首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoluminescence (PL) spectra, excitation spectra, and PL decay curves of natural, heat-treated, and γ-ray-irradiated thenardites from Ai-Ding Salt Lake, Xinjiang, China, were studied. The natural thenardite under 300 nm excitation showed milk-white luminescence, and the PL spectrum consisted of an extremely broad band with a peak located at approximately 509 nm, spreading over a wide range of UV and visible wavelengths. The excitation spectra, obtained by monitoring the luminescence at 530 nm, consisted of a broad band with a peak located at approximately 235 nm and a flat band spreading over a wide range of UV and visible wavelengths. The PL decay curve of natural thenardite consisted of a fast-decay component with a lifetime of less than 0.1 μs and a slow-decay component with a half-decay time of approximately 0.4 s. The heat treatment of thenardite at 900°C for 20 min reduced the luminescence efficiency to 1/100. The γ-ray irradiation of thenardite reduced the luminescence efficiency to approximately half.  相似文献   

2.
Chabazite-Ca deposited on dacite laccolith from Osódi Hill, Dunabogdány, Hungary, exhibited bluish-white luminescence under ultraviolet (UV) light. The photoluminescence (PL) and optical excitation spectra of chabazite-Ca were obtained at 300 K. The PL spectrum under 300-nm excitation consists of (1) a Ce3+ band with a peak at 340 nm, (2) a broad main band with a peak at 453 nm and (3) five narrow bands at 592, 616, 650, 700 and 734 nm due to Eu3+. The main band is spread over the entire visible-wavelength region. The excitation spectrum obtained by monitoring green luminescence at 520 nm consists of a band at wavelengths shorter than 200 nm and an extremely broad band with a peak at 385 nm. The extremely broad band is spread over not only the UV region but also the blue region. The features of PL and excitation spectra suggest that the origin of bluish-white luminescence is luminescent organic matter incorporated into chabazite-Ca crystals during growth.  相似文献   

3.
The photoluminescence (PL) spectra, optical excitation spectra and PL decay curves of anthophyllite from Canada were obtained at 300 and 10 K. The MnO content in the sample, determined using an electron probe microanalyzer, was high at 5.77 wt%. In the PL spectra obtained under 410-nm excitation, bright red bands with peaks at 651 and 659 nm were observed at 300 and 10 K, respectively. The origin of the red luminescence was ascribed to Mn2+ in anthophyllite from the analysis of the excitation spectra and PL decay times of 6.1–6.6 ms. In the PL spectra obtained under 240-nm excitation at 300 K, a small violet band with a peak at 398 nm was observed. On the violet band at 10 K, a vibronic structure was observed. The origin of the violet luminescence was attributed to a minor impurity in anthophyllite.  相似文献   

4.
The photoluminescence and excitation spectra of sodalites from Greenland, Canada and Xinjiang (China) are observed at 300 and 10 K in detail. The features of the emission and excitation spectra of the orange-yellow fluorescence of these sodalites are independent of the locality. The emission spectra at 300 and 10 K consist of a broad band with a series of peaks and a maximum peak at 648 and 645.9 nm, respectively. The excitation spectra obtained by monitoring the orange-yellow fluorescence at 300 and 10 K consist of a main band with a peak at 392 nm. The luminescence efficiency of the heat-treated sodalite from Xinjiang is about seven times as high as that of untreated natural sodalite. The emission spectrum of the S2 center in sodalite at 10 K consists of a band with a clearly resolved structure with a series of maxima spaced about 560 cm−1 (20–25 nm) apart. Each narrow band at 10 K shows a fine structure consisting of a small peak due to the stretching vibration of the isotopic species of 32S34S, a main peak due to that of the isotopic species of 32S2 and five peaks due to phonon sidebands of the main peak.  相似文献   

5.
Baghdadite from Fuka, Okayama Prefecture, Japan shows a bright yellow fluorescence under UV (Hg 253.7 nm) excitation. The photoluminescence (PL) spectrum at 300 K consists of one large band near 580 nm and two small UV bands at 318 and 397 nm. The optical excitation spectrum of the bright yellow fluorescence consists of two bands near 220 and 250 nm. The temperature dependence of the PL intensity exhibits linear thermal quenching. To reveal the origin of the bright yellow fluorescence from baghdadite, powder Ca3(Zr,Ti)Si2O9 crystals are synthesized. Synthetic Ca3(Zr,Ti)Si2O9 shows luminescence spectra similar to those of baghdadite, and the intensity of the yellow fluorescence is markedly increased by titanium addition. The origin of the bright yellow fluorescence from baghdadite is ascribed to the existence of titanium.  相似文献   

6.
The emission and excitation spectra of yellow luminescence due to S2 in scapolites (#1 from Canada and #2 from an unknown locality) were observed at 300, 80 and 10 K. Emission and excitation bands at 10 K showed vibronic structures with a series of maxima spaced 15–30 and 5–9 nm, respectively. The relative efficiency of yellow luminescence from scapolite #2 was increased up to 117 times by heat treatment at 1,000°C for 2 h in air. The enhancement of yellow luminescence by heat treatment was ascribed to the alteration of SO3 2− and SO4 2− to S2 in scapolite.  相似文献   

7.
Natural calcite from Kuerle, Xinjiang, China, shows orange-red fluorescence when exposed to short-wave ultraviolet (UV) light (Hg 253.7 nm). Photoluminescence (PL) emission and excitation spectra of the calcite are observed at room temperature in detail. The PL emission spectrum under 208 nm excitation consists of three bands: two UV bands at 325 and 355 nm and an orange-red band at 620 nm. The three bands are ascribed to Pb2+, Ce3+ and Mn2+, respectively, as activators. The Pb2+ excitation band is observed at 243 nm, and the Ce3+ excitation band at 295 nm. The Pb2+ excitation band is also observed by monitoring the Ce3+ fluorescence, and the Pb2+ and Ce3+ excitation bands, in addition to six Mn2+ excitation bands, are also observed by monitoring the Mn2+ fluorescence. These indicate that four types of the energy transfer can occur in calcite through the following processes: (1) Pb2+ → Ce3+, (2) Pb2+ → Mn2+, (3) Ce3+ → Mn2+ and (4) Pb2+ → Ce3+ → Mn2+.  相似文献   

8.
The optical luminescence excited with synchrotron radiation along a preferential orientation of a quartz crystal has been investigated. It is found that the crystal is composed of two distinct regions, only one of which luminesces upon X-ray excitation. This luminescence is generally uniform and exhibits emission bands in the blue (470 nm with a shoulder at 522 nm) and in the UV (340 nm) regions of the spectrum. The branching ratio for the intensity of these bands is sensitive to the excitation energy across the Si K-edge. XANES spectra collected by partial luminescence yield (PLY) suggest that both emission bands originate from the de-excitation of Si atoms in the quartz. The possible defect sites within the crystal structure that could account for the observed luminescence are investigated and discussed. Additional experiments are proposed to verify this assignment of the optical emission bands.  相似文献   

9.
从光致发光光谱角度探讨了海南蓬莱蓝宝石的呈色机理.结果发现:与蓝宝石吸收光谱的500~700 nm吸收宽带相比,在500~720 nm发光波段内存在566.8 nm锐峰、600 nm左右肩峰和Cr~(3+)的694.2 nm特征峰.600 nm肩峰与其吸收峰镜像对称,566.8 nm处锐峰的产生原因复杂.600 nm肩峰可能与Fe~(2+)-Fe~(2+)离子对的电子跃迁有关;566.8 nm锐峰因532 nm激光激发Fe~(2+)-Ti~(4+)或Fe~(2+)-Fe~(3+)间的电荷迁移带,通过晶格造成Si~(4+)、Mg~(2+)等微量杂质离子敏化而产生.光致发光谱中呈现更多谱峰,能呈现离子跃迁时不同离子间发生的相互作用,为500~700 nm吸收宽带由不同致色机制的叠加给出了直接证明,是一种能全面地研究宝石矿物中致色元素能级结构的有效方法.  相似文献   

10.
Summary The temperature dependence of photoluminescence emission of a natural fluorite has been studied in the wavelength region of 380–500 nm and in the temperature range of 17.5–300 K. The emission spectra of the sample show a broad emission band between 380 and 500 nm for temperatures above 100 K. At 100 K and below, vibronic lines appear on the emission band at approximately 413.3, 418.1, 419.3, 420.2, 423.9 and 427.1 nm. This broad emission band and the vibronic lines in fluorite are usually associated with phonon-coupled electronic transitions from 4f65d to 4f7 in the Eu2+ ion. Temperature dependences of the peak energy, intensity and full-width at half-maximum of the broad emission band are discussed, and the behaviour explained in terms of a configurational coordinate model. The excited state vibrational energy was obtained to be 0.023 ± 0.001 eV and this is lower than the LO phonon energy of 0.062 eV in pure fluorite. The activation energy of thermal quenching of the photoluminescence intensity was found to be 0.022 ± 0.002 eV.  相似文献   

11.
采用显微观察、红外光谱、可见吸收光谱和低温光致发光谱等分析方法,对9颗俄罗斯高温高压处理钻石样品进行了研究。结果表明,该类钻石样品的内部多见石墨化现象,尤以彩色钻石样品更明显;金黄色、紫红色、黄绿色样品为ⅠaAB型,浅黄色样品为ⅠaB型,近无色样品为Ⅱa型;样品的可见吸收光谱因颜色不同而差异显著,其中金黄色样品可见475 nm处的吸收宽带,紫红色样品可见638,614,595 nm处的吸收峰,黄绿色和浅黄色样品可见415,475,503 nm处的吸收峰,近无色样品则为较光滑的平直曲线。此外,该类样品在低温光致发光谱中可见575 nm与637 nm处强发光峰。这些特征为探讨该类钻石的晶格缺陷与呈色机理提供了一定的科学依据。  相似文献   

12.
The orientation dependence of the luminescence of a well-characterized plagioclase crystal at room temperature and 40 K is reported. A beam of H + ions was used to provide the excitation. Ion beam luminescence provides emissions effectively from the bulk of the material, and therefore minimizes the contribution to the luminescence from atypical regions. The intensity of the luminescence is strongly orientation-dependent. The intensity and photon energy, particularly of the red/infrared and yellow emission bands, vary significantly. We interpreted this as resulting from Fe 3+ and Mn 2+ activator ions, respectively, on crystallographic sites with low point symmetry. An emission at 860 nm was also significantly orientation-dependent. The blue luminescence showed the least variability. At room temperature, a 350 nm near-UV emission was noted, whereas at 40 K, emissions were at 240, 260, 300 and 340 nm. UV emissions may result from Na + diffusion along interfaces within the plagioclase, notably albite-law (010) twins. This variability has significant consequences for the use of single-crystal quantitative luminescence techniques. We have also studied the dependence of the peak intensities and profiles during prolonged ion beam bombardment with heavier (He +) ions. Broadening of the red-infrared emission is interpreted as reflecting growing amorphization of the sample.  相似文献   

13.
The sodalite sample used in this investigation did not exhibit the characteristic orange-yellow luminescence due to the $ {\text{S}}_{ 2}^{ - } $ center, because there was no trace of sulfur impurity. The heat-treated samples exhibited green and red luminescence with maximum intensity at 496 and 687 nm, respectively, under 264 nm excitation at room temperature. Their luminescence intensities were extensively dependent on the treatment temperature. The green luminescence efficiency of the sample heat-treated at 900 °C was 6.5 times higher than that of unheated natural sodalite. At 8.5 K, the green luminescence showed a vibronic structure. After heating at 1,300 °C, the crystal structure of sodalite was transformed to NaAlSiO4 (carnegieite), and the intense red luminescence was exhibited in the NaAlSiO4 sample. The peak wavelength of the red luminescence shifted from 687 nm at 300 K to 726 nm at 8.5 K. The luminescence lifetimes of the green and red luminescence at room temperature were 2.1 and 5.1 ms, respectively. It was proposed that the origin of the green luminescence is Mn2+ replacing Na+, and that of the red luminescence is Fe3+ replacing Al3+ in sodalite or NaAlSiO4 (carnegieite).  相似文献   

14.
冀北印支期碱性岩浆活动及其地球动力学意义   总被引:7,自引:0,他引:7  
冀北印支期碱性岩浆活动及其地球动力学意义张招崇(中国地质科学院地质研究所,北京100037)王永强(中国地质科学院西安地质矿产研究所,西安710054)关键词碱性岩浆印支期冀北地球动力学燕山地区是否存在印支期的构造、岩浆活动一直存在着争论。过去多数人...  相似文献   

15.
Laboratory driven ionic thermal exchange of alkali feldspars from K to Na produces samples which are strongly luminescent in the ultraviolet region near 320 nm. The sites providing this luminescence are suggested as being correlated with the motion of Na atoms along interface-interphases of the material (i.e. with Na-O bond fracture). The thermoluminescence peaks show multi-order kinetics. Thermal preheatings of low albite sensitize the feldspar lattice with respect to thermoluminescence generated by exposure to UV irradiation and heating produces a strong blue luminescence spread over the range 350 nm to 500 nm band in feldspars. The upper temperature for thermoluminescence in feldspars is ∼300 °C, which is also the point where ionic conductivity of albite (010) begins, but the 300 °C region is also the starting point of a large second glow peak in adularia. Whilst it seems appropriate to link the Na motion to the 350–500 nm emission, it is unclear whether these changes are the result of the large anisotropic thermal vibration of Na atoms or the massive Na jumps that occur when the lattice reaches 300 °C. A speculative model is considered in which the UV TL emissions of natural minerals are linked to different interface-interphases (grain boundaries, exsolution limits, twinning planes, antiphase domains). Increased interface coherency energies are related to the kinetic order and the spectral position of luminescence emission peaks. Received: 3 December 1998 / Revised, accepted: 17 April 1999  相似文献   

16.
Summary ?Feldspar specimens covering the whole Or–Ab–An ternary have been investigated by cathodoluminescence (CL), photoluminescence (PL), radioluminescence (RL) and radiophosphorescence (RP) spectrometry. A red luminescence emission, which is commonly explained by Fe3+ lattice defects, is a characteristic feature of all the spectra. Different shifts of the peak-wavelength between ∼680–750 nm (1.82–1.65 eV) were observed with varying feldspar composition. Despite the dependence of the peak position on the Ca/Na ratio, initially described for CL in the 1970s, there is also a shift induced by changing NaK composition. The observed effects can be explained by known relations that the peak position of the red luminescence emission in feldspars can be affected both by the structural state of the feldspar and the site occupancy of the trivalent iron. In the case of alkali feldspars another factor may influence the peak-shift. The incorporation of the larger potassium ion causes non-linear variations of the cell dimensions and therefore Fe–O bond distance. The behaviour of the red peak-shift dependent on the feldspar composition is not equal for all types of luminescence investigated. This is most likely caused by the different luminescence excitation mechanism. Received December 3, 2001; revised version accepted March 25, 2002  相似文献   

17.
Sushina nepheline syenite gneisses of Early Proterozoic North Singhbhum Mobile Belt (NSMB), eastern India suffered regional metamorphism under greenschist-amphibolite transitional facies condition. The Agpaitic Sushina nepheline syenite gneisses consist of albite, K-feldspar, nepheline (close to Morozewicz-Buerger composition), aegirine, biotite, epidote, piemontite, sodalite, cancrinite, natrolite and local alkali amphibole. Accessory phases include zircon, hematite, magnetite, rare pyrochlore and occasional eudialyte and manganoan calcic zirconosilicates. Mineral chemistry of albite, K-feldspar, nepheline, aegirine, alkali amphibole, natrolite and zirconium silicate minerals are described. The detailed textural features together with chemical data of some minerals indicate metamorphic overprint of these rocks. A new reaction is given for the genesis of metamorphic epidote. Metamorphic piemontite suggests greenschist facies metamorphism under high fO2 (Hematite-Magnetite buffer). Up to 15.34 mol% of jadeite component in aegirine suggests that the metamorphic grade of the nepheline syenite gneiss reached at least to greenschist-amphibolite transitional facies or higher. Nepheline geothermometry suggests temperature of metamorphism <500 °C, which is consistent with greenschist facies metamorphism of surrounding chlorite-biotite-garnet phyllite country rock.  相似文献   

18.
云南磷铝石谱学特征研究   总被引:1,自引:0,他引:1  
使用电子探针、X射线粉晶衍射仪、傅里叶变换红外光谱仪、激光拉曼光谱仪、紫外可见分光光度计等仪器,对最近在云南发现的一种达到宝石级别的磷铝石进行了化学成分、矿物组成、红外吸收光谱、拉曼光谱、紫外可见吸收光谱等方面的研究。化学成分分析结果表明,该磷铝石的主要化学成分为P和Al,并含有少量的Fe和V;X射线粉晶衍射结果显示,该磷铝石的矿物成分主要为磷铝石,杂质较少;红外光谱与拉曼光谱分析均检出磷酸根基团的特征峰,红外光谱分析还显示有结晶水与结构水的存在;紫外可见吸收光谱在300和420 nm附近的吸收归属于Fe3+,630 nm附近较宽缓的吸收带由Fe3+和V3+共同产生。并将磷铝石与绿松石进行了谱学方面的对比分析,以便更好地区分两者。  相似文献   

19.
To study the crystal chemistry of bernalite, Fe(OH)3, and the nature of the octahedral Fe3+ environment, Mössbauer spectra were recorded from 80 to 350 K, optical spectra were recorded at room temperature and a sample was studied using transmission electron microscopy. The Mössbauer spectrum of bernalite consists of a single six-line magnetic spectrum at 80 K. A broadened six-line magnetic spectrum with significantly less intensity is observed at higher temperatures, and is attributed to a small fraction of bernalite occurring as small particles. The variation of hyperfine magnetic field data for bulk bernalite with temperature is well described by the Weiss molecular field model with parameters of H 0 = 55.7±0.3 T and T N = 427±5K. The centre shift data were fitted to the Debye model with parameters 0=0.482±0.005 mm/s (relative to -Fe) and M=492±30 K. The quadrupole shift is near zero at 300 K, and does not vary significantly with temperature. Absorption spectra in the visible and near infrared range show three crystal field bands of Fe3+ at 11 300, 16000 and 23 200 cm-1, giving a crystal field splitting of 14 570 cm-1 and Racah parameters of B=629 cm-1 and C=3381 cm-1. Infrared reflection spectra show two distinct OH-stretching frequencies, which could correspond to two structurally different types of OH groups. A band was also observed at 2250 cm-1, suggesting the presence of molecular CO2 in the large cation site. Analytical transmission electron microscopy indicates that Si occurs within the bernalite structure as well as along domain boundaries. Electron diffraction and imaging show that bernalite is polysynthetically twinned along {100} planes with twin domains ranging from 3 to 20 nm in thickness. Results are discussed with respect to the nature of the octahedral Fe3+ site, and compared with values for other iron oxides and hydroxides.  相似文献   

20.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号