首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We present R-band galaxy luminosity functions (GLFs) from aspectroscopic sample of six nearby rich galaxy clusters. In addition to individual cluster GLFs, extending to, in one case, M R=–14, we also present composite GLFs for cluster and field galaxies toM R=–17. All six cluster samples are consistent with the composite GLF, but there is evidence that the GLF of the quiescent population in clusters is not universal. Furthermore, the GLF of quiescent galaxies is significantly steeper in clusters than in the field. The overall GLF in clusters is consistent with that of field galaxies, except for the luminous tip, which is enhanced in clusters versus the field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We have performed a series ofN-body experiments including the effects of a massive dominant background which follows Schuster's density law in order to simulate clusters of galaxies in which a smoothly distributed dark component is present. The existence of this background is inferred from the weak luminosity segregation observed in clusters which, however, show several characteristics of well-relaxed systems. The comparison of the velocity dispersion profiles of three clusters of galaxies (Coma, Perseus, and Virgo) with those obtained in the numerical experiments allows us to place some constraints on both the distribution and amount of distributed dark material in these clusters. The profiles are rather insensitive to variations in the ratio of the background mass to the mass attached to galaxies (M b/Mg), but exhibit a strong dependence on their relative concentration. We conclude that highly concentrated background models are not consistent with observations. We find a maximum value for the ratio of the gravitational radius of the galaxies and the background (R g/Rb) (approximately 0.6) and using previous results (Navarroet al., 1986) we conclude that virial theorem masses underestimate the total mass (M b+M g) of the clusters. As a final result, we derive a minimum value for theM b/Mg ratio. All these conclusions could apply in general if Coma, Perseus, and Virgo constitute a fair sample of the rich clusters of galaxies in the Universe.  相似文献   

3.
The relation between the mean separationd of clusters of galaxies and their mean richnessN is found to be well represented byd=3.4N 2/3. Both this observed result and the Bahcall-Soneira relation(that is, the spatial correlations of clusters of galaxies are increased with their richness) are well explained by the cosmic string picture, lending support to the cosmic-string theory.  相似文献   

4.
Results from a statistical study of Kazarian galaxies and the objects surrounding them are presented. It is shown that: (1) the sample of Kazarian galaxies up to 16m.0 is complete. (2) Roughly 35.7% of the Kazarian galaxies are members of clusters, 14.0% of groups, and 13.6% of binary systems, while 36.7% are single galaxies. (3) Of the 580 Kazarian galaxies, roughly 61.2% are infrared, 8.8% radio, and 2.8% x-ray sources. (4) The relative numbers of Kazarian galaxies for complete samples of I, R, and X in the different groups are systematically higher than the corresponding numbers for samples of all Kazarian galaxies.  相似文献   

5.
analysis of new X-ray and optical data confirms that the X-ray luminosityL x of a cluster of galaxies is strongly dependent on its richness. The radio powerP 1445 of clusters at 1445 MHz is independent of richness, but is greater on the average for clusters with dominant cD galaxies than for those withou. The radio emission depends on the activity of one of the brightest galaxies; dominant cD galaxies are often responsible for radio emission, especially if they have double or multiple nuclei. For a given richness, high values ofL x andP 1445 sometimes occur together, but no strict correlation betweenL x andP 1445 exists. Possible tests of thermal-bremsstrahlung and inverse-Compton theories for the X-ray emission are mentioned.  相似文献   

6.
In these first results from a photographic survey of nearby clusters and groups of galaxies, we compare the luminosity functions of galaxies of various Hubble types in the core of the Formax cluster to luminosity functions in the core of the Virgo cluster from Sandageet al. (1985). The galaxy classifications for the two clusters are based on identical plate material, and are hence directly comparable. The properties (galaxy density, velocity dispersion, X-ray luminosity) of the two clusters are quite different, yet we find few significant differences in the luminosity functions, or in the morphological mix of galaxies between the two clusters. In particular, while there is some indication that the ratios of giants to dwarfs and early to late-type galaxies in the two clusters differ, we cannot exclude the possibility that the ratios are identical. We discuss the selection limits of our survey and the completeness corrections that must be applied to the faint end of the luminosity function. The effective surface brightness of early-type galaxies in our sample decreases with decreasing luminosity. We show that this correlation is not an artifact of our selection criteria for dwarf spheroidal galaxies and use it to determine the relative distances to the Fornax and Virgo clusters. We also present evidence for a radial variation in the luminosity function of dwarf ellipticals within the two clusters in the sense that the faint end of the luminosity distribution is enhanced at the centre of each cluster.  相似文献   

7.
The results of deep radio, sub-mm and X-ray observations of samples of high redshift (z∼1) clusters are presented. These reveal significant excesses of active galaxies associated with the clusters at all three wavelengths. The cluster radio source population shows evolution consistent with the (1+z)3 evolution typical of many AGN classes. A large fraction of the AGN are hosted by apparently passive early-type galaxies, often with a close companion. These results essentially constitute the detection of a counterpart of the Butcher-Oemler effect for both strongly star bursting galaxies and AGN. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We study the mass-radius relationship for aggregates of galaxies, viz. binaries, small groups and clusters. The data are subjected to a simple best-fit analysis similar to the one carried out earlier for individual field galaxies. The analysis shows that: (i) The data on binary galaxies are consistent with the assumption that binaries are just two galaxies, each with an individual isothermal (M ∫R) dark matter halo, moving under the mutual gravitational attraction, (ii) The data on the groups of galaxies are too scattered to obey a single power-law relation of the formM = kR n with any degree of reliability, (iii) The data on groups and clusters fit better with a law of the formM = AR 3 +BR. This form suggests the existence of two components in dark matter—one which is clustered around the galaxies (M ∫R) and another which is distributed smoothly (M ∫R 3 ). The smooth distributions becomes significant only at scales ≥ 1 Mpc and hence does not affect binaries significantly. We briefly discuss the theoretical implications of this analysis  相似文献   

9.
A new version of the magnetic-tape catalog of ABELL clusters of galaxies is used to obtain redshift estimators and to generate two samples of clusters. A procedure for searching for superclusters of galaxies is applied and the results are given in tabular and graphic form. For a lmited homogeneous sample (distance 60–275 Mpc, galactic latitude B > 35°), 12 multiplets, having member clusters with known redshifts, are found. It is shown that the spatial covariance function for rich clusters has the form ξ = (r0/r)γ with r0 = 22.4 ± 1.8 Mpc and γ = 1.90 ± 0.25 for 3 Mpc ≲ r ≲ 80 Mpc.  相似文献   

10.
Magnitude-redshift (m, z) relation within systems of galaxies is studied in detail in several kinds of systems. The main data contains 17 clusters, 64 groups, 121 pairs and 14 systems with two measured members, altogether 1043 galaxies in 162 separate systems. In addition, another sample of nearby groups and pairs, recently published data on six clusters with 121 measured members, as well as 65 compact galaxies in four groups and 23 pairs are studied. In Section 2 the data and the method are described. The numerical results for the main data are given in Table 1. There exists a significant positive (m, z)-relation in groups and pairs, but for clusters the same is valid only with a rather loose selection of members. The (m, z)-relations are calculated separately for each morphological type, but systematic differences between the types are not found. In Section 3 some properties of the velocity (redshift) dispersion σV are discussed. The joint dispersion decreases significantly from the early to the late types. This may point to an early dynamical state of the systems but it is also quite possible that this result is due to a selection effect. The presence of a selection effect in some commonly used samples of systems is indicated by the increase of velocity dispersion σV with increasing distance (Section 4). This effect which was first found for clusters and groups by SCOTT is present also in the larger sample of these systems and in the sample of pairs. Implications of this feature are discussed. As one of them, it is concluded in Section 5 that there exists no separate Canes Venatici cluster of galaxies but the galaxies supposed to form it belong to the Ursa Major cloud of galaxies. Several independent arguments supporting this conclusion are pointed out. In the Ursa Major-Canes Venatici complex of galaxies a distinct positive (m, z)-relation is found. In Section 4 the distance-dependence of the (m, z)-relations is studied and it is found that positive relations are most common for nearby systems. This is natural if the effect is an intergalactic one, the redshift being dependent on the distance of the galaxy. The (m, z)-relations is are studied as function of size of the systems in Section 6. It is found that σV, (m, z) regression coefficient bm, and parameter h which measures strength of redshift within the system, are largest in the systems with smallest radii. The result is opposite to that obtained using the virial theorem. In the Dopplerian context it would mean that the systems disperse the more rapidly the more dense these are. Dependence of the results on the number of data is studied in Section 7. As expected for a real effect, the frequency of positive relations increases with increasing number. The dispersion σV is usually larger in the central areas of the clusters than in the outskirts (Section 8). In these areas, σV is systematically larger for faint galaxies than for bright ones. The reason for large σV for faint galaxies projected on the centre is considered, studying in particular in the Coma cluster the velocity (redshift) distribution, colour-redshirt relation and morphological features which might be used in localization of the galaxies along the line of sight. The results of these three kinds of tests point to the possibility that redshift increases along the line of sight, but the results refer to sparse data and are very uncertain. A similar effect is suggested independently by observations of the galaxies in the background of the clusters. If true, the effect must be non-Dopplerian. In combination with brightness seggregation and preponderance of measured galaxies in the near side over those in the rear, this may cause the observed negative (m, z)-relations for some clusters. In SANDAGE 's and TAMMANN 's sample of nearby groups and pairs redshift appears dependent on luminosity class. This points to intrinsic redshifts in faint galaxies (Section 9). A similar implication is valid for the positive (m, z)-relations in the case of pairs and groups of compact galaxies (Section 10). Since there are indications of physical association in the latter case, the result cannot be explained by optical members. The present results are compared with previous ones in Section 11. This includes a study of redshifts with regard to brightness and surface brightness simultaneously, leading to a new statistical definition of relative compacity of galaxies belonging to the systems. Recent observations not included in the main data are viewed in Section 12. These show a positive (m, z)-relation. Interpretation of the results is discussed in Sections 13 and 14. From the numerous ones, three main possibilities remain, i. e. projected galaxies, intrinsic redshifts in faint galaxies and non-Dopplerian integalactic redshifts. There are several arguments suggesting that chance projections are not the principal explanation of the positive (m, z)-relations. If so, intrinsic redshifts in faint galaxies give probably the main explanation for pairs and small groups and integralactic redshifts for larger systems. This is in accordance with the general view of the redshift phenomenon in other scales. However, definitive proof of this conclusion could not be obtained from the present data which, though considerably large in number, is too small regarding the complexity of the problem.  相似文献   

11.
The number-density distribution of several clusters of galaxies was derived by counting galaxies on B and R plates of the 2-m Schmidt telescope of the Karl-Schwarzschild-Observatory Tautenburg.  相似文献   

12.
We present CCD photometry of 16 Abell clusters and one cluster candidate found in POSS-II field 861. The images were taken at the 0.9 m Telescope at Cerro Tololo, in the g, r and i filters of the Gunn–Thuan system. We tested the idea proposed by Garilli et al. (1996) that there is a population of unusually red galaxies which could be associated with either the field or clusters. Garilli et al. (1996) suggest that these galaxies have anomalously red colours, but we find that these objects are all near the limiting magnitude of the images (20m<r<22m) and have colours that are consistent with those expected for stars or field galaxies at z∼0.7. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Clusters of galaxies in which radio emission at low frequencies (178 MHz) has been detected were classified on the Bautz-Morgan (BM) system according to the dominance of the brightest galaxy. Radio sources with steep low-frequency spectra occur in clusters of all BM types but more often in rich clusters; the distributions of BM types for clusters with high and low spectral indices between 38 and 178 MHz are similar. Glass copies of Mount Palomar Sky Survey plates were measured to determine the distribution of the ten brightest galaxies in clusters without dominant galaxies. Some clusters were found to have central cores of bright galaxies which may reflect mass segregation of galaxies due to dynamical friction. The bright galaxies in such cores may later merge to form dominant cD galaxies. The positions of the cD galaxies and cores of bright galaxies are often at projected distances <200 kpc from the low-frequency radio emission. The low-frequency spectrum of radio emission associated with a cD galaxy may be either steep or normal, but the low-frequency spectrum from a core of bright galaxies is usually steep. A steep spectrum may develop when a radio source is confined by hot gas in a cluster over a long period (109 yr). Confinement would probably occur for radio sources associated with bright galaxies in the cores of clusters and cD galaxies in clusters. However, cD galaxies may have recurrent radio outbursts so that steep spectra are not always observed.  相似文献   

14.
The search for non thermal radio emission from clusters of galaxies is a powerful tool to investigate the existence of magnetic fields on such large scale. Unfortunately, such observations are scarce thus far, mainly because of the very faint large scale radio emission expected in clusters of galaxies. In the present contribution we will first review the status of the radio observations of clusters of galaxies, carried out with the aim of detecting large scale radio emission.We will then focus on the large scale radio emission detected at 327 MHz and 610 MHz in the Coma cluster of galaxies. The features of the detected radio emission suggest that a magnetic field with an intensity of the order of ~ 10–7 Gauss must be present on a scale of about 2 Mpc (forH o = 100km s –1 Mpc –1). The morphology of the radio emission is similar to that of the most recent X-ray images derived with ROSAT, and follows the distribution of the galaxies in the cluster. All these pieces of information will be taken into account in the discussion on the possible origin of this large scale magnetic field.  相似文献   

15.
Parameters of the distant galaxy clusters of 3C295 (z=0.46) and Cl 0024+1654 (z=0.39) are compared with the predictions made using galaxies of the local clusters Coma (z=0.023) and DC 0329–52 (z=0.057) taking theK-effect into account. The distributions of colour and morphological type, and the amplitudesF +/F of the 0 4000 discontinuity are examined and no evidence for evolution of the galaxies and the clusters can be seen.  相似文献   

16.
The main goal of this paper is to compare the relative importance of destruction by tides vs. destruction by mergers, in order to assess if tidal destruction of galaxies in clusters is a viable scenario for explaining the origin of intracluster stars. We have designed a simple algorithm for simulating the evolution of isolated clusters. The distribution of galaxies in the cluster is evolved using a direct gravitational N-body algorithm combined with a subgrid treatment of physical processes such as mergers, tidal disruption, and galaxy harassment. Using this algorithm, we have performed a total of 148 simulations. Our main results are:
–  destruction of dwarf galaxies by mergers dominates over destruction by tides, and
–  the destruction of galaxies by tides is sufficient to explain the observed intracluster light in clusters.
  相似文献   

17.
The large-scale structures of volume-limites subsample sorted out from the CfA catalog have been analysed by percolation method. The result shows that the features in the distribution of galaxies with different luminosities are significantly different. Especially, the most luminous galaxies are likely to exhibit hierarchical clustering on a scale about 50h 50 –1 Mpc, and the least luminous galaxies in our subsamples show string-like or sheet-like character in their distribution. These results suggest that the large-scale distribution of galaxies consists of clusters or cluster cores of most luminous galaxies and the less luminous galaxies spread out from these cores with a string-like or sheet-like structure. This picture of the large-scale distribution consists with previous results from two-point correlation analysis and fractal analysis. The implication of these results has been discussed.  相似文献   

18.
We analyze the data presented in a previous paper by Gyulzadyan and Petrosian, and discuss the results of a statistical investigation of the relationship between SBS galaxies and Zwicky clusters. The main results are that SBS galaxies follow the overall galaxy distribution in clusters and they do not avoid any type of Zwicky cluster. There is a significantly higher probability of finding SBS galaxies occurring in medium compact clusters than in open clusters. They also follow the well-established morphology-density relation. Earlier morphological type, higher luminosity, larger linear size, and redder SBS galaxies tend to be found in clusters with higher compactness, or in more compact regions of the clusters. The number distribution of SBS galaxies in Zwicky open clusters probably follows the distribution of normal galaxies. The number distribution of SBS galaxies in medium compact and compact clusters shows two-maxima structure. Published in Astrofizika, Vol. 52, No. 2, pp. 225–236 (May 2009).  相似文献   

19.
Using published flux densitiesS at low frequenciesv, radio spectra were constructed for 3C, 4C, and 4CT radio sources in Abell clusters of galaxies, radio galaxies outside Abell clusters, and quasars with known redshifts. About half the sources in rich Abell clusters (richness classesR>-2) have steep spectra between 38 and 178 MHz with spectral indices 38 178 > whereSv . However, radio galaxies outside clusters have values of 38 178 1.2, and no steep spectra were found among 170 quasars. The radio sources in rich clusters are probably confined by intergalactic gas, and the steep spectra develop over a period of 109 yr as relativistic electrons lose energy. The absence of steep spectra among quasars does not necessarily mean that quasars never occur in rich clusters of galaxies, since quasars are probably being observed only in their early high-luminosity phases. The possibility that some quasar events occur in the nuclei of the dominant cD galaxies in clusters is discussed, but quasar events may occur in more than one type of galaxy.  相似文献   

20.
The dynamical masses of dwarf-spheroidals, spiral and elliptical galaxies, dwarf irregular binaries, groups of galaxies and clusters are shown to lie in a band about the M ∼ ρR3 line. The value of ρ is approximately the same as that estimated for unseen matter in the solar neighbourhood. The clusters themselves lie about theM ∼ R -3 line derived for a self-gravitating neutrino gas; their masses are distributed around the maximum Jeans-mass, MJmax. corresponding to mv - 10 eV in an expanding universe. The present day length scales of clusters and the dispersion in the velocities observed within them are understood in terms of a 100-fold expansion subsequent to the initial growth of the fluctuations at MJmax. These systematics on theR-M plane imply that the initial condensations in the expanding universe are on the scale of the rich clusters of galaxies, these condensations were triggered dominantly by the gravitation of the neutrinos and the constant density of al systems arises naturally due to the embedding of these systems in the large scale neutrino condensations. If the neutrino density falls off asr -2 beyond the cluster edge till the distributions from different clusters overlap, then the mean density of the neutrinos approximately equals the closure density of the universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号