首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract This paper describes the results of petrographical and meso- to microstructural observations of brittle fault rocks in cores obtained by drilling through the Nojima Fault at a drilling depth of 389.52 m. The zonation of deformation and alteration in the central zone of the fault is clearly seen in cores of granite from the hanging wall, in the following order: (i) host rock, which is characterized by some intragranular microcracks and in situ alteration of mafic minerals and feldspars; (ii) weakly deformed and altered rocks, which are characterized by transgranular cracks and the dissolution of mafic minerals, and by the precipitation of zeolites and iron hydroxide materials; (iii) random fabric fault breccia, which is characterized by fragmentation, by anastomosing networks of transgranular cracks, and by the precipitation of zeolites and iron hydroxide materials; and (iv) fault gouge, which is characterized by the precipitation of smectite and localized cataclastic flow. This zonation implies that the fault has been weakened gradually by fluid-related fracturing over time. In the footwall, a gouge layer measuring only 15 mm thick is present just below the surface of the Nojima Fault. These observations are the basis for a model of fluid behavior along the Nojima Fault. The model invokes the percolation of meteoric fluids through cracks in the hanging wall fault zone during interseismic periods, resulting in chemical reactions in the fault gouge layer to form smectite. The low permeability clay-rich gouge layer sealed the footwall. The fault gouge was brecciated during coseismic or postseismic periods, breaking the seal and allowing fluids to readily flow into the footwall, thus causing a slight alteration. Chemical reactions between fluids and the fault breccia and gouge generated new fault gouge, which resealed the footwall, resulting in a low fluid condition in the footwall during interseismic periods.  相似文献   

2.
Abstract The internal structures of the Nojima Fault, south-west Japan, are examined from mesoscopic observations of continuous core samples from the Hirabayashi Geological Survey of Japan (GSJ) drilling. The drilling penetrated the central part of the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake) ( M 7.2). It intersected a 0.3 m-thick layer of fault gouge, which is presumed to constitute the fault core (defined as a narrow zone of extremely concentrated deformation) of the Nojima Fault Zone. The rocks obtained from the Hirabayashi GSJ drilling were divided into five types based on the intensities of deformation and alteration: host rock, weakly deformed and altered granodiorite, fault breccia, cataclasite, and fault gouge. Weakly deformed and altered granodiorite is distributed widely in the fault zone. Fault breccia appears mostly just above the fault core. Cataclasite is distributed mainly in a narrow (≈1 m wide) zone in between the fault core and a smaller gouge zone encountered lower down from the drilling. Fault gouge in the fault core is divided into three types based on their color and textures. From their cross-cutting relationships and vein development, the lowest fault gouge in the fault core is judged to be newer than the other two. The fault zone characterized by the deformation and alteration is assumed to be deeper than 426.2 m and its net thickness is > 46.5 m. The fault rocks in the hanging wall (above the fault core) are deformed and altered more intensely than those in the footwall (below the fault core). Furthermore, the intensities of deformation and alteration increase progressively towards the fault core in the hanging wall, but not in the footwall. The difference in the fault rock distribution between the hanging wall and the footwall might be related to the offset of the Nojima Fault and/or the asymmetrical ground motion during earthquakes.  相似文献   

3.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   

4.
Abstract A multi-offset hydrophone vertical seismic profiling (VSP) experiment was done in a 747 m deep borehole at Nojima Hirabayashi, Hyogo prefecture, Japan. The borehole was drilled to penetrate the Nojima Fault, which was active in the 1995 Hyogo-ken Nanbu earthquake. The purpose of the hydrophone VSP is to detect subsurface permeable fractures and permeable zones and, in the present case, to estimate the permeability of the Nojima Fault. The analysis was based on a model by which tube waves are generated when incident P-waves compress the permeable fractures (or permeable zones) intersecting the borehole and a fluid in the fracture is injected into the borehole. Permeable fractures (or permeable zones) are detected at the depths of tube wave generation, and fracture permeability is calculated from the amplitude ratio of tube wave to incident P-wave. Several generations of tube waves were detected from the VSP sections. Distinct tube waves were generated at depths of the fault zone that are characterized by altered and deformed granodiorite with a fault gouge, suggesting that permeable fractures and permeable zones exist in the fault zone. Tube wave analysis shows that the permeability of the fault gouge from 624 m to 625 m is estimated to be approximately 2 × 10−12 m2.  相似文献   

5.
Samples of damage-zone granodiorite and fault core from two drillholes into the active, strike-slip Nojima fault zone display microstructures and alteration features that explain their measured present-day strengths and permeabilities and provide insight on the evolution of these properties in the fault zone. The least deformed damage-zone rocks contain two sets of nearly perpendicular (60–90° angles), roughly vertical fractures that are concentrated in quartz-rich areas, with one set typically dominating over the other. With increasing intensity of deformation, which corresponds generally to increasing proximity to the core, zones of heavily fragmented rock, termed microbreccia zones, develop between prominent fractures of both sets. Granodiorite adjoining intersecting microbreccia zones in the active fault strands has been repeatedly fractured and locally brecciated, accompanied by the generation of millimeter-scale voids that are partly filled with secondary minerals. Minor shear bands overprint some of the heavily deformed areas, and small-scale shear zones form from the pairing of closely spaced shear bands. Strength and permeability measurements were made on core collected from the fault within a year after a major (Kobe) earthquake. Measured strengths of the samples decrease regularly with increasing fracturing and fragmentation, such that the gouge of the fault core and completely brecciated samples from the damage zone are the weakest. Permeability increases with increasing disruption, generally reaching a peak in heavily fractured but still more or less cohesive rock at the scale of the laboratory samples. Complete loss of cohesion, as in the gouge or the interiors of large microbreccia zones, is accompanied by a reduction of permeability by 1-2 orders of magnitude below the peak values. The core samples show abundant evidence of hydrothermal alteration and mineral precipitation. Permeability is thus expected to decrease and strength to increase somewhat in active fault strands between earthquakes, as mineral deposits progressively seal fractures and fill pore spaces.  相似文献   

6.
断层带内的流体不仅可以通过水岩反应改变断裂岩的矿物组成和化学成分,从而导致化学性质和物理性质的变化,而且可以影响或控制断裂带的变形行为.断裂带中岩石磁学特征是由特定化学环境下磁性矿物的种类和含量所决定的,因此,从矿物学和地球化学角度探讨断裂岩的磁性变化,对揭示断层的变形行为和环境具有一定的指示作用.本文以汶川科钻WFSD-3P钻孔中龙门山灌县—安县断裂带断裂岩为研究对象,运用高分辨率磁化率测试、XRD矿物成分半定量分析、XRF元素扫描以及不同价态Fe元素含量分析等多种方法开展断层磁学变化和变形环境的研究.磁化率测试结果表明灌县—安县断裂带断层泥的磁化率值普遍低于对应的围岩磁化率平均值.结合前人研究成果表明造成该断层泥低磁化率异常的原因是在间震期的长期流体作用下,铁磁性矿物(例如磁铁矿)转变成顺磁性矿物(铁硫化物、菱铁矿或含铁的黏土矿物).新生铁硫化物和含铁黏土矿物是在间震期缓慢形成的,而黏土矿物含量的增加弱化了断层强度,促进断层蠕滑,这说明断层泥低磁化率异常可能指示了该断裂在间震期长期缓慢活动,即为蠕滑变形.断层泥中黄铁矿的发育和高Fe2+和S元素、低Fe3+的特征显示灌县—安县断裂作用环境通常是在低温、还原环境中进行的.这些结果与低磁化率值的相关性暗示断层泥低磁化率异常可能对活动断层的低温还原环境具有指示意义.  相似文献   

7.
Abstract Anisotropy of magnetic susceptibility (AMS) has been used to infer finite strain fabrics in plastically deformed rocks, but there are few studies of magnetic properties in fractured fault rocks. Changes in magnetic and fractal properties of fractured granites from the Disaster Prevention Research Institute, Kyoto University (DPRI) 500 m drilling core towards the Nojima Fault and of the well-foliated fault gouge are described. Fractal analysis of fractured granites shows that the fractal dimension ( D ) increases linearly toward the gouge zone of the fault. In weakly fractured granites ( D = 1.05–1.24), it was found that the degree of AMS correlates positively with the fractal dimension, suggesting a fracture-related magnetic fabric due to fracturing. In strongly fractured granites ( D = 1.25–1.50), weaker, nearly isotropic AMS is found, suggesting erasure by the fragmentation of the magnetic minerals. Within the fault gouge zone, an isotropic AMS fabric was found, as well as twofold increases in magnetic intensity and susceptibility. These changes reflect the production of new magnetite grains, subsequently confirmed by hysteresis studies, which suggests that fault gouge might be regarded as the source of the regional geomagnetic field contrast along active faults. Thus, AMS is clearly a potentially useful tool for inferring the fracturing texture of magnetic minerals in fractured rocks and detecting active faults from the high susceptibility contrast of fault gouge.  相似文献   

8.
断层岩,尤其是断层泥的磁性异常近年来被研究人员广泛关注,但关于其磁性异常的形成原因尚没有统一的解释.海原断裂是青藏高原东北缘一条重要的走滑断裂,前期研究发现海原断裂带景泰段出露有数十米至上百米的断层岩,是理想的研究材料.本研究选取海原断裂带景泰段老虎山山前一个断层岩剖面作为研究对象,拟通过测量断层岩的磁化率(χ)、非磁滞剩磁(ARM)、饱和等温剩磁(SIRM)、等温剩磁(IRM)以及磁化率随温度变化曲线(χ-T曲线)等磁学参数并结合粒度、碳含量、X射线衍射(XRD)等分析方法来探究海原断裂带老虎山段不同颜色断层岩的磁性特征及其形成机制.磁学研究显示黑色、红色及杂色断层泥相较于围岩和破碎带显示了低磁性,尤其是黑色断层泥,其磁化率值均小于10×10~(-8 )m~3·kg~(-1).碳含量及矿物相分析结果指示黑色断层泥与断裂带附近石炭系煤层具有相似的矿物相组成,结合相似的χ-T曲线推断石炭系煤层为黑色断层泥的母岩.石炭系煤层经断层活动卷入断层,在断层强烈剪切摩擦作用下不断细化,形成伊利石等黏土矿物,并促使一部分顺磁性含铁硅酸盐矿物或其他含铁矿物发生化学变化形成亚铁磁性矿物,使得黑色断层泥的磁化率较其母岩石炭系煤层有一定升高.通过黑色断层泥的铁磁性磁化率结合χ-T曲线计算获得断层泥所经历的最高温度约为420℃,不超过450℃.老虎山段厚层碳质断层泥的存在为该地区发现的浅层蠕滑现象提供了一种解释.  相似文献   

9.
Abstract Distinctive fault ruptures, the Nojima Fault and Ogura Fault, appeared along the northwestern coast of Awaji Island at the time of the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). In order to delineate the shallow resistivity structures around the faults just after they formed, Very Low Frequency Magnetotelluric (VLF-MT) surveys were made at five sites along the Nojima Fault and at one site along the Ogura Fault. Fourteen transects were made at the one site on the Ogura Fault, and another transect covers the area between the two faults. Changes in apparent resistivity or phase, or both, commonly occur when crossing the surface location of one of the faults, except for the northern transects at OGR-0 on the Ogura Fault. Apparent resistivity values of less than 100 Ωm were observed for Tertiary and Quaternary sediments and values larger than 200 Ωm for granitic rocks. The resistivity structures are related to the morphological characteristics of the fault ruptures. Remarkably conductive zones (less than 10 Ωm in apparent resistivity and 30–40 m in width) were found where the surface displacement is distinct and prominent along a single fault plane. If remarkably conductive zones were formed at the time of the 1995 Hyogo-ken Nanbu earthquake, the results provide a good constraint on the dimensions of a conductive zone near the surface that was made by one earthquake. Alternatively, if characteristic resistivity structures existed prior to the earthquake, the conductive zone was probably formed by some tens of earthquakes in relatively modern times. In this case, this phenomenon is inferred to be a concentration of fracturing in a narrow zone and is associated with the formation of clay minerals, which enhance rock conductivity.  相似文献   

10.
This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30–40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.  相似文献   

11.
5.12汶川地震同震地表破裂带在虹口八角-深溪沟一带主要出露于三叠系须家河组的炭质泥岩中,同震断层泥在颜色、结构上与老断层泥和围岩类似。通过开挖探槽,系统采样,采用粉晶X射线衍射定量分析方法,研究了同震地表破裂带的围岩、断层角砾岩、老断层泥和新断层泥的矿物成分特征。同震断层泥的主要成分为石英和黏土矿物,含微量长石和白云石;断层泥的显著特征为高黏土矿物含量,从同震断层泥、老断层泥、角砾岩到围岩黏土矿物含量依次降低,黏土矿物以伊利石和伊蒙混层为主,含微量绿泥石和高岭石,矿物组成明显比地表破裂带北段同震断层泥简单。不同颜色的同震断层泥成分略有不同,黑色断层泥中伊利石含量明显高于白色断层泥;老断层泥中含有方解石和白云石,而同震断层泥不含方解石,只含微量白云石。同震断层泥中伊蒙混层高含量表明,在本次地震错动中有富含K的流体参与。  相似文献   

12.
Abstract Seismometers were installed at three depths in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m borehole drilled into the Nojima Fault zone, southwest Japan. The waveforms recorded by these seismometers are rather simple compared with those recorded at the DPRI 800 m borehole or on the ground surface. These data should be well suited for detecting fault zone-trapped waves and estimating the fault zone structure and its temporal variation related to the healing process of the ruptured fault. Typical waveforms trapped in the fault zone were observed by a surface seismographic array across the Nojima Fault just after the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). Among the wave data recorded in the DPRI 1800 m borehole, however, clear evidences of fault zone-trapped waves have not yet been found, and further studies are continuing. The present study outlines the observation system in the DPRI 1800 m borehole, which will make it easier to access and analyze the borehole data.  相似文献   

13.
Ryuji Ikeda 《Island Arc》2001,10(3-4):199-205
Abstract Three boreholes, 1001 m, 1313 m and 1838 m deep, were drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) in the vicinity of the epicenter of the 1995 Hyogo-ken Nanbu (Kobe) earthquake to investigate tectonic and material characteristics near and in active faults. Using these boreholes, an integrated study of the in situ stress, heat flow, and material properties of drill cores and crustal resistivity was conducted. In particular, the Nojima–Hirabayashi borehole was drilled to a depth of 1838 m and directly intersected the Nojima Fault, and three possible fault strands were detected at depths of 1140 m, 1313 m and 1800 m. Major results obtained from this study include the following: (i) shear stress around the fault zone is very small, and the orientation of the maximum horizontal compression is perpendicular to the surface trace of faults; (ii) from the results of a heat flow study, the lower cut-off depth of the aftershocks was estimated to be roughly 300°C; (iii) cores were classified into five types of fault rocks, and an asymmetric distribution pattern of these fault rocks in the fracture zones was identified; (iv) country rock is characterized by a very low permeability and high strength; and (v) resistivity structure can be explained by a model of a fault extending to greater depths but with low resistivity.  相似文献   

14.
15.
ZHOU Yong-sheng 《地震地质》2019,41(5):1266-1272
Paleo-seismic and fault activity are hard to distinguish in host rock areas compared with soft sedimentary segments of fault. However, fault frictional experiments could obtain the conditions of stable and unstable slide, as well as the microstructures of fault gouge, which offer some identification marks between stick-slip and creep of fault. We summarized geological and rock mechanical distinction evidence between stick-slip and creep in host rock segments of fault, and analyzed the physical mechanisms which controlled the behavior of stick-slip and creep. The chemical composition of fault gouge is most important to control stick-slip and creep. Gouge composed by weak minerals, such as clay mineral, has velocity weakening behavior, which causes stable slide of fault. Gouge with rock-forming minerals, such as calcite, quartz, feldspar, pyroxene, has stick-slip behavior under condition of focal depth. To the gouge with same chemical composition, the deformation mechanism controls the frictional slip. It is essential condition to stick slip for brittle fracture companied by dilatation, but creep is controlled by compaction and cataclasis as well as ductile shear with foliation and small fold. However, under fluid conditions, pressure solution which healed the fractures and caused strength recovery of fault, is the original reason of unstable slide, and also resulted in locking of fault with high pore pressure in core of fault zone. Contrast with that, rock-forming minerals altered to phyllosilicates in the gouges by fluid flow through degenerative reaction and hydrolysis reaction, which produced low friction fault and transformations to creep. The creep process progressively developed several wide shear zones including of R, Y, T, P shear plane that comprise gouge zones embedded into wide damage zones, which caused small earthquake distributed along wide fault zones with focal mechanism covered by normal fault, strike-slip fault and reverse fault. However, the stick-slip produced mirror-like slide surfaces with very narrow gouges along R shear plane and Y shear plane, which caused small earthquake distributed along narrow fault zones with single kind of focal mechanism.  相似文献   

16.
This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaojiaqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243° or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coefficient of around 0.6 to very low steady-state friction coefficient of 0.1-0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.  相似文献   

17.
Abstract Drilling was carried out to penetrate the Nojima Fault where the surface rupture occurred associated with the 1995 Hyogo-ken Nanbu earthquake. Two 500 m boreholes were successfully drilled through the fault zone at a depth of 389.4 m. The drilling data show that the relative uplift of the south-east side of the Nojima Fault (south-west segment) was approximately 230 m. The Nojima branch fault, which branches from the Nojima Fault, is inferred to extend to the Asano Fault. From the structural contour map of basal unconformity of the Kobe Group, the vertical component of displacement of the Nojima branch–Asano Fault is estimated to be 260–310 m. Because the vertical component of displacement on the Nojima Fault of the north-east segment is a total of those of the Nojima Fault of the south-west segment and of the Nojima branch–Asano Fault, it is estimated to total to 490–540 m. From this, the average vertical component of the slip rate on the Nojima Fault is estimated to be 0.4–0.45 m/103 years for the past 1.2 million years.  相似文献   

18.
Abstract Crack-filling clays and weathered cracks were observed in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m cores drilled from the Nojima Fault Zone, which was activated during the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). The crack-filling clays consist mainly of unconsolidated fine-grained materials that fill opening cracks with no shear textures. Most of the cracks observed in the DPRI 1800 m cores are yellow-brown to brown in color due to weathering. Powder X-ray diffraction analyses show that the crack-filling clays are composed mainly of clay minerals and carbonates such as siderite and calcite. Given that the top of the borehole is approximately 45 m above sea level, most of the core is far below the stable groundwater table. Hence, it is suggested that the crack-filling clays and weathered cracks in the cores taken at depths of 1800 m were formed by the flow of surface water down to the deep fractured zone of the Nojima Fault Zone during seismic faulting.  相似文献   

19.
汶川地震断层岩的矿物学和地球化学特征揭示出地震断层经历了漫长时间演化和复杂的水岩相互作用.间震期水岩相互作用导致断层岩中的破碎矿物蚀变,尤其是长石等矿物含量渐渐减少甚至消失,而黏土矿物(蒙脱石、伊利石、伊/蒙混层、绿泥石等)含量逐渐增高,以及如黄铁矿、石膏、重晶石、坡缕石等热液系统中常见的矿物大量出现;Mg、P、Ti、Mn、Fe等元素倾向富集在断层带中,而Si、K和Na等出现明显的亏损;元素的大量迁移导致断层带的体积巨量亏损.实验结果表明,黏土矿物的亲水性引起水渗透率比干燥气体渗透率明显偏低,并且二者偏差无法通过Klinkenberg校正消除.蒙脱石吸水膨胀和黏土矿物颗粒表面吸附孔隙流体造成孔隙度降低是导致水渗透率偏低的重要原因.断层岩碎屑结构使得其中的孔隙可能在600 MPa围压下得以保存,从而有助于流体沿断层带下渗,并在断层带深部形成高流体孔隙压.地震断层的主要矿物学及粒度分布特征并非在地震破裂过程中形成,因此利用断层岩粒度分布资料估算地震破裂能并不合适.  相似文献   

20.
断裂带物质组成、结构及其物理性质是理解断裂变形机制和地震破裂过程的基础和关键,断裂带地震(黏滑)和非地震(蠕滑)滑移行为不仅对了解地震活动性和山脉隆升过程具有重要意义,而且直接为防震减灾提供科学依据.我们以穿过龙门山映秀—北川和灌县—安县断裂带的汶川地震断裂带科学钻探(WFSD)岩心和地表出露的断裂带为研究对象,通过对断裂岩组成、结构、显微构造和钻孔物性测井数据进行分析研究,确定了龙门山逆冲断裂带滑移行为和物性特征,初步探讨了大地震活动性和有关断裂带的隆升作用:(1)映秀—北川断裂带倾向NW,浅部倾角~65°,发育的断裂岩厚约180~280 m,由碎裂岩、假玄武玻璃(地震化石)、断层泥和断层角砾岩组成.断裂带具有高自然伽马、高磁化率值、低电阻率、低波速等物理性质以及对称型破碎结构.断层泥普遍具有摩擦热效应的高磁化率值和石墨化作用特征,是古地震滑动的岩石记录.表明映秀—北川断裂带为经常发生大地震的断裂带,晚新生代以来类似汶川地震的大地震复发周期小于6000—10000年,具有千年复发周期特征.(2)灌县—安县断裂带倾向NW,浅部倾角~38°,发育的断裂岩厚约40~50 m,仅由断层泥和断层角砾岩组成,具有典型的"压溶"结构,表现出蠕滑性质.除压溶作用外,定向富集的层状黏土矿物和微孔隙的发育使断层强度变弱.断裂带具上盘破碎的非对称型破碎结构,除具低磁化率值特征外,其他物性与映秀—北川断裂带一致.(3)根据断裂岩厚度与断层滑移量相关经验公式关系,以及断层产状,粗略估算映秀—北川断裂带自中生代以来累积垂直位移量大于9 km,灌县—安县断裂带累积垂直位移量小于3 km.映秀—北川断裂带长期大地震产生的累积垂直位移量是龙门山隆升的主要贡献.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号