首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this the second of a two-part study, we examine the physical mechanisms responsible for the increasing contrast of the land–sea surface air temperature (SAT) in summertime over the Far East, as observed in recent decades and revealed in future climate projections obtained from a series of transient warming and sensitivity experiments conducted under the umbrella of the Coupled Model Intercomparison Project phase 5. On a global perspective, a strengthening of land–sea SAT contrast in the transient warming simulations of coupled atmosphere–ocean general circulation models is attributed to an increase in sea surface temperature (SST). However, in boreal summer, the strengthened contrast over the Far East is reproduced only by increasing atmospheric CO2 concentration. In response to SST increase alone, the tropospheric warming over the interior of the mid- to high-latitude continents including Eurasia are weaker than those over the surrounding oceans, leading to a weakening of the land–sea SAT contrast over the Far East. Thus, the increasing contrast and associated change in atmospheric circulation over East Asia is explained by CO2-induced continental warming. The degree of strengthening of the land–sea SAT contrast varies in different transient warming scenarios, but is reproduced through a combination of the CO2-induced positive and SST-induced negative contributions to the land–sea contrast. These results imply that changes of climate patterns over the land–ocean boundary regions are sensitive to future scenarios of CO2 concentration pathways including extreme cases.  相似文献   

2.
Land–sea surface air temperature (SAT) contrast, an index of tropospheric thermodynamic structure and dynamical circulation, has shown a significant increase in recent decades over East Asia during the boreal summer. In Part I of this two-part paper, observational data and the results of transient warming experiments conducted using coupled atmosphere–ocean general circulation models (GCMs) are analyzed to examine changes in land–sea thermal contrast and the associated atmospheric circulation over East Asia from the past to the future. The interannual variability of the land–sea SAT contrast over the Far East for 1950–2012 was found to be tightly coupled with a characteristic tripolar pattern of tropospheric circulation over East Asia, which manifests as anticyclonic anomalies over the Okhotsk Sea and around the Philippines, and a cyclonic anomaly over Japan during a positive phase, and vice versa. In response to CO2 increase, the cold northeasterly winds off the east coast of northern Japan and the East Asian rainband were strengthened with the circulation pattern well projected on the observed interannual variability. These results are commonly found in GCMs regardless of future forcing scenarios, indicating the robustness of the East Asian climate response to global warming. The physical mechanisms responsible for the increase of the land–sea contrast are examined in Part II.  相似文献   

3.
The potential impacts of CO2-induced climate change on terrestrial carbon storage was estimated using the Holdridge Life-Zone Classification and four climate change scenarios derived from general circulation models. Carbon values were assigned to life-zones and their associated soils from published studies. All four scenarios suggest an increase in area occupied by forests although details of predicted patterns vary among the scenarios. There is a poleward shift of the forested zones, with an increase in the areal extent of tropical forests and a shift of the boreal forest zone into the region currently occupied by tundra. Terrestrial carbon storage increased from 0.4% (8.5 Gt) to 9.5% (180.5 Gt) above estimates for present conditions. These changes represent a potential reduction of 4 to 85 ppm on elevated atmospheric CO2 levels.  相似文献   

4.
A significant change in mean precipitation occurred over much of Australia between 1913–45 and 1946–78. This is described on a seasonal basis and related to possible changes in the atmospheric circulation. It now appears that during this time mean surface temperatures in the mid southern latitude zone increased by up to 1 °C. This temperature change could be at least partly due to an increase in atmospheric CO2 concentrations from about 260 ppmv in the early nineteenth century. In any case the observed temperature increase is similar to the predicted future effects of a 50% increase in atmospheric CO2 concentrations. Thus the climatic change which occurred earlier this century is at least a good analogy for the effects of a CO2-induced global warming which is expected to occur over a similar time interval in the future. This allows the construction of more detailed and quantitative climate scenarios. The most noteworthy conclusion is that marked changes in the seasonally of precipitation should be anticipated, with seasonal changes in some areas being of the order of 50% or more for a doubling of CO2 content. The results are in general consistent with earlier more qualitative scenarios for Australia.  相似文献   

5.
The impacts of the climate change predictions of four general circulation models (GFDL, GISS, OSU and UKMO) on net primary production (NPP) ofBetula pubescens, Fagus sylvatica and Quercus robur in The Netherlands were analysed using the process-based model FORGRO. FORGRO is a model suitable to simulate growth of managed mono-species stands. For the GCMs mentioned, both transient and equilibrium 2 × CO2 scenarios of temperature and precipitation change were evaluated and compared with responses under current climate. It was found that the NPP increases in the transient scenarios, but remains the same or declines in the 2 × CO2 scenarios. This is because respiration increases more with rising temperature than photosynthesis. During the transient scenarios this effect gradually increases, while in the 2 × CO2 scenario this effect is operating over the entire simulation period.If water limitation is taken into account, then the NPP of the reference scenario is reduced. In both the transient and 2 × CO2 scenarios mis water limitation is annulated, resulting in a stronger response of NPP compared to the situation without water limitation. This enhancement of the response is most pronounced in the transient scenario due to the gradual effect of temperature on respiration.Similar results were obtained with a version of FORGRO in which the photosynthesis module of HYBRID (PGEN) is incorporated, although the response in FORGRO-PGEN is usually higher than that of FORGRO. This is because the response of photosynthesis to CO2 rises with increasing temperature as defined in the PGEN-model, but not according to FORGRO.  相似文献   

6.
We present an analysis of climate change over Europe as simulated by a regional climate model (RCM) nested within time-slice atmospheric general circulation model (AGCM) experiments. Changes in mean and interannual variability are discussed for the 30-year period of 2071–2100 with respect to the present day period of 1961–1990 under forcing from the A2 and B2 IPCC emission scenarios. In both scenarios, the European region undergoes substantial warming in all seasons, in the range of 1–5.5°C, with the warming being 1–2°C lower in the B2 than in the A2 scenario. The spatial patterns of warming are similar in the two scenarios, with a maximum over eastern Europe in winter and over western and southern Europe in summer. The precipitation changes in the two scenarios also show similar spatial patterns. In winter, precipitation increases over most of Europe (except for the southern Mediterranean regions) due to increased storm activity and higher atmospheric water vapor loadings. In summer, a decrease in precipitation is found over most of western and southern Europe in response to a blocking-like anticyclonic circulation over the northeastern Atlantic which deflects summer storms northward. The precipitation changes in the intermediate seasons (spring and fall) are less pronounced than in winter and summer. Overall, the intensity of daily precipitation events predominantly increases, often also in regions where the mean precipitation decreases. Conversely the number of wet days decreases (leading to longer dry periods) except in the winter over western and central Europe. Cloudiness, snow cover and soil water content show predominant decreases, in many cases also in regions where precipitation increases. Interannual variability of both temperature and precipitation increases substantially in the summer and shows only small changes in the other seasons. A number of statistically significant regional trends are found throughout the scenario simulations, especially for temperature and for the A2 scenario. The results from the forcing AGCM simulations and the nested RCM simulations are generally consistent with each other at the broad scale. However, significant differences in the simulated surface climate changes are found between the two models in the summer, when local physics processes are more important. In addition, substantial fine scale detail in the RCM-produced change signal is found in response to local topographical and coastline features.  相似文献   

7.
Climate change impacts on Laurentian Great Lakes levels   总被引:1,自引:1,他引:1  
Scenarios of water supplies reflecting CO2-induced climatic change are used to determine potential impacts on levels of the Laurentian Great Lakes and likely water management policy implications. The water supplies are based on conceptual models that link climate change scenarios from general circulation models to estimates of basin runoff, overlake precipitation, and lake evaporation. The water supply components are used in conjunction with operational regulation plans and hydraulic routing models of outlet and connecting channel flows to estimate water levels on Lakes Superior, Michigan, Huron, St. Clair, Erie, and Ontario. Three steady-state climate change scenarios, corresponding to modeling a doubling of atmospheric CO2, are compared to a steady-state simulation obtained with historical data representing an unchanged atmosphere. One transient climate change scenario, representing a modeled transition from present conditions to doubled CO2 concentrations, is compared to a transient simulation with historical data. The environmental, socioeconomic, and policy implications of the climate change effects modeled herein suggest that new paradigms in water management will be required to address the prospective increased allocation conflicts between users of the Great Lakes.GLERL Contribution No. 645.  相似文献   

8.
The key aspect of the ocean circulation off Peru?CChile is the wind-driven upwelling of deep, cold, nutrient-rich waters that promote a rich marine ecosystem. It has been suggested that global warming may be associated with an intensification of upwelling-favorable winds. However, the lack of high-resolution long-term observations has been a limitation for a quantitative analysis of this process. In this study, we use a statistical downscaling method to assess the regional impact of climate change on the sea-surface wind over the Peru?CChile upwelling region as simulated by the global coupled general circulation model IPSL-CM4. Taking advantage of the high-resolution QuikSCAT wind product and of the NCEP reanalysis data, a statistical model based on multiple linear regressions is built for the daily mean meridional and zonal wind at 10?m for the period 2000?C2008. The large-scale 10?m wind components and sea level pressure are used as regional circulation predictors. The skill of the downscaling method is assessed by comparing with the surface wind derived from the ERS satellite measurements, with in situ wind observations collected by ICOADS and through cross-validation. It is then applied to the outputs of the IPSL-CM4 model over stabilized periods of the pre-industrial, 2?×?CO2 and 4?×?CO2 IPCC climate scenarios. The results indicate that surface along-shore winds off central Chile (off central Peru) experience a significant intensification (weakening) during Austral winter (summer) in warmer climates. This is associated with a general decrease in intra-seasonal variability.  相似文献   

9.
General circulation models (GCMs) are unanimous in projecting warmer temperatures in an enhanced CO2 atmosphere, with amplification of this warming in higher latitudes. The Hudson Bay region, which is located in the Arctic and subarctic regions of Canada, should therefore be strongly influenced by global warming. In this study, we compare the response of Hudson Bay to a transient warming scenario provided by six-coupled atmosphere-ocean models. Our analysis focuses on surface temperature, precipitation, sea-ice coverage, and permafrost distribution. The results show that warming is expected to peak in winter over the ocean, because of a northward retreat of the sea-ice cover. Also, a secondary warming peak is observed in summer over land in the Canadian and Australian-coupled GCMs, which is associated with both a reduction in soil moisture conditions and changes in permafrost distribution. In addition, a relationship is identified between the retreat of the sea-ice cover and an enhancement of precipitation over both land and oceanic surfaces. The response of the sea-ice cover and permafrost layer to global warming varies considerably among models and thus large differences are observed in the projected regional increase in temperature and precipitation. In view of the important feedbacks that a retreat of the sea-ice cover and the distribution of permafrost are likely to play in the doubled and tripled CO2 climates of Hudson Bay, a good representation of these two parameters is necessary to provide realistic climate change scenarios. The use of higher resolution regional climate model is recommended to develop scenarios of climate change for the Hudson Bay region.  相似文献   

10.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

11.
The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.  相似文献   

12.
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from ?5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from ?5 to ?30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.  相似文献   

13.
Summary In middle latitudes, regional climates are largely determined by the frequency and character of different airmasses advected across the region. Airmass characteristics and frequencies are expected to be different in a warmer world. General circulation models are, for example, unanimous in projecting large temperature changes for high latitudes, the source region for polar airmasses. Conventional approaches to the construction of regional climate change scenarios are not able to capture such differences between airmasses. Here we present a new approach that assigns each day in the observed and model-produced records to one of three classes based on the upper-level flow, the steering current for airmasses. This approach permits an evaluation of a model's ability to reproduce the observed regional climate in terms of airmasses which is more insightful than a comparison of monthly means. The model used here, the CCM0 version of the NCAR model, was found to reproduce many of the observed December airflow features (the month chosen to demonstrate the approach) for the Lake Superior basin. The approach also permits a more insightful analysis of the projected changes under 2*CO2 conditions. The CCM0 projects a significant warming and moistening only for the northerly airflows. The northerly flows are also projected to become more frequent. To illustrate the significance of these results, daily scenarios of climate change were constructed from these projections and used in a lake evaporation model. It is found that the changes in the northerly flows projected by this model translate into a 19% reduction in the evaporative power of the air over Lake Superior (wind speeds held at present level).With 3 Figures  相似文献   

14.
Many scientific studies warn of a rapid global climate change during the next century. These changes are understood with much less certainty on a regional scale than on a global scale, but effects on ecosystems and society will occur at local and regional scales. Consequently, in order to study the true impacts of climate change, regional scenarios of future climate are needed. One of the most important sources of information for creating scenarios is the output from general circulation models (GCMs) of the climate system. However, current state-of-the-art GCMs are unable to simulate accurately even the current seasonal cycle of climate on a regional basis. Thus the simple technique of adding the difference between 2 × CO2 and 1 × CO2 GCM simulations to current climatic time series cannot produce scenarios with appropriate spatial and temporal details without corrections for model deficiencies. In this study a technique is developed to allow the information from GCM simulations to be used, while accommodating for the deficiencies. GCM output is combined with knowledge of the regional climate to produce scenarios of the equilibrium climate response to a doubling of the atmospheric CO2 concentration for three case study regions, China, Sub-Saharan Africa and Venezuela, for use in biological effects models. By combining the general climate change calculated with several GCMs with the observed patterns of interannual climate variability, reasonable scenarios of temperature and precipitation variations can be created. Generalizations of this procedure to other regions of the world are discussed.  相似文献   

15.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

16.
A land–sea surface warming ratio (or φ) that exceeds unity is a robust feature of both observed and modelled climate change. Interestingly, though climate models have differing values for φ, it remains almost time-invariant for a wide range of twenty-first century climate transient warming scenarios, while varying in simulations of the twentieth century. Here, we present an explanation for time-invariant land–sea warming ratio that applies if three conditions on radiative forcing are met: first, spatial variations in the climate forcing must be sufficiently small that the lower free troposphere warms evenly over land and ocean; second, the temperature response must not be large enough to change the global circulation to zeroth order; third, the temperature response must not be large enough to modify the boundary layer amplification mechanisms that contribute to making φ exceed unity. Projected temperature changes over this century are too small to breach the latter two conditions. Hence, the mechanism appears to show why both twenty-first century and time-invariant CO2 forcing lead to similar values of φ in climate models despite the presence of transient ocean heat uptake, whereas twentieth century forcing—which has a significant spatially confined anthropogenic tropospheric aerosol component that breaches the first condition—leads to modelled values of φ that vary widely amongst models and in time. Our results suggest an explanation for the behaviour of φ when climate is forced by other regionally confined forcing scenarios such as geo-engineered changes to oceanic clouds. Our results show how land–sea contrasts in surface and boundary layer characteristics act in tandem to produce the land–sea surface warming contrast.  相似文献   

17.
This paper describes the regional climate change scenarios that are recommended for use in the U.S. Country Studies Program (CSP) and evaluates how well four general circulation models (GCMs) simulate current climate over Europe. Under the umbrella of the CSP, 50 countries with varying skills and experience in developing climate change scenarios are assessing vulnerability and adaptation. We considered the use of general circulation models, analogue warm periods, and incremental scenarios as the basis for creating climate change scenarios. We recommended that participants in the CSP use a combination of GCM based scenarios and incremental scenarios. The GCMs, in spite of their many deficiencies, are the best source of information about regional climate change. Incremental scenarios help identify sensitivities to changes in a particular meteorological variable and ensure that a wide range of regional climate change scenarios are considered. We recommend using the period 1951–1980 as baseline climate because it was a relatively stable climate period globally. Average monthly changes from the GCMs and the incremental changes in climate variables are combined with the historical record to produce scenarios. The scenarios do not consider changes in interannual, daily, or subgrid scale variability. Countries participating in the Country Studies Program were encouraged to compare the GCMs' estimates of current climate with actual long-term climate means. In this paper, we compare output of four GCMs (CCCM, GFDL, UKMO, and GISS) with observed climate over Europe by performing a spatial correlation analysis for temperature and precipitation, by statistically comparing spatial patterns averaged climate estimates from the GCMs with observed climate, and by examining how well the models estimate seasonal patterns of temperature and precipitation. In Europe, the GISS and CCCM models best simulate current temperature, whereas the GISS and UK89 models, and the CCCM model, best simulate precipitation in defined northern and southern regions, respectively.  相似文献   

18.
We examine the effect of climate scenarios generated using results from climate models of different spatial resolution on yields simulated by the deterministic cotton model GOSSYM for the southeastern U.S.A. Two related climate change scenarios were used: a coarse-scale scenario produced from results of a general circulation model (GCM) which also provided the boundary conditions to a regional climate model (RCM), from which a fine-scale scenario was constructed. Cotton model simulations were performed for three cases: climate change alone; climate change and elevatedCO2; climate change, elevated CO2 and adaptations to climate change. In general, significant differences in state-average projected yield changes between the coarse and fine-scale scenarios are found for these three cases. In the first two cases, different directions of change are found in some sub-regions. With adaptation, yields substantially increase for both climate scenarios, but more so for the coarse-scale scenario (30%domain-average increase). Under irrigation, yield change differences between the two climate scenarios are small in all three cases, and yields are higher under irrigation ( 35% domain-average increase with adaptation case) compared to dryland conditions. For the climate change alone case, differences in summer water-stress levels explain the contrasts in dryland yield patterns between the coarse and fine-scale climate scenarios.  相似文献   

19.
Summary  It is expected that a change in climatic conditions due to global warming will directly impact agricultural production. Most climate change studies have been applied at very large scales, in which regions were represented by only one or two weather stations, which were mainly located at airports of major cities. The objective of this study was to determine the potential impact of climate change at a local level, taking into account weather data recorded at remote locations. Daily weather data for a 30-year period were obtained for more than 500 sites, representing the southeastern region of the USA. Climate change scenarios, using transient and equilibrium global circulation models (GCM), were defined, created and applied to the daily historical weather data. The modified temperature, precipitation and solar radiation databases corresponding to each of the climate change scenarios were used to run the CERES v.3.5 simulation model for maize and winter wheat and the CROPGRO v.3.5 model for soybean and peanut. The GCM scenarios projected a shorter duration of the crop-growing season. Under the current level of CO2, the GCM scenarios projected a decrease of crop yields in the 2020s. When the direct effects of CO2 were assumed in the study, the scenarios resulted in an increase in soybean and peanut yield. Under equilibrium , the GCM climate change scenarios projected a decrease of maize and winter wheat yield. The indirect effects of climate change also tended to decrease soybean and peanut yield. However, when the direct effects of CO2 were included, most of the scenarios resulted in an increase in legume yields. Possible changes in sowing data, hybrids and cultivar selection, and fertilization were considered as adaptation options to mitigate the potential negative impact of potential warming. Received July 20, 1999/Revised April 18, 2000  相似文献   

20.
Based on principal component analysis (PCA) and a k-means clustering algorithm, daily mean sea level pressure (MSLP) fields over the northeastern Atlantic and Western Europe, simulated by the Hadley Centre's second generation coupled ocean-atmosphere GCM (HADCM2) control run (HADCM2CON), are validated by comparison with the observed daily MSLP fields. It is clear that HADCM2 reproduces daily MSLP fields and its seasonal variability over the region very well, despite suffering from some deficiencies, such as the systematic displacement of the atmospheric centres of action. Four daily circulation patterns, previously identified from the observed daily MSLP fields over the area and well related to daily precipitation in Portugal, were also well classified from the daily MSLP fields simulated by HADCM2. The model can also simulate rather successfully the relationships between the four daily circulation patterns and daily precipitation in southern Portugal. However, compared with observations, daily precipitation intensities simulated by the model are too weak in southern Portugal. Nevertheless, HADCM2 represents a considerable improvement relative to the UKTR experiment. The results described here imply that it is doubtful whether regional precipitation scenarios provided by HADCM2 can be directly applied in impact studies and that a downscaling technique, based on daily circulation patterns, might be successful in reproducing local and regional precipitation characteristics. Moreover, the four circulation patterns can also be clearly identified in the two perturbed experiments, one under greenhouse gases forcing only (HADCM2GHG) and the other under additional forcing of sulphate aerosol (HADCM2SUL), although changes in the frequencies of occurrence of certain circulation patterns are found. Nevertheless, the observed links between regional precipitation in southern Portugal and large-scale atmospheric circulation seem likely to hold in the model's perturbed climate. It is therefore credible to use those links to downscale large-scale atmospheric circulation from GCM simulations to obtain future precipitation scenarios in southern Portugal. Received: 21 August 1998 / Accepted: 28 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号