首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
After the strong 2015/16 El Ni?o event, cold conditions prevailed in the tropical Pacific with the second-year cooling of the 2017/18 La Ni?a event. Many coupled models failed to predict the cold SST anomalies(SSTAs) in 2017. By using the ERA5 and GODAS(Global Ocean Data Assimilation System) products, atmospheric and oceanic factors were examined that could have been responsible for the second-year cooling, including surface wind and the subsurface thermal state. A time sequence is described to ...  相似文献   

2.
Warm and cold phases of El Nino–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features of anomalous sea surface temperature (SST) and atmospheric circulation over the tropical Western Pacific (WP) in El Nino and La Nina mature-to-decay phases are analyzed. It is found that the interannual standard deviations of outgoing longwave radiation and 850 hPa zonal wind anomalies over the equatorial WP during El Nino (La Nina) mature-to-decay phases are much stronger (weaker) than the intraseasonal standard deviations. It seems that the weakened (enhanced) intraseasonal oscillation during El Nino (La Nina) tends to favor a stronger (weaker) interannual variation of the atmospheric wind, resulting in asymmetric equatorial WP zonal wind anomalies in El Nino and La Nina decay phases. Numerical experiments demonstrate that such asymmetric zonal wind stress anomalies during El Nino and La Nina decay phases can lead to an asymmetric decay speed of SST anomalies in the central-eastern equatorial Pacific through stimulating di erent equatorial Kelvin waves. The largest negative anomaly over the Nino3 region caused by the zonal wind stress anomalies during El Nino can be threefold greater than the positive Nino3 SSTA anomalies during La Nina, indicating that the stronger zonal wind stress anomalies over the equatorial WP play an important role in the faster decay speed during El Nino.  相似文献   

3.
ABSTRACT The authors explored the connection and transition chains of the Northern Oscillation (NO) and the North Pacific Oscilla tion (NPO), the Southern Oscillation (SO), and the Antarctic Oscillation (AAO) on the interannual timescale in a companion paper. In this study, the connection between the transition chains of the four oscillations (the NO and NPO, the SO and AAO) and the El Nifio/La Nifia cycle were examined. It was found that during the transitions of the four oscillations, alternate anticyclonic/cyclonic correlation centers propagated from the Western Pacific to the Eastern Pacific along both sides of the equator. Between the anticyclonic/cyclonic correlation centers, the zonal wind anomalies also moved eastwardly, favoring the advection of sea surface temperature anomalies from the tropical Western Pacific to the Eastern Pacific. When the anti cyclonic anomalies arrived in the Eastern Pacific, the positive phase of NO/SO and La Nifia were established and vice versa. Thus, in 4-6 years, with an entire transition chain of the four oscillations, an E1 Nifio/La Nifia cycle completed. The eastward propagation of the covarying anomalies of the sea level pressure, zonal wind, and sea surface temperature was critical to the transition chains of the four oscillations and the cycle of E1 Nifio/La Nifia. Based on their close link, a new empirical prediction method of the timing of E1 Nifio by the transition chains of the four oscillations was proposed. The assessment provided confidence in the ability of the new method to supply information regarding the long-term variations of the ocean and atmosphere in the tropical Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号