首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The characteristics of the temporal and height variations of the temperature structure parameter $C_\mathrm{T}^{2}$ in strongly convective situations derived from the sodar echo-signal intensity measurements were analyzed for the first 100 m. It was corroborated that the probability density function (pdf) of the logarithm of $C_\mathrm{T}^{2}$ in the lower convective boundary layer is markedly non-Gaussian, whereas turbulence theory predicts it to be normal. It was also corroborated that the sum of two weighted Gaussians, which characterize the statistics of $C_\mathrm{T}^{2}$ within convective plumes and in their environment and the probability of plume occurrence, well approximates the observed pdfs. It was shown that the height behaviour of the arithmetic mean of $ C_\mathrm{T}^{2}$ (both total and within plumes) follows well a power law $C_\mathrm{T}^{2} (z) \sim z^{-q}$ with the exponent $q$ close to the theoretically predicted value of 4/3. But for the geometrical means of $C_\mathrm{T}^{2}$ (both total and within the plumes), $q$ is close to 1. The difference between arithmetically and geometrically averaged $C_\mathrm{T}^{2}$ profiles was analyzed. The vertical profiles of the standard deviation, skewness and kurtosis of $\hbox {ln}C_\mathrm{T}^{2}$ pdfs were analyzed to show their steady behaviour with height. The standard deviations of the logarithm of $C_\mathrm{T}^{2}$ within the plumes and between them are similar and are 1.5 times less than the total standard deviation. The estimate of the variability index $F_\mathrm{T}$ and its height behaviour were obtained, which can be useful to validate some theoretical and modelling predictions. The vertical profiles of the skewness and kurtosis show the negative asymmetry of pdfs and their flatness, respectively. The spectra of variations in $\hbox {ln}C_\mathrm{T}^{2}$ are shown to be satisfactorily fitted by the power law $f^{-\gamma } $ in the frequency range 0.02 and 0.2 Hz, with the average exponent $\approx $ 1.27  $\pm $  0.22.  相似文献   

2.
The Weather Research and Forecasting (WRF) model can be used to simulate atmospheric processes ranging from quasi-global to tens of m in scale. Here we employ large-eddy simulation (LES) using the WRF model, with the LES-domain nested within a mesoscale WRF model domain with grid spacing decreasing from 12.15 km (mesoscale) to 0.03 km (LES). We simulate real-world conditions in the convective planetary boundary layer over an area of complex terrain. The WRF-LES model results are evaluated against observations collected during the US Department of Energy-supported Columbia Basin Wind Energy Study. Comparison of the first- and second-order moments, turbulence spectrum, and probability density function of wind speed shows good agreement between the simulations and observations. One key result is to demonstrate that a systematic methodology needs to be applied to select the grid spacing and refinement ratio used between domains, to avoid having a grid resolution that falls in the grey zone and to minimize artefacts in the WRF-LES model solutions. Furthermore, the WRF-LES model variables show large variability in space and time caused by the complex topography in the LES domain. Analyses of WRF-LES model results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day as well as the distance from the inflow boundaries.  相似文献   

3.
We propose improvements in the “non-local” parameterization scheme of the convective boundary layer. The countergradient terms for components of the momentum fluxes are introduced in a form analogous to those for other scalars. The scheme also includes explicit expressions for entrainment fluxes of momentum, temperature, and humidity. A simplified procedure for calculating the boundary-layer height is proposed, consisting of two steps: the evaluation of the convection level, followed by the assessment of the depth of the interfacial layer.  相似文献   

4.
We quantify the role of the convective buoyant structures and the remainder turbulence, here called background turbulence, in the convective atmospheric boundary layer in horizontally homogeneous, dry and barotropic conditions. Three filtering methods to separate the structures and the background turbulence are first evaluated. These are: short-time averaging, Fourier filtering and proper orthogonal decomposition. The Fourier method turns out to be the most appropriate for the present purpose. The decomposition is applied to two cases: one with no mean flow and another with moderate mean wind speed. It is shown that roughly 85 % of the vertical flux of the potential temperature and about 72 % of the kinetic energy is carried by the structures in the mixed layer in both cases. The corresponding percentage for the potential temperature variance is 81 % in the zero mean-wind case and 76 % in the moderate mean-wind case. The structures are responsible for as much as 94 % of the momentum flux in the mixed layer of the moderate mean-wind case. In the surface layer the background turbulence is generally more important than the structure contribution in both cases. The budget of the potential temperature flux is analyzed in detail and it is shown that its turbulent transport term is mostly built up by the structures but also the interaction between the structures and the background turbulence plays a significant role. The other important budget terms are shown to be dominated by the structures except for the pressure–temperature gradient covariance.  相似文献   

5.
This study investigates the convective boundary layer (CBL) that develops over anon-homogeneous surface under different thermal and dynamic conditions. Analysesare based on data obtained from a Russian research aircraft equipped with turbulentsensors during the GAME-Siberia experiment over Yakutsk in Siberia, from April to June 2000.Mesoscale thermal internal boundary layers (MTIBLs) that radically modified CBLdevelopment were observed under unstable atmospheric conditions. It was found thatMTIBLs strongly influenced the vertical and horizontal structures of virtual potentialtemperature, specific humidity and, most notably, the vertical sensible and latent heatfluxes. MTIBLs in the vicinity of the Lena River lowlands were confirmed by clouddistributions in satellite pictures.MTIBLs spread through the entire CBL and radically modify its structure if the CBL isunstable, and strong thermal features on the underlying surface have horizontal scalesexceeding 10 km. MTIBL detection is facilitated through the use of special parameterslinking shear stress and convective motion.The turbulent structure of the CBL with and without MTIBLs was scaled usingthe mosaic or flux aggregate approach. A non-dimensional parameterLRau/Lhetero (where LRau is Raupach's length and Lhetero is the horizontal scale of the surface heterogeneity)estimates the application limit of similarity and local similarity scaling models forthe mosaic parts over the surface. Normalized vertical profiles of wind speed, airtemperature, turbulent sensible and latent heat fluxes for the mosaic parts withLRauLhetero < 1 could be estimated by typical scalingcurves for the homogeneous CBL. Traditional similarity scaling models for the CBLcould not be applied for the mosaic parts with LRau/Lhetero > 1.For some horizontally non-homogeneous CBLs, horizontal sensible heat fluxes werecomparable with the vertical fluxes. The largest horizontal sensible heat fluxes occurred at the top of the surface layer and below the top of the CBL.Formerly affiliated to the Frontier Observational Research System for Global ChangeFormerly affiliated to the Frontier Observational Research System for Global Change  相似文献   

6.
Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared imagery and sonic anemometer measurements were obtained during the boundary layer late afternoon and sunset turbulence (BLLAST) experimental campaign. Temporal turbulence data in the surface-layer are then analyzed jointly with spatial surface-temperature imagery. The surface-temperature structures (identified using surface-temperature fluctuations) are strongly linked to atmospheric turbulence as manifested in several findings. The surface-temperature coherent structures move at an advection speed similar to the upper surface-layer or mixed-layer wind speed, with a decreasing trend with increase in stability. Also, with increasing instability the streamwise surface-temperature structure size decreases and the structures become more circular. The sequencing of surface- and air-temperature patterns is further examined through conditional averaging. Surface heating causes the initiation of warm ejection events followed by cold sweep events that result in surface cooling. The ejection events occur about 25 % of the time, but account for 60–70 % of the total sensible heat flux and cause fluctuations of up to 30 % in the ground heat flux. Cross-correlation analysis between air and surface temperature confirms the validity of a scalar footprint model.  相似文献   

7.
Analytical solutions of convective waves in the convective boundary layer (CBL) were obtained with two-layer linearized atmospheric equations including Rayleigh friction, which represents the turbulent viscosity in the lower CBL. The analytical model shows that the interaction between the convection in the lower layer and gravity waves in the upper layer is one of the causes for the formation of convective bands. The flow and temperature fields obtained by the analytical model present the main characteristics of convective bands found in field observations. We have also investigated the influences of atmospheric conditions on the characteristics of the bands. Results accord with previous knowledge about these phenomena.  相似文献   

8.
Over complex terrain, convection and thermally-driven circulations simultaneously occur under fair weather conditions during the day. To investigate these processes on the basis of observations, simultaneous measurements on different scales are necessary. Comprehensive measurements with the mobile observation platform KITcube were performed on the mountainous island of Corsica during the HYdrological cycle in Mediterranean EXperiment (HyMeX) field campaign in late summer and autumn 2012. Using a case study, the benefit of integrated measurement systems and coordinated scan strategies was demonstrated, and experimental evidence of, and new insights into, convective and advective transport processes in a valley were obtained. Convection, thermally-driven circulations and topographic and advective venting led to the diurnal cycle of temperature, humidity and wind over complex terrain in the mountain atmospheric boundary layer (mountain ABL), which was deeper than an ABL over homogeneous terrain under equal surface forcing. Due to the combined transport processes on different scales, the mountain ABL in a valley also extended beyond the convection layer, which was characterized by surface-based, buoyancy-driven turbulent mixing. Strong subsidence, with a vertical velocity of about 1 m s \(^{-1}\) , was present within the mountain ABL for several hours around noon and suppressed the convection-layer growth. Above the layer with subsidence, elevated vertical motions, consisting of alternating updrafts and downdrafts, occurred. Once the convection layer grew to the bottom of the layer with elevated vertical motions, surface-based convective cells occasionally coupled to the elevated updrafts, as a result of which the convection layer rapidly deepened.  相似文献   

9.
We describe one-dimensional (1D) simulations of the countergradient zone of mean potential temperature observed in the convective boundary layer (CBL). The method takes into account the third-order moments (TOMs) in a turbulent scheme of relatively low order, using the turbulent kinetic energy equation but without prognostic equations for other second-order moments. The countergradient term is formally linked to the third-order moments and , and a simple parameterization of these TOMs is proposed. It is validated for several cases of a dry CBL, using large-eddy simulations that have been realized from the MESO-NH model. The analysis of the simulations shows that TOMs are responsible for the inversion of the sign of in the higher part of the CBL, and budget analysis shows that the main terms responsible for turbulent fluxes and variances are now well reproduced.  相似文献   

10.
A large-eddy simulation of the atmospheric boundary layer, large enough to contain both an urban surface layer and a convective mixed layer, was performed to investigate inner-layer and outer-layer scale motions. The objective was to determine the applicability of Monin–Obukhov similarity theory to inner-layer motions, to investigate the influence of outer-layer motions on surface-layer structure, as well as to assess the interaction of the two scales of motion. The urban surface roughness consisted of square-patterned cubic buildings of dimension H (40 m). A spatial filter was used to decompose the two scales in the inertial sublayer. The horizontal square filter of size 10H was effective in separating the inner-layer (surface-layer height ≈ 2 H) and outer-layer scales (boundary-layer height δ ≈ 30H), where the Reynolds stress contribution of the inner layer dominates in the logarithmic layer (depth 2H). Similarity coefficients for velocity fluctuations were successfully determined for inner-layer motions in the surface layer, proving the robustness of Monin–Obukhov similarity for surface-layer turbulence. The inner-layer structures exhibit streaky structures that have similar streamwise length but narrower spanwise width relative to the streamwise velocity fluctuation field, consistent with observations from an outdoor scale model. The outer-layer motions to some extent influence the location of ejections and sweeps through updraft and downdraft motions, respectively, thus, disturbing the homogeneity and similarity of inner-layer motions. Although the horizontal averages of the variances and covariance of motions reveal that the Reynolds stresses are dominated by inner-layer structures, the localized influence of the interaction of outer-layer horizontal and inner-layer vertical motions on the Reynolds stress is not insignificant.  相似文献   

11.
Numerical Simulation of Roll Vortices in the Convective Boundary Layer   总被引:1,自引:0,他引:1  
Roll vortices,which often appear when cold air outbreaks over warm ocean surfaces,are an important system for energy and substance exchange between the land surface and atmosphere.Numerical simulations were carried out in the study to simulate roll vortices in the convective boundary layer(CBL).The results indicate,that with proper atmospheric conditions,such as thermal instability in the CBL,stable stratification in the overlying layer and suitable wind shear,and a temperature jump between the two layers in a two-layer atmosphere,convective bands appear after adding initial pulses in the atmosphere.The simulated flow and temperature fields presented convective bands in the horizontal and roll vortices in the crosswind section. The structure of the roll vortices were similar to those observed in the cloud streets,as well as those from analytical solutions.Simulations also showed the influence of depth and instability strength of the CBL, as well as the stratification above the top of the CBL,on the orientation spacing and strength of the roll vortices.The fluxes caused by the convective rolls were also investigated,and should perhaps be taken into account when explaining the surface energy closure gap in the CBL.  相似文献   

12.
One aim of past boundary-layer experiments with aircraft was the determination of areally averaged heat fluxes. In spite ofsophisticated instrumentation the measured fluxes extrapolated to the ground differed significantly from fluxes measured directly at ground stations. This studypresents simulated sensible heat flux measurements with aircraft flightsthrough a synthetic convective boundary layer created by a401 × 401 × 42 cubic-grid large eddy simulation (LES) with agrid spacing of 50 m. After some considerations with respect to necessary measurement lengths using results ofLenschow and Stankov (1986 – J. Atmos. Sci. 43, 1198–1209), simulated measurementcampaigns were carried out in three modelruns. During each model run five sets ofmeasurement runs were carried out successively.During each set of runs 10 aircraftflew at 10 altitudes with a ground speedof 100 m s-1 simultaneously throughtime and space. In total, 150 legs were carried out, 15 at each flight level. The resulting`measured' heat fluxes were compared withthose of the `true' flux profiles obtaineddirectly from the ensemble-averagedLES-generated data. No significant systematic error between `measured' and `true' profiles was observed. Furthermore, the comparison of the resulting relative error with the theory ofLenschow and Stankov showed a good agreement at allmeasurement levels.  相似文献   

13.
Thermal stability changes the properties of the turbulent atmospheric boundary layer, and in turn affects the behaviour of wind-turbine wakes. To better understand the effects of thermal stability on the wind-turbine wake structure, wind-tunnel experiments were carried out with a simulated convective boundary layer (CBL) and a neutral boundary layer. The CBL was generated by cooling the airflow to 12–15 °C and heating up the test section floor to 73–75 °C. The freestream wind speed was set at about 2.5 m s?1, resulting in a bulk Richardson number of ?0.13. The wake of a horizontal-axis 3-blade wind-turbine model, whose height was within the lowest one third of the boundary layer, was studied using stereoscopic particle image velocimetry (S-PIV) and triple-wire (x-wire/cold-wire) anemometry. Data acquired with the S-PIV were analyzed to characterize the highly three-dimensional turbulent flow in the near wake (0.2–3.2 rotor diameters) as well as to visualize the shedding of tip vortices. Profiles of the mean flow, turbulence intensity, and turbulent momentum and heat fluxes were measured with the triple-wire anemometer at downwind locations from 2–20 rotor diameters in the centre plane of the wake. In comparison with the wake of the same wind turbine in a neutral boundary layer, a smaller velocity deficit (about 15 % at the wake centre) is observed in the CBL, where an enhanced radial momentum transport leads to a more rapid momentum recovery, particularly in the lower part of the wake. The velocity deficit at the wake centre decays following a power law regardless of the thermal stability. While the peak turbulence intensity (and the maximum added turbulence) occurs at the top-tip height at a downwind distance of about three rotor diameters in both cases, the magnitude is about 20 % higher in the CBL than in the neutral boundary layer. Correspondingly, the turbulent heat flux is also enhanced by approximately 25 % in the lower part of the wake, compared to that in the undisturbed CBL inflow. This study represents the first controlled wind-tunnel experiment to study the effects of the CBL on wind-turbine wakes. The results on decreased velocity deficit and increased turbulence in wind-turbine wakes associated with atmospheric thermal stability are important to be taken into account in the design of wind farms, in order to reduce the impact of wakes on power output and fatigue loads on downwind wind turbines.  相似文献   

14.
A Lagrangian Decorrelation Time Scale in the Convective Boundary Layer   总被引:1,自引:1,他引:0  
A new method for deriving the Lagrangian decorrelation time scales for inhomogeneous turbulence is described. The expression for the time scales here derived for the convective boundary layer is compared to those estimated by Hanna during the Phoenix experiment. Then the values of C0, the Lagrangian velocity structure function constant, and of Bi, the Lagrangian velocity spectrum constant, were evaluated from the Eulerian velocity spectra and from the Lagrangian time scales derived, under unstable conditions, from Taylor's statistical diffusion theory. The numerical coefficient of the lateral and vertical Lagrangian spectra in the inertial subrange was found equal to 0.21, in good agreement with previous experimental estimates.  相似文献   

15.
16.
A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, ζ, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.  相似文献   

17.
Summary The development of a convective boundary layer over the Antarctic Plateau is documented by a Doppler minisodar data-set recorded during a 10 day campaign in January 1997. The vertical velocities associated with thermals do not exceed 1 m/s, while the depth of the convective layer, usually less than 200 m, never surpasses 300 m. Measurements of momentum flux, sensible heat flux, wind speed and radiation budget show characteristics that are typical of a convective boundary layer evolution. The diurnal behaviour of absolute humidity, however, exhibits features that are not expected, e.g. anticorrelation with incoming net radiation and air temperature. Received October 30, 1998 Revised May 26, 1999  相似文献   

18.
A three-dimensional model for correlation functions and spectra in theatmospheric, convective boundary layer (CBL) is presented. The modelincludes vertical inhomogeneities introduced by eddy-blocking at the ground.By assuming the disturbance to the turbulent flow resulting from the groundblocking is irrotational, an equation is developed which allows one to writethe inhomogeneous, two-dimensional (2D) cross spectra for the blocked flowin terms of the 2D cross spectra for a homogeneous flow. VonKármán's energy spectrum then is used to determine thehomogeneous, 2D cross spectra. Although there are only two adjustableparameters in the model, the variance and a length scale, the model is shownto agree quite well with a diversity of previous results for the CBL.  相似文献   

19.
对流边界层中地面源的铅直扩散模拟   总被引:1,自引:0,他引:1  
对流边界层(CBL)中高架源浓度轴线下倾而地面源浓度轴线上升。本文分析了形成这种相反的几何图象的机理,从而认为:只要能够恰当模拟CBL中铅直湍流结构的特征,一个粒子随机扩散模式应既能模拟高架源的扩散,也能模拟地面源的扩散。因此,用作者早先模拟高架源的模式模拟了地面源的铅直扩散,同样获得较好的结果,进一步证实了模式的有效性。本文还应用Thomson准则检验了模式,讨论了它在理论上的合理性和适用范围。  相似文献   

20.
We have studied the role of low-level clouds in modifying the thermodynamic and turbulence properties of the Arctic boundary layer during autumn. This was achieved through detailed analyses of boundary-layer properties in two regions, one with low-level cloud cover and the other free of clouds, using measurements from a research aircraft during the Beaufort and Arctic Storms Experiment (BASE). Both regions were measured on the same day under similar synoptic forcing. The cloudy region was characterized by strong horizontal inhomogeneity in low-level temperature and moisture that varied with the cloud-top height. The clear region was relatively homogeneous in temperature and specific humidity with a strong temperature inversion extending between heights of 100 m and 3 km. From measurements at the lowest levels, we also identified a shallow mixed layer below the deep stable layer in the clear region.Our spectral analyses revealed significant modifications of boundary-layer properties due to the presence of low-level clouds. In the cloudy region, turbulent perturbations dominated the boundary-layer flow and made large contributions to the scalar variances. In the clear boundary-layer, wave motion contributed significantly to the observed variances, while turbulent flow was relatively weak. The clear region was saturated, although no detectable clouds were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号