首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The E∥c and E ⊥ c polarized optical absorption spectra of a variety of blue/green tourmalines and a schorl were measured from room temperature down to helium temperatures. Heat treatments at 750–800° C in air and hydrogen were carried out on several green tourmalines. From the results obtained, absorptions at 7,900 and 13,800 cm?1 in the E∥c spectra of tourmalines are assigned to Fe2+ in the b-site. In the same polarization, bands detected at 9,000 and 13,400 cm?1 are attributed to Fe2+ in the smaller c position. In contrast to previous interpretations, the E ⊥ c polarized bands at 9,000 and 13,800 cm?1 are not assigned to single ion transitions, but are largely associated with nearest neighbour Fe2+-Fe3+ pairs. Correlations between near-infrared band absorption coefficients and FeO concentration reinforce these assignments. The temperature dependence and the reaction to heat treatment of the strongly polarized (E⊥c?E∥c) band near 18,000 cm?1 in blue and green tourmaline spectra are shown to be consistent with previous assignments of the band to Fe2++Fe3+→Fe3++Fe2+ charge transfer. Similar results are discussed for broad absorptions (also E⊥c?E∥c) found in the 22,000–25,000 cm?1 region of the spectra of certain green and brown tourmalines. It is concluded that these absorptions are due to Fe2++Ti4+→Fe3++Ti3+ charge transfer. The proposal is made that the initial effect of heating green tourmalines in air and hydrogen is to reduce Fe3+ cations located in both b- and c-sites. Further heat treatment in air and hydrogen results in the oxidation of Fe2+→Fe3+ and leads to the generation of bands near 19,100 and 21,600 cm?1. The newly formed bands are assigned to Fe3+-Fe3+ pairs.  相似文献   

2.
Tourmaline solid solutions containing Fe, Fe+ Ti, Cr, Ni, Cu, Co, Mn chromophoric centers have been grown hydrothermally at 650° C and 1,5 kbar on natural seeding plates close to the elbaite composition. The newly grown tourmalines were characterized by chemical analyses and optical absorption spectroscopy in the range 26316-5000 cm-1 at 297 K and in the range 26316-9090 cm-1 at 77 K. Most characteristic of Fe2+, Fe3+-bearing specimens is the presence of intensive σpolarized absorption bands caused by exchange-coupled Fe2+-Fe3+ pairs in Y- and Z-sites of the tourmaline structure. An additional intensive absorption band 12500 cm-1 (σ-polarisation) appears in some specimens but is not yet found in spectra of natural tourmalines. The colour and spectroscopic properties of the Fe3+, Mn3+ and Cu2+ containing tourmalines are significantly affected by the presence of even the smallest Li-contents. The results suggest that Fe2+, Cu2+, Co2+, Ni2+-ions occupy, predominantly, Y-sites of the tourmaline structure, whereas the Cr3+-ions seem to enter the smaller Z-octachedra.  相似文献   

3.
In the Kinnerasani area in southeastern India, the terrain boundary between the Archean Nellore-Khammam Schist Belt and the Proterozoic Pakhal Supergroup overlying the Dharwar-Bastar cratons can be observed. We analyzed the mesoscopic and microscopic structural features of the highly deformed pebbles in the basal conglomerate bed of the Pakhal Supergroup that occurs at the terrain boundary. The results of the analysis of the pebbles suggest that: 1) deformation of pebbles resulted from ductile deformation during peak metamorphism 2) the mode of strain is plane strain to constrictive and maximum elongation located to be vertical and 3) the apparent stretch of the pebbles is up to 300%.In the Nellore-Khammam Schist Belt, quartz grains constituting the quartz layer of the feldspathized gneiss folded by the last-phase deformation also show vertical maximum stretching in constrictive strain. This observation suggests that the deformational features, at least the mode of strain, during the last-phase deformation is comparable to the deformation forming elongated pebbles of the Pakhal conglomerate. The last-phase deformation structures of the Nellore-Khammam Schist Belt are well observed near the terrain boundary. This indicates that the Pakhal deformation overprinted the rocks of the Nellore-Khammam Schist Belt near the boundary, and that their tectonic juxtaposition occurred during or before this deformation period. Because the Pakhal deformation took place during or soon after the peak metamorphism of the Pakhal Supergroup, which is known to be 1000 Ma, and the last metamorphism of the Nellore-Khammam Schist Belt in the Khammam area were reported to be 1100 Ma. The tectonic juxtaposition between the Pakhal Supergroup and Nellore-Khammam Schist Belt was around 10001100 Ma.  相似文献   

4.
 Cordierite precursors were prepared by a sol-gel process using tetraethoxysilane, aluminum sec.-butoxide, and Mg metal flakes as starting materials. The precursors were treated by 15-h heating steps in intervals of 100 °C from 200 to 900 °C; they show a continuous decrease in the analytical water content with increasing preheating temperatures. The presence of H2O and (Si,Al)–OH combination modes in the FTIR powder spectra prove the presence of both H2O molecules and OH groups as structural components, with invariable OH concentrations up to preheating temperatures of 500 °C. The deconvolution of the absorptions in the (H2O,OH)-stretching vibrational region into four bands centred at 3584, 3415, 3216 and 3047 cm−1 reveals non-bridging and bridging H2O molecules and OH groups. The precursor powders remain X-ray amorphous up to preheating temperatures of 800 °C. Above this temperature the precursors crystallize to μ-cordierite; at 1000 °C the structure transforms to α-cordierite. Close similarities exist in the pattern of the 1400–400 cm−1 lattice vibrational region for precursors preheated up to 600 °C. Striking differences are evident at preheating temperatures of 800 °C, where the spectrum of the precursor powder corresponds to that of conventional cordierite glass. Bands centred in the “as-prepared” precursor at 1137 and 1020 cm−1 are assigned to Si–O-stretching vibrations. A weak absorption at 872 cm−1 is assigned to stretching modes of AlO4 tetrahedral units and the same assignment holds for a band at 783 cm−1 which appears in precursors preheated at 600 °C. With increasing temperatures, these bands show a significant shift to higher wavenumbers and the Al–O stretching modes display a strong increase in their intensities. (Si,Al)–O–(Si,Al)-bending modes occur at 710 cm−1 and the band at 572 cm−1 is assigned to stretching vibrations of AlO6 octahedral units. A strong band around 440 cm−1 is essentially attributed to Mg–O-stretching vibrations. The strongly increasing intensity of the 872 and 783 cm−1 bands demonstrates a clear preference of Al for a fourfold-coordinated structural position in the precursors preheated at high temperatures. The observed band shift is a strong indication for increasing tetrahedral network condensation along with changes in the Si–O and Al–O distances to tetrahedra dimensions similar to those occurring in crystalline cordierite. These structural changes are correlated to the dehydration process starting essentially above 500 °C, clearly demonstrating the inhibiting role of H2O molecules and especially of OH groups. Received: 1 March 2002 / Accepted: 26 June 2002  相似文献   

5.
Abstract Granitic orthogneiss is widespread throughout the metamorphic core of the Brooks Range in both the ductilely deformed blueschist/greenschist facies Schist Belt and the lower grade Central Belt (= Skajit allochthon) to the north. Orthogneiss occurs as large metaplutonic massifs and in small bodies enclosed within metasedimentary rocks. Crystallization ages for the granitic protoliths range from Proterozoic through Devonian (U-Pb zircon); the K-Ar system was reset during Cretaceous metamorphism. Mineral assemblages of the orthogneisses reflect nearly complete re-equilibration during Jurassic-Cretaceous collisional orogenesis in northern Alaska. The most common metamorphic paragenesis in orthogneiss is: Qtz + Kfs + Ab + Phe + Bt ± Ep, Ttn, Rt, Ap, Chl, Cal. Constituent minerals from 16 Brooks Range orthogneiss samples were analysed with the electron microprobe. Phengite from the Schist Belt samples is highly enriched in Al-celadonite, with Si values up to 3.50 per formula unit (on an 11-oxygen basis). Central Belt samples contain phengite with lower Si content (±3.38 p.f.u.). In nearly all samples, Si content of phengite varies considerably, reflecting partial re-equilibration to lower pressure and/or higher temperature conditions. Metamorphic conditions were estimated using the Phe-Bt-Kfs-Qtz barometer and the two-feldspar solvus thermometer. The results indicate that the Schist belt underwent high-pressure/low-temperature metamorphism (generally 9-12 kbar at 375-430° C), consistent with the widespread development of glaucophane + epidote/clinozoisite and lawsonite pseudomorphs in other rock types. The Central Belt also experienced a relatively high P-T metamorphism, with most samples yielding pressure estimates in the range 5-8 kbar (at 325-415° C). These results confirm the existence of two metamorphic belts in the core of the Brooks Range that differ in metamorphic conditions by up to 5 kbar. The range in Si content in phengite from Schist Belt samples is consistent with isothermal decompression of up to 5 kbar.  相似文献   

6.
In the Kolar Schist Belt well-preserved small-scale diastrophic structures suggest four phases of folding (F1 — F4). The near coaxial F1 andF 2folds are both isoclinal with long-drawn out limbs and sharp hinges. The axial planes of bothF 1andF 2folds are subvertical with N-S strikes; these control the linear outcrop pattern of the Schist belt. The later folds (F 3and F4) are important in small-to-intermediate scales only and are accommodation structures formed during the relaxation period of the early folding episodes. Mesoscopic shear zones, post-F2 but pre-F3 in age, are present in all the rock types in this area. The F1 and F2 folds and the mesoscopic shear zones were formed during a continuous E-W subhorizontal compression. Available geochemical and isotopic data show that the Kolar Schist Belt with ensimatic setting is bounded by two granitic terrains of contrasting evolutionary histories. This, together with E-W subhorizontal compression over a protracted period of time, strengthens the recent suggestions that the Kolar Schist Belt represents a suture. This belt then marks the site of a continent-continent collision event of late Archaean-early Proterozoic age.  相似文献   

7.
We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ε?=?5,200?±?700?l?mol?1?cm?2 and [II]ε?=?13,000?±?3,000?l?mol?1?cm?2, respectively. For CO2 the integrated coefficient is $ \varepsilon_{{{\text{CO}}_{ 2} }} $ ?=?19,000?±?2,000?l?mol?1?cm?2.  相似文献   

8.
西藏南部花岗岩及有关岩石中的电气石   总被引:1,自引:0,他引:1       下载免费PDF全文
我国西藏南部,特别是高喜马拉雅地区,广泛分布着第三纪电气石花岗岩。这些岩石及其有关的伟晶岩和混合岩中都富含黑色电气石,显示了明显的区域性岩相学标志。本文对由本区和以北冈底斯地区这类岩石中采集的黑色电气石样品,作了某些物理性质、化学成分和穆斯堡尔效应的研究。  相似文献   

9.
Polarized FTIR spectra of near endmember forsterite single crystals from Pamir, Tadzikistan show the existence of sharp strongly pleochroic absorption bands in the region of the OH stretching fundamental. Bands centered at 3674/3624, 3647/3598 and 3640/ 3592 cm-1 are attributed to OH dipoles oriented parallel to [100]. An OH band doublet at 3570/3535 cm-1 shows both, a strong absorption parallel to [100] and a strong component parallel to [001]. On the basis of the pleochroic scheme and under the assumption of vacancies on Si- and M-sites it is proposed that O1 is partially replaced by OH defects pointing to the vacant Si-site. O3 is donator oxygen of OH dipoles lying near the O3-O1 tetrahedral edge or roughly pointing to a vacant M2-site. Also O2 can act as donator oxygen of an OH group oriented along the O2-O3 edge of a vacant M1 octahedron. The splitting of the bands is explained by the presence of Fe2+ in cation sites surrounding the OH defects.  相似文献   

10.
 Conspicuous Nd, Sr and Pb isotopic differences exist between the Archean gneiss terranes adjoining the suture at the Kolar Schist Belt, south India. These gneisses, which are the deformed equivalents of plutonic and volcanic rocks, have known or inferred igneous ages of 2630 to 2530 Ma. Initial isotopic ratios of Nd, Sr and Pb suggest that metaplutonic gneisses west of the Kolar Schist Belt were emplaced into, and variably contaminated by, an evolved continental crust that formed prior to 3200 Ma. Felsic metaigneous gneisses that occur as slivers on the western margin of the schist belt have an isotopic character similar to that of the metaplutonic rocks on the same side of the Kolar Schist Belt. On the east side of the Kolar Schist Belt the isotopic evidence suggests that the 2530 Ma granitic gneisses were not derived from or contaminated by an older continental crust. Their source probably evolved with a Nd isotopic composition similar to that of typical Archean mantle, but became light rare earth element enriched after 2900 to 2700 Ma. The inferred tectonic setting for the west side of the Kolar Schist Belt is an Andean continental magmatic arc. For the east side of the Kolar Schist Belt, a possible Phanerozoic analog is an evolved island arc, such as Japan. Received: 24 June 1994/Accepted: 9 January 1995  相似文献   

11.
The polarized Raman spectra of four different beryl crystals were studied at room temperature in the range from 30 to 4000 cm-1. The spectra show significant differences between the samples studied, and corrections are proposed for the reference Raman spectra of beryl previously reported by Adams and Gardner (1974). Type II water is observed in two crystals; the corresponding symmetric Raman stretching band at 3595 cm-1 is extremely strong for an impurity (about 20% of the strongest beryl lattice mode). Another, sharper, band of similar intensity at 3605 cm-1 could possibly originate from a hydroxyl stretching mode. Additional weaker bands are observed around 1600 cm-1 and 3600–3750 cm-1. The first polarized Raman spectra of bazzite are presented and discussed.  相似文献   

12.
 The polarized single-crystal Raman spectra of synthetic H2O-containing alkali-free beryl were recorded at room and low temperatures, and the polarized single-crystal IR spectra at room temperature. The H2O molecule in the channel cavities is characterized by a Raman-active symmetric stretching vibration (ν1) at 3607 cm−1 and an IR-active asymmetric stretch (ν3) at 3700 cm−1 at room temperature. At low temperatures this ν3 mode is observed in the Raman. Weak ν1 and ν3 modes of a second type of H2O are also observed in the Raman spectra but only at 5 K. The H⋯·H vector of the most abundant type of H2O is parallel to the channel axis of beryl along [0 0 0 1]. The components of the polarizability tensor of the ν1 mode of H2O are similar to, but not exactly the same as, those of a free H2O molecule. The Raman measurements indicate that the H2O molecule is rotationally disordered around [0 0 0 1]. External translation and librational modes of H2O could be observed as overtones with the internal H2O-stretching modes. In the case of the librational motions, normal modes could also be observed directly in the Raman spectra at ∼200 cm−1. The energies of the translational modes can be determined from an analysis of the overtones and are about 9 cm−1 in energy (i.e., Tz). The energies of the librational modes are about 210 cm−1 for Rx and 190 cm−1 for Ry. Received: 8 April 1999 / Accepted: 5 April 2000  相似文献   

13.
We relate a single-crystal FTIR (Fourier transform infrared) and neutron diffraction study of two natural cancrinites. The structural refinements show that the oxygen site of the H2O molecule lies off the triad axis. The water molecule is almost symmetric and slightly tilted from the (0001) plane. It is involved in bifurcated hydrogen bridges, with Ow···O donor–acceptor distances >2.7 Å. The FTIR spectra show two main absorptions. The first at 3,602 cm?1 is polarized for E ⊥ c and is assigned to the ν3 mode. The second, at 3,531 cm?1, is also polarized for ⊥ c and is assigned to ν1 mode. A weak component at 4,108 cm?1 could possibly indicate the presence of additional OH groups in the structure of cancrinite. Several overlapping bands in the 1,300–1,500 cm?1 range are strongly polarized for ⊥ c, and are assigned to the vibrations of the CO3 group.  相似文献   

14.
ABSTRACT

Stable isotopes combined with pre-existing 40Ar/39Ar thermochronology at the Gavilan Hills and Orocopia Mountains in southeastern California record two stages of fluid–rock interaction: (1) Stage 1 is related to prograde metamorphism as Orocopia Schist was accreted to the base of the crust during late Cretaceous–early Cenozoic Laramide flat subduction. (2) Stage 2 affected the Orocopia Schist and is related to middle Cenozoic exhumation along detachment faults. There is no local evidence that schist-derived fluids infiltrated structurally overlying continental rocks. Mineral δ18O values from Orocopia Schist in the lower plate of the Chocolate Mountains fault and Gatuna normal fault in the Gavilan Hills are in equilibrium at 490–580°C with metamorphic water (δ18O = 7–11‰). Phengite and biotite δD values from the Orocopia Schist and upper plate suggest metamorphic fluids (δD ~ –40‰). In contrast, final exhumation of the schist along the Orocopia Mountains detachment fault (OMDF) in the Orocopia Mountains was associated with alteration of prograde biotite and amphibole to chlorite (T ~ 350–400°C) and the influx of meteoric-hydrothermal fluids at 24–20 Ma. Phengites from a thin mylonite zone at the top of the Orocopia Schist and alteration chlorites have the lowest fluid δD values, suggesting that these faults were an enhanced zone of meteoric fluid (δD < –70‰) circulation. Variable δD values in Orocopia Schist from structurally lower chlorite and biotite zones indicate a lesser degree of interaction with meteoric-hydrothermal fluids. High fluid δ18O values (6–12‰) indicate low water–rock ratios for the OMDF. A steep thermal gradient developed across the OMDF at the onset of middle Cenozoic slip likely drove a more vigorous hydrothermal system within the Orocopia Mountains relative to the equivalent age Gatuna fault in the Gavilan Hills.  相似文献   

15.
The infrared spectroscopic properties of selected OH defects in zircon are investigated by first-principles calculations. The explicit treatment of the coupled nature of OH motions in the stretching modes, together with the calculation of the intensity and polarization of absorption bands, makes it possible to directly compare theoretical and experimental data. The bands observed at 3,420 cm?1 (polarization parallel to c axis) and 3,385 cm?1 (polarization perpendicular to c axis) in natural and synthetic samples correspond to the IR-active vibrational modes of the hydrozircon defect, that is, fully protonated Si vacancy. The broad band observed at 3,515 cm?1 in the spectrum of zircon crystals grown in F-rich environments is consistent with the occurrence of composite (OH,F) tetrahedral defects. Calculations also show that the band observed at 3,200 cm?1 in the spectrum of synthetic undoped samples can be ascribed to fully protonated Zr vacancies. The theoretical values of integrated absorption coefficients indicate that general correlations can be reasonably used to determine the concentration of OH groups in zircon.  相似文献   

16.
The temperature dependence of the infrared active modes of meteoritic and synthetic tridymite have been investigated between 23 K and 1073 K in IR absorption and IR emission experiments. At room temperature both tridymite samples consist of a mixture of low temperature forms, in different proportions, due to the grinding. The sequence of phase transitions in Steinbach tridymite deduced from the IR data agrees well with recent X-ray and calorimetry studies using identical samples (Cellai et al. 1994). The previously suspected structural phase transition P6322P63/mmc is confirmed by the disappearance of the 470 cm-1 mode and a temperature anomaly of the spectral shift of the 790 cm-1 mode. Changes in the infrared spectra of synthetic tridymite give a different sequence of phase transitions from those of the meteoritic sample, consistent with the structural phase transitions observed in a 29Si MAS NMR investigation using the same sample (Xiao et al. 1993).  相似文献   

17.
The polarized single-crystal Raman spectrum of synthetic fayalite, Fe2SiO4, was recorded between 5 and 773 K in order to investigate its lattice dynamic behavior. A broad absorption envelope is observed at wavenumbers between 800 and 960 cm–1 and it contains two intense bands at 816 and 840 cm–1 at 293 K in the (cc) spectrum. The integral area of the envelope decreases upon cooling from 293 K and reaches a minimum around 55 K. It then increases again with a further decrease in temperature down to 5 K. It is proposed that the envelope in the (cc) spectra consists of seven different modes, some of which are symmetry-forbidden, that arise from combination scattering of nonsymmetric internal SiO4-stretching modes of Big symmetry (i = 1, 2, 3) and low-energy excitations. The individual modes can be observed under different polarizations and agree in number and wavenumber with those obtained by fitting the broad envelope with Lorentzians. An analysis of the Raman spectrum as a function of temperature, using the known magnetic properties of fayalite, allows the assignment of the low-energy excitations to short-range magnetic interactions. Modulation of the Fe2+(1)–Fe2+(2) exchange energy leads to phonon-magnetic excitation coupling and the main role in the Fe2+(1)–Fe2+(2) magnetic interaction occurs via superexchange through the oxygens. The magnetic excitations are not magnons in the usual sense, that is as quasiparticles having a long wavelength in an ordered system. The degree of observed broadening of the SiO4-stretching modes is consonant with a Fe2+(1)–Fe2+(2) exchange energy of 4.7 cm–1 presented by Schmidt et al. (1992). At temperatures above 300 K the line width of the mode at 840 cm–1 decreases slightly, whereas those of low energy lattice modes increase. This suggests that a decrease in mode broadening due to weakened magnetic interactions compensates any thermally related broadening. Complete Fe2+ spin disorder may not be reached until at least 530 K. Results from this study show that estimates of third-law entropies for silicates using simple crystal-chemical considerations that do not account for magnetic properties cannot give accurate values for many transition-metal-containing phases.  相似文献   

18.
 Raman spectra of diopside were collected from atmospheric pressure to 71 GPa. The pressure dependences of 22 modes were determined. Changes occurred in the spectra at three different pressures. First, at approximately 10 GPa, the two Raman modes at 356 and 875 cm−1 disappeared, while the mode at 324 cm−1 split into two modes, diverging at this pressure with significantly different pressure shifts; second, at approximately 15 GPa, a small (1 to 2 cm−1) drop in several of the frequencies was observed accompanied by changes in the pressure dependency of some of the modes; and third, above 55 GPa, the modes characteristic of chains of tetrahedrally coordinated silicon disappeared, while those for octahedrally coordinated silicon appeared. The first change at 10 GPa appears to be a C2/c to C2/c transition involving a change in the Ca coordination. The third change above 55 GPa appears to be a change in the silicon coordination. At 15 GPa, it is suggested that a change in compressional mechanism takes place. Received: 14 November 2000 / Accepted: 9 January 2002  相似文献   

19.
Annealing at 400?T?600 °C (40?P?60 MPa and HM buffer-controlled f(O2)) of tourmalines synthesised at the same T and P with NNO buffer induces an oxidation of Fe2+ into Fe3+ in some Y sites only (Mössbauer Spectroscopy data). Annealing in the same conditions of natural tourmalines is consistent with these results. FTIR spectroscopy shows that oxidation of Fe2+ into Fe3+ is charge-balanced by deprotonation of the external OH(3) groups. To cite this article: Y. Fuchs et al., C. R. Geoscience 334 (2002) 245–249.  相似文献   

20.
Normal coordinate calculations have been carried out on partially polymerized simple silicate crystals, including Li and Na di- and metasilicates, Li and Gd pyrosilicates, thortveitite and rankinite. In the antisymmetric Si-O stretching modes which are active at 800–1200 cm?1 in infrared spectra, Si-Obr vibrations occur at higher frequencies than Si-Onb vibrations if the bonds have equivalent strengths. However, this relationship is usually reversed when bridging oxygens are overbonded and non-bridging oxygens are underbonded in terms of Pauling bond strengths, a situation which is generally more common in crystals. An observed bimodality of the high-frequency envelope in infrared spectra of glasses in the alkali oxide-silica systems may be somewhat fortuitous, with the high frequency component (ca. 1100 cm?1) representing underbonded non-bridging oxygens and saturated bridging oxygens, and the lower-frequency component (ca. 1000 cm?1) mainly oversaturated bridging oxygens. Significant differences between crystals and glasses in the number and location of the main high-frequency infrared peaks suggest that there are short-range bonding rearrangements in the glasses, and that crystallite models are not applicable. Mid-frequency (600–800 cm?1) infrared modes in silicates more polymerized than the pyrosilicate (Si2O7) appear to be mostly antisymmetric modes in which Si rattles against bridging oxygens, rather than symmetric stretching modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号