of analyses in this study provides a detailed account of the dynamic nature of climate from sub-decadal to millennial scale in the Oro Lake region within the Palliser Triangle. Climate model predictions suggest that the Canadian prairie region may see a higher frequency of extreme droughts under projected global warming, potentially similar to the most arid periods seen during the mid-Holocene when many lake basins completely dried out.  相似文献   

6.
Coral reef terraces are one of the best recorders of relative sea-level changes during the last glacial cycle. Thus far, knowledge of relative sea-level record based on coral reefs during the marine Oxygen Isotope Stage (OIS) 3 has been limited to studies of the Huon Peninsula, Papua New Guinea. High-precision a α-spectrometric 230Th/234U dating demonstrated an offlapping sequence of five coral reef complexes, ages of which are 66, 64, 62, 55 and 52 ka, in the northern part of Kikai Island, central Ryukyus of Japan. Interstadial reefs, characterized by deepening-upward sequences of coral assemblages, recorded three hemicycles from transgression to highstand at 52, 62, and 66 ka, during which these reefs were drowned. These highstands in the relative sea-level record can be correlated with the eustatic record reconstructed from the Huon reef terraces and with the interstadials 14, 18, and 19 of the GISP 2 oxygen isotope record. This consistency confirms the Huon sea-level record of OIS 3 and implies that the eustatic sea level responded to the millennial-scale climate changes even during the glacial period of OIS 4.  相似文献   

7.
This first sedimentary interpretation of two incised-valley fills in the Gulf of Cádiz (southern Spain), which accumulated during the last fourth-order eustatic cycle in response to fluvial incision, changes of sea level, and correlative deposition, relates the filling of the estuarine basins and their barriers with four regional progradation phases, H1 to H4. The cases studied are the wave-dominated Guadalete, and the mixed, tide and wave-dominated Odiel-Tinto estuaries. The sequence boundary is a type-1 surface produced during the lowstand of the Last Glacial period ca. 18 000 14C yr BP. No fluvial lowstand deposits were found in the area. Due to rapid transgression the valley fills consist of transgressive and highstand sediments. The maximum landward advance of the estuarine barriers occurred ca. 6500–6000 14C yr BP during the maximum of the Flandrian transgression, but there is no evidence of sea level rising appreciably above the present. A large part of the estuaries was filled during H1 (ca. 6500–4400 14C yr BP) but ravinement by shifting tidal inlets destroyed most of the coeval barriers. During the H2 phase (ca. 4200–2550 14C yr BP) sedimentation was favoured by arid conditions and concentrated in the axial estuarine zones and the barriers. Between H2 and H3 prevailing winds changed from W to WSW, increasing spit growth to the east and south-east. Progradation of bay-head deltas and flood-plains during H3 (ca. 2300–800 14C yr BP) and H4 (500 yr ago to the present) further reduced the accommodation space in the largely-filled valleys, and sediment by-passed the estuaries and accumulated in the estuarine barriers as fast-growing spits. Arid conditions and increasing human activity have caused rapid coastal modifications.  相似文献   

8.
The existence of the Big Dry event from 14.9 to 13.8 14C kyrs in the Lake Estancia New Mexico record suggests that the deglacial Mystery Interval (14.5–12.4 14C kyrs) has two distinct hydrologic parts in the western USA. During the first, Great Basin Lake Estancia shrank in size and during the second, Great Basin Lake Lahontan reached its largest size. It is tempting to postulate that the transition between these two parts of the Mystery Interval were triggered by the IRD event recorded off Portugal at about 13.8 14C kyrs which post dates Heinrich event #1 by about 1.5 kyrs. This twofold division is consistent with the record from Hulu Cave, China, in which the initiation of the weak monsoon event occurs in the middle of the Mystery Interval at 16.1 kyrs (i.e., about 13.8 14C kyrs).  相似文献   

9.
The northern Wanganui Basin, New Zealand, is one of the key global sites for understanding marine cyclic sedimentation during the Quaternary. This paper presents the first evidence of marine cyclic sedimentation from its central-southern parts. Sedimentological, micropalaeontological and palynological analyses on a 280-m-deep borehole encountered units dating back to MIS 10. The sequence includes four marine cycles spanning MIS 9–5, which are overlain by terrestrial fluvial aggradation surfaces dating from MIS 4–2. Each marine unit represents a progressively shallowing depositional environment from the mid-shelf to coastal plain. This is overlain by a terrestrial sequence of lowstand fluvial terraces. Localized fault movements appear to have influenced the sedimentary character of the sequence during MIS 7a and 5e producing basement highs which provided protection to the shoreline. The cyclothems described in this paper now extend the already extensive, previously described record from MIS 17–10 to produce a combined eustatic record of Quaternary sea level change within the basin to MIS 5. They also provide an excellent example of the sedimentary response of a coastal basin to a progressive loss of sedimentation accommodation space.  相似文献   

10.
High-time resolution 14C dating of Lake Baikal sediment cores indicates negative and positive anomalies of calculated linear sedimentation rate (LSR; 1.1 and 35.6 cm/ka, respectively) during the period of climate transition from the last glacial to Holocene. The timing of the Lake Baikal apparent LSR anomalies is consistent with that of the changes in the atmospheric radiocarbon concentration (Δ14C) during Younger Dryas rapid cooling event. 14C dating of lipids in the Lake Baikal surface sediments revealed that the sources of sedimentary lipids were different in each basin. In the Northern Basin of Lake Baikal, the 14C age of total lipids from the surface sediment (4.0 14C ka) was found to be older than that of TOC (1.6 14C ka). By contrast, the 14C age of total lipids in the Southern Basin was younger than that of the TOC by ca. 0.7–3.0 ka.In the Lake Hovsgol sediment cores, ages of the main lithologic boundaries during the last glacial–interglacial transition were estimated based on new 14C data sets. TOC concentration in the cores started to rapidly increase at 13.8 ± 0.3 14C ka at the base of the basinwide finely laminated layer deposited during Bølling/Allerød. The base of the layer diatomaceous mud corresponds to the end of Younger Dryas event (10.6 ± 0.1 14C ka).  相似文献   

11.
Insect fossils and pollen from late Pleistocene nonmarine peat layers were recovered from cores from the shelf region of the Chukchi Sea at depths of about 50 m below sea level. The peats date to 11,300−11,000 yr B.P. and provide a limiting age for the regional Pleistocene-Holocene marine transgression. The insect fossils are indicative of arctic coastal habitats like those of the Mackenzie Delta region (mean July TEMPERATURES = 10.6–14°C) suggesting that 11,000 yr ago the exposed Chukchi Sea shelf had a climate substantially warmer than modern coastal regions of the Alaskan north slope. The pollen spectra are consistent with the age assignment to the Birch Interval (14,000–9000 yr B.P.). The data suggest a meadow-like graminoid tundra with birch shrubs and some willow shrubs growing in sheltered areas.  相似文献   

12.
Environmental change in NW Iberia between 7000 and 500 cal BC   总被引:1,自引:0,他引:1  
We review research done on environmental changes in northwest (NW) Iberia spanning from the beginning to the late Holocene (7000–500 cal. BC). The type of archives (peat bogs, lake sediments, colluvium, soils, etc.) and proxies (pollen, element concentrations, isotopes, etc.) that were used to reconstruct changes on climate, soils, vegetation and atmospheric metal pollution are briefly described. Then we synthesize what the records suggest about the ecological history of NW Iberia. We identified four main phases: 7000–5000, 5000–3000, 3000–1500 and 1500-500 cal. BC. Each phase is determined by a set of environmental conditions, a combination of changes in climate, vegetation, soils and human impact. Human activities seem to have been involved in landscape changes in NW Iberia since at least 5000 cal. BC, with an increasing degree of anthropisation through time, which accelerated by 1500 cal. BC. The interaction between human activities and natural changes expressed as modifications in the vegetation cover, the elimination of the soil resources in many areas and its concentration in more localized, control-demanding sectors, as well as a progressive acidification and pollution of continental ecosystems. To a great extent, the present landscape in NW Iberia is the end product of these complex interactions, a cultural landscape.  相似文献   

13.
Peat and organic rich sediments at coastal sites in extreme northwest Ireland have accumulated in a wide variety of environments, often strongly influenced by late Holocene changes in relative sea level and by geomorphic processes. A deep peat sequence on the coast of Aranmore Island accumulated initially in a lake and subsequently in a freshwater marsh environment. The long pollen record serves as a template for regional events. It extends over much of the Holocene and shows relatively high levels of Pinus pollen up to just before the disappearance of this taxon at c . 3600 BP. Coastal peat occurrences elsewhere are much thinner and have accumulated over shorter periods; they contain further evidence to show that coastal areas were well-wooded compared with today, and that Pinus was an important woodland component prior to c . 4000 BP. At sites in Gweebarra Bay intertidal peats record the closure of small estuaries by geomorphological events during the past 5000 years. Coastal sites at Ballyness, Clonmass, and Trawenagh display regressive stratigraphies ˜ minerogenic marine sediments are overlain by silty peats capped by highly organic freshwater peats. Basal radiocarbon dates range from 4500 to 3300 BP. The silty peats are interpreted as having formed in salt-marsh environments and contain distinctive pollen spectra, marked by high levels of Pinus and Compositae Liguliflorae pollen. The data suggest that relative sea level attained levels close to that of today by the mid-Holocene in this region. The pattern of relative sea-level change agrees well with that predicted by geophysical modelling.  相似文献   

14.
Two hypotheses have been proposed to explain the origin of marine isotope stage (MIS) 11 deposits in small Bermudian caves at +21 m above modern sea level: (1) a +21 m MIS 11 eustatic sea-level highstand, and (2) a MIS 11 mega-tsunami event. Importantly, the foraminifera reported in these caves have yet to be critically evaluated within a framework of coastal cave environments. After statistically comparing foraminifera in modern Bermudian littoral caves and the MIS 11 Calonectris Pocket A (+21 m cave) to the largest available database of Bermudian coastal foraminifera, the assemblages found in modern littoral caves – and Calonectris Pocket A – cannot be statistically differentiated from lagoons. This observation is expected considering littoral caves are simply sheltered extensions of a lagoon environment in the littoral zone, where typical coastal processes (waves, storms) homogenize and rework lagoonal, reefal, and occasional planktic taxa. Fossil protoconchs of the Bermudian cave stygobite Caecum caverna were also associated with the foraminifera. These results indicate that the MIS 11 Bermudian caves are fossil littoral caves (breached flank margin caves), where the total MIS 11 microfossil assemblage is preserving a signature of coeval sea level at +21 m. Brackish foraminifera (Polysaccammina, Pseudothurammina) and anchialine gastropods (95%, >300 individuals) indicate a brackish anchialine habitat developed in the elevated caves after the prolonged littoral environmental phase. The onset of sea-level regression following the +21 m highstand would first lower the ancient brackish Ghyben-Herzberg lens (<0.5 m) and flood the cave with brackish water, followed by drainage of the cave to create a permanent vadose environment. These interpretations of the MIS 11 microfossils (considering both taphonomy and paleoecology) are congruent with the micropaleontological, hydrogeological and physical mechanisms influencing modern Bermudian coastal cave environments. In conclusion, we reject the mega-tsunami hypothesis, concur with the +21 m MIS 11 eustatic sea-level hypothesis, and reiterate the need to resolve the disparity between global marine isotopic records and the physical geologic evidence for sea level during MIS 11.  相似文献   

15.
Deglacial sea‐level index points defining relative sea‐level (RSL) change are critical for testing glacial isostatic adjustment (GIA) model output. Only a few observations are available from North Wales and until recently these provided a poor fit to GIA model output for the British‐Irish Ice Sheet. We present results of an integrated offshore geophysical (seismic reflection), coring (drilling rig), sedimentological, micropalaeontological (foraminifera), biostratigraphical (palynology) and geochronological (AMS 14C) investigation into a sequence of multiple peat/organic sediment horizons interbedded within a thick estuarine–marine sequence of minerogenic clay‐silts to silty sands from the NE Menai Strait, North Wales. Ten new sea‐level index points and nine new limiting dates from the Devensian Late‐glacial and early Holocene are integrated with twelve pre‐existing Holocene sea‐level index points and one limiting point from North Wales to generate a regional RSL record. This record is similar to the most recent GIA predictions for North Wales RSL change, supporting either greater ice load and later deglaciation than in the GIA predictions generated before 2004, or a modified eustatic function. There is no evidence for a mid‐Holocene highstand. Tidally corrected RSL data indicate initial breaching of the Menai Strait between 8.8 and 8.4 ka BP to form a tidal causeway, with final submergence between 5.8 and 4.6 ka BP. Final breaching converted the NE Menai Strait from a flood‐dominated estuary into a high energy ebb tidal delta with extensive tidal scouring of pre‐existing Late‐glacial and Holocene sequences. The study confirms the value of utilising offshore drilling/coring technology to recover sea‐level records which relate to intervals when rates of both eustatic and isostatic change were at their greatest, and therefore of most value for constraining GIA models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Understanding how Holocene sea levels influenced coastal wetland development in the Caribbean will aid wetland management in the context of predicted sea level rise. Nine radiocarbon dates from the Maracas and Nariva Swamps on wave-dominated coasts from Trinidad, show sea level was –9 m approximately 7000 yr BP, and rose gradually to –2 m by 2000 yr BP. Since then there may have been isostatic readjustment. Wetlands developed with a transgression of dry upland habitats by rising seas and the facultative halophyte Rhizophora colonized the new brackish water environment. A freshwater plant community gradually replaced the Rhizophora as the marine influence decreased. At Maracas, higher sea levels caused wetland retreat as beach and lagoon habitats migrated inland. Sand ridges in Nariva Swamp indicate that, as in Maracas Swamp, sea level rise created beaches and lagoons, but that these landforms prograded as additional nearshore sediments were deposited. Basins were also filled with sediment delivered by streams that drain the watershed, and by mangrove peat accumulation.  相似文献   

17.
Fundamental characteristics of the climate system during the most recent precessional cycle of the Earth's orbit around the Sun consist of the final expansion of land ice to its maximum extent, the subsequent episode of deglaciation, and the variations of global sea level that accompanied these events. In order to address the important issue of the variation of continental ice volume and related changes in global sea level through the late glacial period, we employ an extended set of observations of the pre-glacial and postglacial history of sea-level rise at the island of Barbados, together with a refined model of continental deglaciation and an accurate methodology for the prediction of postglacial sea-level change. Although our results provide unambiguous evidence that the post LGM rise of eustatic sea-level was very close to the widely supported estimate of 120 m, the data also provide evidence that LGM must have occurred 26,000 years ago, approximately 5000 yr earlier than the usually assumed age.  相似文献   

18.
Aliphatic des-A-triterpenoids have been tentatively assigned in samples taken from a 260 cm thick peat sequence from the Dajiuhu Basin of southern China using gas chromatography–mass spectrometry (GC–MS). The compounds, possessing the carbon skeletons of oleanane, ursane or lupane, are generally considered as the microbial degradation products of plant triterpenoids under anoxic conditions. Abundant aliphatic des-A-triterpenoids were observed only in peat samples during the transitional period from the last glaciation to the early Holocene (9.5–11.6 cal 14C ka BP). Among these, des-A-lupane is the only saturated ring A-degraded compound, whilst mono- and di-unsaturated des-A-triterpenes are dominated by oleanane and ursane derivatives. The mono- and di-unsaturated des-A-triterpenes show a strong correlation (R2 0.94) in abundance, indicating that they may be derived from the same source or process. Des-A-lupane shows no correlation in abundance with the mono- or di-unsaturated des-A-triterpenes (R2 < 0.25) and may be derived from a different source or process in the catchment. The period with abundant aliphatic des-A-triterpenoids corresponds to the interval with relatively high sedimentation rate (> 0.3 mm per year). These data indicate that the abundance of aliphatic des-A-triterpenoids in the Dajiuhu peat deposit in the early Holocene may result from the prevailing reducing conditions in the water table or surficial sediment and/or rapid preservation of the early diagenetic products. Our study highlights the potential application of des-A-triterpenes in the reconstruction of palaeoenvironments based on peat sequences.  相似文献   

19.
A vibrocore from the sea floor of the southern North Sea provides a ~1,500-year record of early Holocene vegetation history and mire development in a landscape now 33 m below sea-level. Pollen, plant macrofossil and geochemical analyses of an AMS 14C dated sand–peat–marine mud sequence document the paludification on Pleistocene sands ~10,700 cal BP, the subsequent development of eutraphentic carr vegetation and the gradual inundation by the transgressing sea ~9,350 cal BP. PinusCorylus woodland prevailed on terrestrial grounds after hazel had immigrated ~10,700 cal BP. Salix dominated the carr vegetation throughout 1,300 years of peat formation, because Alnus did not spread in the Borkum Riffgrund area until 9,300 BP. Brackish reed vegetation with Phragmites established after inundation and siliciclastic marine sediments were being deposited. This article also examines the detection and suitability of key horizons indicative of marine influence. XRF-Scanning provides the most detailed results in the briefest possible time to pinpoint spectra best suitable for AMS 14C dating of classical key horizons such as start of peat formation and transgressive contact. The combined application of botanical and geochemical methods allows determining new key horizons indicative of marine influence, namely the earliest marine inundation and the onset of sea-level influence on coastal ground water level.  相似文献   

20.
After retreat of the Cordilleran Ice Sheet (CIS) and subsequent glacio‐isostatic adjustment of the central coast of British Columbia (BC), Canada, a complex coastline emerged as relative sea level rapidly reached equilibrium and maintained stability over the end of the Late Pleistocene and Holocene. This study provides a late Quaternary reconstruction of the landscape evolution of a geographically distinct location on the central BC coast, northwest Calvert Island, which experienced a re‐advance of the CIS near the end of the Late Pleistocene and minimal subsequent relative sea‐level change. Geomorphological observations from LiDAR imagery, sedimentological and palaeoecological evidence from exposures, cores and shovel pits, and a robust luminescence and 14C‐based chronology spanning the last 15 000 years are used to reconstruct the landscape of northwest Calvert Island following CIS retreat. A single‐aliquot regenerative dose protocol that was developed specifically for luminescence dating of the sediments on Calvert Island was utilized in this study. Localized proglacial sedimentation was linked to the glacial re‐advance experienced at the end of the Late Pleistocene. Extensive coastal reconfiguration (e.g. rapid shoreline progradation of >1 m a−1) occurred in the absence of extensive RSL change, which was the main driver of coastal change elsewhere along the BC coast. Changes in climate, small magnitude changes in RSL, and fire all probably played a role in isolated aeolian landform development and stabilization in the study area. An important contribution of this study is the documentation of the multi‐disciplinary approach for reconstructing palaeogeography, using multiple geochronological methods, micro‐ and macro‐sedimentology, the palaeoecology inferred from both macro and microfossils (e.g. diatoms and foraminifers), stratigraphy, field mapping and remote sensing. In addition, these findings inform our understanding of the drivers of coastal sedimentary processes, particularly in the temperate coastal rainforest region of BC, and the role that fire may play in those processes. Coastal palaeogeography studies in the region will become increasingly important as discoveries of Late Pleistocene human habitation along the coastal migration route continue to be documented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号