首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《国际泥沙研究》2022,37(6):715-728
Rainfall-induced floods may trigger intense sediment transport on erodible catchments, especially on the Loess Plateau in China, which in turn modifies the floods. However, the role of sediment transport in modifying floods has to date remained poorly understood. Concurrently, traditional hydrodynamic models for rainfall-induced floods typically ignore sediment transport, which may lead to inaccurate results for highly erodible catchments. Here, a two-dimensional (2D) coupled shallow water hydro-sediment-morphodynamic (SHSM) model, based on the Finite Volume Method on unstructured meshes and parallel computing, is proposed and applied to simulate rainfall-induced floods in the Zhidan catchment on the Loess Plateau, Shaanxi Province, China. For six historical floods of return periods up to 2 years, the numerical results compare well with observations of discharge hydrographs at the catchment outlet. The computed runoff-sediment yield relation is quantitatively reasonable as compared with other catchments under similar geographical conditions. It is revealed that neglecting sediment transport leads to underestimation of peak discharge of the flood by 14%–45%, whilst its effect on the timing of the peak discharge varies for different flood events. For 18 design floods with return periods of 10–500 years, sediment transport may lead to higher peak discharge by around 9%–15%. The temporal pattern of concentrated rainfall in a short period may lead to a larger exponent value of the power function for the runoff-sediment yield relation. The current finding leads us to propose that incorporating sediment transport in rainfall-induced flood modeling is warranted. The SHSM model is applicable to flood and sediment modeling at the catchment scale in support of risk management and water and soil management.  相似文献   

2.
Developing models to predict on‐site soil erosion and off‐site sediment transport at the agricultural watershed scale represent an on‐going challenge in research today. This study attempts to simulate the daily discharge and sediment loss using a distributed model that combines surface and sub‐surface runoffs in a small hilly watershed (< 1 km2). The semi‐quantitative model, Predict and Localize Erosion and Runoff (PLER), integrates the Manning–Strickler equation to simulate runoff and the Griffith University Erosion System Template equation to simulate soil detachment, sediment storage and soil loss based on a map resolution of 30 m × 30 m and over a daily time interval. By using a basic input data set and only two calibration coefficients based, respectively, on water velocity and soil detachment, the PLER model is easily applicable to different agricultural scenarios. The results indicate appropriate model performance and a high correlation between measured and predicted data with both Nash–Sutcliffe efficiency (Ef) and correlation coefficient (r2) having values > 0.9. With the simple input data needs, PLER model is a useful tool for daily runoff and soil erosion modeling in small hilly watersheds in humid tropical areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Two mathematical models were used to estimate the annual sediment yield resulting from rainfall and runoff at the outlet of the Nestos River basin (Toxotes, Thrace, Greece). The models were applied to that part of the Nestos River basin (838 km2) which lies downstream of three dams. Both models consist of three submodels: a simplified rainfall-runoff submodel, a physically-based surface erosion submodel and a sediment transport submodel for streams. The two models differ only in the surface erosion submodel: that of the first model is based on the relationships of Poesen (1985) for splash detachment and splash transport, while the corresponding submodel of the second model is based on the relationships of Schmidt (1992) for the momentum flux exerted by the droplets and the momentum flux exerted by the overland flow. The degree of conformity between the annual values of sediment yield at the basin outlet according to both models is satisfactory.  相似文献   

4.
Measurements made on different scales, such as rainfall simulations on 1 m2 and 20 m2 experimental plots and water sampling at the outlet of a watershed, enable the analysis of the mechanisms of pluvial erosion and therefore the importance of runoffs and soil losses in the hilly and sandy parts of the western Paris basin. Interrill erosion accounts for slow transfer of materials towards the lower part of plots and slopes. The overland flow caused by restructuring of the surface Tertiary and Cenomanian soils erodes some 150 to 200 kg ha?1 during the month following sowing. Only a part of these deposits reach the river, which carries away less than 50 kg ha?1 each month. Interrill erosion makes slopes still more uneven, fills in valley bottoms, and so paves the way to catastrophic erosion, which scoops out rises in the ground and colluvial deposits in the lower part of slopes and valley bottoms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Dynamic changes take place in the nature of sediment eroded from bare soil at low slopes by rainfall impact when there is no inflow of water at the top of the eroding slope. This relates initially to fine soil sediment not settling back onto the soil after the rainfall impact. Coupled partial differential equations describing such dynamic changes have been solved numerically for a bed of soil, bounded at its upper end, and subject to a constant rainfall rate. This solution allows prediction of the change with time and downslope distance in the concentration and settling velocity (or size) characteristics of eroding sediment, allowing critical evaluation of the assumption of space-independent sediment characteristics made in prior approximate analytical solutions of the equations involved. Following the determination of as yet unpredictable soil-related parameters in the equations, the solution was tested by comparison with experimented data on two soils of contrasting structural stability, namely a vertosol [The Australian Soil Classification (1996)] and a aridisol. Investigations included the determination of a minimum number of sediment size classes required to adequately describe the settling velocity characteristics, based on the shape of the underlying basic settling velocity characteristic, which is used to predict the dynamics of sediment deposition. The effect on the solution of observed structural breakdown in soil aggregation due to rainfall impact was investigated, leading to more accurate predictions of the settling velocity characteristics of eroded sediment. Other sources of discrepancy between theory and observation remain to be determined.  相似文献   

6.
In the region of the basaltic plateau in Southern Brazil, problems of runoff and erosion on the deep ferrallitic soils are becoming increasingly recognized. Land use change from conventional tillage using disk plough to no‐tillage on residues without terracing occurred at the beginning of the 1990s and it spread very quickly. Measurements of runoff and sediment concentrations on 1 m2 plots receiving natural rainfall and simulated rainfall under different crops with different stages of growth and different tillage systems, field surveys and measurements of rills and gullies in nested experimental catchments indicate a relative decrease of runoff on slopes but an increase of subsurface flow, and a marked decrease of sheet and rill erosion and soil loss from plot to catchment scales. Nevertheless, the extension of parts of the gully system is still continuing, strongly influenced by extreme rainfall. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
A new method is presented for predicting sediment sorting associated with soil erosion by raindrop impact for non-equilibrium conditions. The form of soil erosion considered is that which results from raindrop impact in the presence of shallow overland flow itself where the flow is not capable of eroding sediment. The method specifically considers early time runoff and erosion when sediment leaving an eroding area is generally finer and thus may have a higher potential for transport of sorbed pollutants. The new mechanism described is the formation of a deposited layer on the soil surface, which is shown to lead to sediment sorting during an erosion event. The deposited layer is taken to have two roles in this process: to temporarily store sediment on the surface between successive trajectories, and to shield the underlying soil from erosive stresses. Equations describing the dynamics of the suspended sediment mixture and the deposited layer are developed. By integrating these equations over the length of eroding land element and over the duration of the erosion event, an event-based solution is proposed which predicts total sediment sorting over the event. This solution is shown to be consistent with experimentally observed trends in enrichment of fine sediment. Predictions using this approach are found to only partly explain measured enrichment for sets of experimental data for two quite different soils, but to be in poor agreement for an aridsol of dispersive character. It is concluded that the formation of the deposited layer is a significant mechanism in the enrichment of fine sediment and associated sorbed pollutants, but that processes in the dispersive soil are not as well described by the theory presented.  相似文献   

8.
Based on data from the middle Yellow River basin, a wind-water two-phase mechanism for erosion and sediment-producing processes has been found. By using this mechanism, the extremely strong erosion and sediment yield in the study area can be better explained. The operation of wind and water forces is different in different seasons within a year. During winter and spring, strong wind blows large quantities of eolian sand to gullies and river channels, which are temporally stored there. During the next summer, rainstorms cause runoff that contains much fine loessic material and acts as a powerful force to carry the previously prepared coarse material. As a result, hyperconcentrated flows occur, resulting in high-intensity erosion and sediment yield.  相似文献   

9.
Marine circulation above the northern Brazilian continental shelf is subject to energetic forcing factors of various origins: high water buoyancy fluxes induced by the Amazon River freshwater discharge, a strong coastal current associated with a mesoscale current (North Brazil Current (NBC)), a forcing by semidiurnal tide and by Northeast or Southeast trade winds according to the season. Using a three-dimensional (3-D) hydrodynamic numerical model (MOBEEHDYCS), and realistic bathymetry and coastline of the northern Brazilian shelf, this paper aims at studying the influence of some specific physical processes on the morphology of the Amazon plume. The very large volume discharge (180 000 m3/s on average) and the weak effect of Coriolis force are additional characteristics of the studied system, which induce a particular dynamics. The various forcing factors are successively introduced into the model in order to simulate and to determine their respective influences upon the plume extent and the hydrodynamics at the shelf scale. Simulation reveal that the coastal current is at the origin of the permanent northwestward Amazon plume extension while wind effect can either reinforce or moderate this situation. The tide intervenes also to modify the position of the salinity front: a horizontal migration of salinity front is observed under its action.  相似文献   

10.
The paper reports on experiments carried out to evaluate the effect of the initial soil moisture profile on temporal variations in runoff erosion rate. The moisture profile was varied by applying infrared heating to the soil sample surface over various time periods, while runoff erosivity was varied by varying the slope of the flume. The experiment confirms that dry loamy soils are very erodible: on a slope length of only 4.3 m long sediment concentrations are near transporting capacity in case of a dry soil sample. It appears that temporal variations in sediment concentrations can be well simulated using a simple relationship between runoff erosion resistance and initial soil moisture content, thereby implicitly assuming that the effect of initial moisture content is persistent over the whole duration of the experiment. The implications of these findings with respect to the modelling of sediment output from larger catchments and the design of experiments on rill erodibility are discussed. The experiments also show that, under the present circumstances, mean velocities in the rills appear to be independent of slope. This finding may be of importance with respect to overland flow routing and deterministic erosion modelling.  相似文献   

11.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   

12.
Erosion and sediment yield from large and small watersheds exhibit different laws. Variations in surface runoff and sediment yield because of landuse change in four watersheds of different scales from 1 km2 to 73 km2 were analyzed. Due to reforestation and farmland terracing, surface runoff and sediment yield reduced by 20-100% and 10-100% respectively. Reductions in surface runoff were differed significantly under different precipitation regimes. For the large watershed (73 km2) landuse change had similar effects on surface runoff regardless of changing of precipitation. For the small watershed (1 km2) landuse change had fewer effects on surface runoff under high precipitation. The relative changes of sediment yield in the four watersheds under reforestation and farmland terracing decreased as precipitation increased from 350 mm to 650 mm, then increased as precipitation increased from 650 mm to 870 mm. Where initial forest coverage rate was below 45%, sediment yield decreased dramatically as forest coverage rate increased. Watershed management with aiming at reducing both surface runoff and sediment yield should be conducted both on sloping surfaces and in channels in large watersheds.  相似文献   

13.
Diverted sediment causes a wide range of problems at small diversion works.The difference in water levels between low flows and floods,low investment capital and presence of cohesive sediment and fine non-cohesive sediment coupled with a requirement for a high level of supply assurance makes the design of such hydraulic structures complex.Vortex settling basins(VSBs)offer a promising alternative to conventional settling structures or hydro-cyclones.In the current study,parameters affecting the trapping of particles>75 mm were numerically investigated using ANSYS Fluent and were validated by physical modeling.It was established that the inlet velocity needs to be maintained at 0.26 m/s,the underflow to inflow ratio should be between 0.05 and 0.10,the cylinder height to cylinder diameter ratio should be greater than 0.5,and the positioning of the inlet pipe to cylinder height ratio should be greater than 0.7,with a cone of slope ratio of 2:1(V:H)and the cylinder diameter to inlet diameter ratio should be 8.2.These parameters form the basic design guidelines for VSB use at small diversion works(<100 L/s duty capacity).  相似文献   

14.
The processes of hillslope runoff and erosion are typically represented at coarse spatial resolution in catchment‐scale models due to computational limitations. Such representation typically fails to incorporate the important effects of topographic heterogeneity on runoff generation, overland flow, and soil erosion. These limitations currently undermine the application of distributed catchment models to understand the importance of thresholds and connectivity on hillslope and catchment‐scale runoff and erosion, particularly in semi‐arid environments. This paper presents a method for incorporating high‐resolution topographic data to improve sub‐grid scale parameterization of hillslope overland flow and erosion models. Results derived from simulations conducted using a kinematic wave overland flow model at 0.5 m spatial resolution are used to parameterize the depth–discharge relationship in the overland flow model when applied at 16 m resolution. The high‐resolution simulations are also used to derive a more realistic parameterization of excess flow shear stress for use in the 16 m resolution erosion model. Incorporating the sub‐grid scale parameterization in the coarse‐resolution model (16 m) leads to improved predictions of overland flow and erosion when evaluated using results derived from high‐resolution (0.5 m) model simulations. The improvement in performance is observed for a range of event magnitudes and is most notable for erosion estimates due to the non‐linear dependency between the rates of erosion and overland flow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Fluvial erosion processes are driven by water discharge on the land surface, which is produced by surface runoff and groundwater discharge. Although groundwater is often neglected in long‐term landscape evolution problems, water table levels control patterns of Dunne runoff production, and groundwater discharge can contribute significantly to storm flows. In this analysis, we investigate the role that groundwater movement plays in long‐term drainage basin evolution by modifying a widely used landscape evolution model to include a more detailed representation of basin hydrology. Precipitation is generated by a stochastic process, and the precipitation is partitioned between surface runoff and groundwater recharge using a specified infiltration capacity. Groundwater flow is simulated by a dynamic two‐dimensional Dupuit equation for an unconfined aquifer with an irregular underlying impervious layer. The model is applied to the WE‐38 basin, an experimental catchment in Pennsylvania, because 60–80 per cent of the discharge is derived from groundwater and substantial hydrologic and geomorphic information is available. The hydrologic model is first calibrated to match the observed streamflows, and then the combined hydrologic/geomorphic model is used to simulate scenarios with different infiltration capacities. The results of this modelling exercise indicate that the basin can be divided into three zones with distinct streamflow‐generating characteristics, and different parts of the basin can have different geomorphic effective events. Over long periods of time, scenarios in which groundwater discharge is large tend to modify the topography in a way that promotes groundwater discharge and inhibits Dunne runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Surface runoff on agricultural fields arises when rainfall exceeds infiltration. Excess water ponding in and flowing through local microtopography increases the hydrological connectivity of fields. In turn, an increased level of hydrological connectivity leads to a higher surface runoff flux at the field boundaries. We investigated the functional hydrological connectivity of synthetical elevation fields with varying statistical properties. For this purpose, we developed an object-oriented ponding and redistribution model to which Philip’s infiltration model was coupled. The connectivity behaviour is determined by the presence of depressions with a large area and spatial organization of microtopography in rills or channels. The presence of microdepressions suppresses the effect of the spatial variation of infiltration properties. Connectivity behaviour of a field with a varying spatial distribution of infiltration properties can be predicted by transforming the unique connectivity function that was defined for a designated microtopography.  相似文献   

18.
Flow past wall-mounted cylindrical structures is commonly encountered in natural rivers where piers of bridge crossings or vegetation stalks are common within channels.In the current study,the influence of cylindrical structures on flow/bathymetric alterations for three different permeabilities is explored via two-dimensional numerical modeling.In model construction processes,the structure permeability is varied with the surface void ratio along the perimeter of the cylinder,i.e.the density of e...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号