首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
 The Middle Jurassic Tuttle Lake Formation in the northern Sierra Nevada, California, comprises a thick volcaniclastic sequence deposited in a submarine island-arc setting and penetrated by numerous related hypabyssal intrusions. A composite andesite-diorite intrusive complex ≥4.5 km long and ≥1.5 km thick was emplaced while the host Tuttle Lake sediments were still wet and unconsolidated. Large parts of the intrusive complex consist of peperite formed where andesitic magma intruded and intermixed with tuff, lapilli-tuff and tuff-breccia. The southern half of the complex consists of augite-phyric andesite containing peperite in numerous small, isolated pockets and in more extensive, laterally continuous zones. The peperites comprise three main types recognized previously in other peperite studies. Fluidal peperite consists of small (≤30 cm), closely spaced, at least partly interconnected, globular to amoeboid andesite bodies enclosed by tuff. This peperite type developed during intrusion of magma into fine-grained wet sediment along unstable interfaces, and fluidization of the sediment facilitated development of complex intrusive geometries. Blocky peperite and mixed blocky and fluidal peperite formed where magma intruded coarser sediment and underwent variable degrees of brittle fragmentation by quenching and dynamic stressing of rigid margins, possibly aided by small steam explosions. The northern half of the intrusive complex consists predominantly of a different type of peperite, in which decimetre-scale plagioclase-phyric andesite clasts with ellipsoidal, elongate, or angular, polyhedral shapes are closely packed to widely dispersed within disrupted host sediment. Textural features suggest the andesite clasts were derived from conduits through which magma was flowing, and preserved remnants of the conduits are represented by elongate, sinuous bodies up to 30 m or more in length. Disruption and dispersal of the andesite clasts are inferred to have occurred at least partly by steam explosions that ripped apart a network of interconnected feeder conduits penetrating the host sediments. Closely packed peperite is present adjacent to mappable intrusions of coherent andesite, and along the margin of a large mass of coarse-grained diorite. These coherent intrusions are considered to be major feeders for this part of the complex. Examples of magma/wet sediment interaction similar in scale to the extensive peperites described here occur elsewhere in ancient island-arc strata in the northern Sierra Nevada. Based on these and other published examples, large-scale peperites probably are more common than generally realized and are likely to be important in settings where thick sediment sequences accumulate during active volcanism. Careful mapping in well-exposed terrains may be required to recognize large-scale peperite complexes of this type. Received: 8 June 1998 / Accepted: 4 December 1998  相似文献   

2.
Miocene igneous dikes older and younger than 15 Ma in Southwest Japan are thought to be oriented parallel and perpendicular to the arc, respectively. This difference of orientations was referred to as significant evidence for termination of the opening of the Japan Sea at 15 Ma. The tightest constraint comes from ~60 dikes in the Tajima–Myokensan area, northern Hyogo Prefecture. Here we present orientations of 716 planar intrusive bodies and the directions of 143 meso-scale faults, obtained using the latest stress inversion techniques from the lower to middle Miocene Hokutan Group in the Tajima–Myokensan area. The results contradict the 15 Ma hypothesis for the end of the opening of the Japan Sea. We find that intrusive bodies cannot be separated into two groups by their orientations as reported previously. Rather, the orientations of their poles comprise a horizontal girdle and a vertical cluster. The former indicates NE-SW extensional stress, and the latter NW-SE compression. However, the latter are interpreted as not representative of regional stress, based on common sill intrusions (the formation of which was not influenced by regional stress) in the well-stratified Muraoka Formation resulting in the vertical cluster of pole orientations from which compression was recognized. The results of fault-slip analysis are consistent with the extensional stress. Fission-track and U–Pb ages of zircons were obtained from seven intrusive bodies. These and previously published ages suggest that the area underwent NW-SE extension both before and after 15 Ma. In the main part of Southwest Japan, the weak extension was kept after 16 Ma when intra-arc rifting was terminated. This is consistent with the hypothesis that the Japan Sea continued to open until 13.5 Ma.  相似文献   

3.
Instability structures, synsedimentary faults and turbidites have been studied in the Lower Pliensbachian succession of Saint-Michel-en-Beaumont, belonging to the Taillefer block, an ancient half-graben emplaced during the Liassic Tethyan rifting. Geometrical and mechanical analyses demonstrate that the instability structures occurred thanks to movements along spineless synsedimentary normal faults, when the turbiditic and limestone layers were already case-hardened and partly fractured by tension gashes even when the mudstones were still unlithified. Both the tension gashes and the synsedimentary faults are homogeneous in strike with the major regional faults and are in good agreement with the regional direction of extension for this period. The characters of the turbiditic beds, with erosive base, graded bedding, and incomplete Bouma sequence, are in favour of a seismic origin. Instability structures, spineless synsedimentary faults and turbiditic inflows are thus considered as seismites and interpreted as the result of high seismicity periods including some events with M > 5 in the general extensive ambiance of the Liassic Tethyan rifting. The analysis of the geometrical relationships between all these sedimentary features allows to distinguish the successive stage of occurrence of an instability structure, from the sedimentation of alternating marls and limestones, and sudden turbiditic inflows, then early case-hardening of the turbidites, until the important seismotectonic event generating the spineless normal faults, themselves triggering the fall of indurated blocks and locally the forming of breccias. The Ornon Fault, which constitutes the border of the Taillefer block, 15 km eastward, played a major role during the Liassic sedimentation and may represent the major seismic fault related to the seismites occurrence in the Beaumont basin.  相似文献   

4.
Abstract The deformation style of the Torlesse Terrane along the southern Kaikoura coast, South Island, New Zealand, records shallow level deformation processes within an accretionary prism during the Early Cretaceous. The beds exhibit complicated structural features resulting from multistage deformations in a lithological unit, that were intimately related with the dewatering and lithification of terrigenous sediments. The earliest phase of deformation throughout the transect studied was the development of pinch-and-swell structures and boudinage fabrics due to layer-parallel extension while the beds were poorly consolidated. This was followed locally by mesoscopic tight to close recumbent folding. The beds are cut locally by two phases of mudstone intrusions. The earlier phase was initiated by 'in situ' fluidization of mudstone layers, whereas the later phase represented intrusion of siliceous claystone probably derived from an overpressured decollement. Minor faults at high-angles to bedding by layer-normal shortening then disrupted the beds throughout the transect. The deformation was followed by formation of meso- and macroscopic scale open to gentle folds by layer-parallel shortening. Kilometer-scale differential stratal rotations were produced during the final main tectonic phase that occurred in association with post-accretion Neogene regional disturbance.  相似文献   

5.

盆地内细粒沉积物的磁组构特征可以记录盆地发育演化的关键构造信息.然而,反转盆地内细粒沉积物的磁组构有何特征,其与盆地发育和反转变形有何关系,目前仍需要深入探索.针对这一问题,本文以东、西秦岭分界处的白垩纪徽成盆地为例,在野外构造观察的基础上,对该盆地内的细粒沉积岩,特别是同沉积断层附近的细粒沉积岩(包括生长地层),开展了系统的岩石磁学、常温和低温磁组构研究.野外观察表明,徽成盆地白垩纪地层内发育了大量NNE走向的正断层,邻近断层的局部区域可见露头尺度的生长地层.盆地内细粒沉积物的磁化率值总体较低,岩石磁学实验表明,磁化率主要由顺磁性矿物控制,但也含有少量磁铁矿和赤铁矿等铁磁性矿物的贡献.常温和低温磁组构特征都表明,徽成盆地白垩纪地层内透入性的发育了NWW-SEE向的磁线理,与主要的(同沉积)正断层垂直或高角度相交,并显示出初始变形组构的特征,记录了盆地发育时以NWW-SEE向拉张为主的古应力信息.这一伸展应力场与控制徽成盆地发育的文县—太白断裂带呈锐夹角,表明断裂带在盆地发育时以左行走滑伸展为主.此外,与常温磁组构相比,低温磁组构显著提高了顺磁性组构的信号强度,突显了磁组构的优势方位,可以更为有效的反映岩石组构和应变信息.尽管徽成盆地白垩纪地层经历多期次构造变形,但其初始变形组构并未明显改造,为解析盆地构造属性提供了重要信息.

  相似文献   

6.
Volcanic fields in the Pannonian Basin, Western Hungary, comprise several Mio/Pliocene volcaniclastic successions that are penetrated by numerous mafic intrusions. Peperite formed where intrusive and extrusive basaltic magma mingled with tuff, lapilli-tuff, and non-volcanic siliciclastic sediments within vent zones. Peperite is more common in the Pannonian Basin than generally realised and may be also important in other settings where sediment sequences accumulate during active volcanism. Hajagos-hegy, an erosional remnant of a maar volcano, was subsequently occupied by a lava lake that interacted with unconsolidated sediments in the maar basin and formed both blocky and globular peperite. Similar peperite developed in Kissomlyó, a small tuff ring remnant, where dykes invaded lake sediments that formed within a tuff ring. Lava foot peperite from both Hajagos-hegy and Kissomlyó were formed when small lava flows travelled over wet sediments in craters of phreatomagmatic volcanoes. At Ság-hegy, a large phreatomagmatic volcanic complex, peperite formed along the margin of a coherent intrusion. All peperite in this study could be described as globular or blocky peperite. Globular and blocky types in the studied fields occur together regardless of the host sediment.  相似文献   

7.
交叉断层的交替活动与块体运动的实验研究   总被引:35,自引:3,他引:32       下载免费PDF全文
通过物理模拟证明交叉断层上会交替地发生失稳事件。两条交叉的断层在活动中既相互促进 ,又相互制约 ,即一条断层既可能使另一条断层发生闭锁而积累应变 ,又可能触发其错动。每条断层的位移速率、总位移量以及失稳事件数与断层方向和主压应力轴的夹角有关。各断层段的位移有时体现为断层围限块体的平移运动 ,而有时则体现为块体的旋转运动。发生在不同部位的失稳事件影响范围不同 ,在正应力较大的断层上失稳事件影响范围大。涉及交叉断层的较大失稳事件发生前常出现前兆性小事件。交叉断层的交替活动实际上由变形场中块体的运动所控制  相似文献   

8.
 Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3–5 km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault plate-subsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to have erupted without caldera collapse, seem alternatively interpretable as more conventional calderas that were filled to overflow by younger lavas and tuffs. Some exposed subcaldera intrusions provide insights concerning subsidence processes, but such intrusions may continue to evolve in volume, roof geometry, depth, and composition after formation of associated calderas. Received: 13 February 1997 / Accepted: 9 August 1997  相似文献   

9.
The Chisone Valley is located in the internal NW Alps, in the Pinerolese District, an area characterized by present low to medium seismicity. Fine-grained sediments (sand, silt and clay with interbedded gravel) crop out in the lower Chisone Valley: they were first interpreted as glaciolacustrine deposits, and then as a lacustrine infilling of the valley floor probably due to differential uplifting of the valley mouth. Review of this data, together with new field and palynological observations, lead us to refer the lacustrine deposits to approximately the Lower Pleistocene (Villafranchian). In many outcrops, the lacustrine deposits show strong soft-sediment deformation such as convolute laminations, water-escape structures and disrupted beds, some of them associated with folds and faults (cm to dm in size); only two sites show metric to decametric folds and faults trending E-W and N-S. Detailed structural analysis conducted along a recently exposed section (Rio Gran Dubbione site) shows several soft-sediment deformation features on the limbs of mesoscale folds. Because of their intimate structural association, the origin of these minor structures seems to be connected to synsedimentary activity on reverse and normal faults (m to dm in size) affecting the lacustrine deposits in the same locality. Soft-sediment deformation features can be interpreted as possible paleoseismites. If so, the present seismicity of the Pinerolese District, which is the major area of such activity in NW Italy, cannot be considered an isolated episode in the geological evolution of the region; even if there is no supporting evidence for continuous seismicity, the deformations in the lacustrine sediments of the Chisone Valley testify to Early Pleistocene seismic activity, probably related to the recent tectonic evolution of the internal side of the NW Alps.  相似文献   

10.
The Kerguelen Archipelago is part of an oceanic plateau with a complex history. Little work has been done on the tectonics of the onshore areas, even though the extensive outcrop renders the islands especially good for structural work. We present the results of three field campaigns and remote sensing analysis carried out in the main Kerguelen Island, around Val Travers valley and Mt Ross volcano (Central Plateau) and in the Rallier du Baty peninsula (SW part of the archipelago). We have mapped faults, fracture sets, and the location and geometry of intrusive bodies. We found that the plateau basalt lavas that make up most of the area are densely fractured, crossed by many veins, dykes and some small faults. This work provides a general framework for the structure of Kerguelen Archipelago that is dominated by 110°-striking faults and veins, dyke swarms and an alignment of recent central volcanoes, which have formed in N-S to NNW-SSE directed extensional stress field. The other structures are fractures, veins and dykes which strike 130–150°, 000° and 030–050°. They are likely related to transform faults of the Indian oceanic crust and to faults of the north Kerguelen Plateau (offshore basement of the archipelago). These buried structures were likely re-activated by a low magnitude stress field.  相似文献   

11.
范方琴  张华卿 《内陆地震》1990,4(2):134-142
本文根据活断层资料,在软材料实验基础上,用激光全息光弹实验法分析了南天山东段构造应力场特征,实验结果表明,本区现代构造应力场主压应力为近南北向。在水平挤压力作用下,近东西向构造明显呈挤压状态,北东、北西向断层呈左旋或右旋走滑。τ_(max)、σ_1、σ_2的分布相似,其高值区展布于断层端点、交汇区等特殊部位。提出塔格拉克、库车—轮台、库尔勒东南为应力集中区。  相似文献   

12.
Two lines of subvolcanic complexes crop out in northern Namaqualand and southern South West Africa. The older Precambrian age complexes contain rocks belonging to the Richtersveld Suite and they form a belt that runs northwards for at least 125 km. Some of the lavas, tuffs and agglomerates that were extruded from the vents above these complexes have been preserved as intercalated layers in the Stinkfontein Formation. A second chain of intrusives known as the Kuboos line extends in a northeasterly direction for 160 km from Swarbank near the coast in Namaqualand to Bremen in southern South West Africa. Inland from the coast along this Kuboos line the intrusive bodies are found emplaced at progressively higher crustal levels. In the southwest they are coarse grained plutonic bodies while in the northeast they consist of plugs, stocks and ring-dykes. Rocks belonging to both the Richtersveld and Kuboos suites crop out at Bremen where the two lines of subvolcanic intrusive meet. The intrusive and extrusive rocks of both the Richtersveld and Kuboos suites are described and their genesis is discussed.  相似文献   

13.
Active thermal areas are concentrated in three areas on Mauna Loa and three areas on Kilauea. High-temperature fumaroles (115–362° C) on Mauna Loa are restricted to the summit caldera, whereas high-temperature fumaroles on Kilauea are found in the upper East Rift Zone (Mauna Ulu summit fumaroles, 562° C), middle East Rift Zone (1977 eruptive fissure fumaroles), and in the summit caldera. Solfataric activity that has continued for several decades occurs along border faults of Kilauea caldera and at Sulphur Cone on the southwest rift zone of Mauna Loa. Solfataras that are only a few years old occur along recently active eruptive fissures in the summit caldera and along the rift zones of Kilauea. Steam vents and hot-air cracks also occur at the edges of cooling lava ponds, on the summits of lava shields, along faults and graben fractures, and in diffuse patches that may reflect shallow magmatic intrusions.  相似文献   

14.

月球深部断裂是研究月球早期应力场演化和动力机制的一类重要构造.本文基于GRAIL月球重力数据计算了全月布格重力梯度,在此基础上对月球深部断裂进行了全球绘制,共识别月球深部断裂226条.计算了断裂的长度和走向等基本参数,断裂总长度达到37137 km,平均长度为164 km.统计月球深部断裂在不同范围内的分布情况,发现多数断裂分布在月球的中低纬度地区,且北半球的断裂多于南半球.此外,大型月海集中区所在的纬向带断裂分布最多,断裂经向分布最多的区域为风暴洋的西侧.从全球尺度和不同经纬度带绘制断裂走向玫瑰花图,总体上月球全球尺度上的深部断裂表现出NE-SW和NW-SE的优势走向,不同经度带断裂的优势走向变化不明显,但在纬度带上有显著的变化.南北半球的中纬度带和高纬度带具有相同的优势走向,分别为NE-SW和NW-SE、E-W,在低纬度带的优势走向有所差异,分别是南半球的NE-SW和NW-SE以及北半球的N-S.

  相似文献   

15.
Ken-Ichi  Hirauchi 《Island Arc》2006,15(1):156-164
Abstract   Serpentinite bodies in the Kurosegawa Belt are mapped along fault boundaries between the Cretaceous Sanchu Group (forearc basin-fill sediments) and the rocks of the Southern Chichibu Belt (Jurassic to Early Cretaceous accretionary prism) in the northwestern Kanto Mountains, central Japan. The serpentinites were divided into three types based on microtextures and combinations of serpentine minerals: massive, antigorite and chrysotile serpentinites. Massive serpentinite retains initial pseudomorphic textures without any deformation after serpentinization. Antigorite serpentinite exhibits shape-preferred orientation of antigorite replacing the original lizardite and/or chrysotile to form pseudomorphs. It has porphyroclasts of chromian spinel, and is characterized by ductile deformation under relatively high-pressure–temperature conditions. Chrysotile serpentinite shows evidence for overprinting of pre-existing serpentinite features under shallow, low-temperature conditions. It exhibits unidirectional development of chrysotile fibers. Foliations in antigorite and chrysotile serpentinites strike parallel to the elongate direction of the serpentinite bodies, suggesting a continuous deformation during solid-state intrusion along the fault zones after undergoing complete serpentinization at deeper levels (lower crust and upper mantle).  相似文献   

16.
An ENE-WSW-trending localized basalt-diabase outcrop along the SE margin of Luk Ulo Mélange Complex has been suggested as intrusive rocks cut through the Paleogene Totogan and Karangsambung formations. However, the absolute dating of the volcanics is older than the inferred relative age of the sedimentary formations, hence the in-situ intrusion theory is less likely. A subsurface imaging should delineate the possibility of the in-situ nature of volcanic rock by looking at the continuation of the rocks to the depth. In this study, we did a subsurface imaging by electrical resistivity method. The electrical resistivity surveys were conducted at 3 (three) lines across the ENE-WSW trend of the volcanic distribution. From those three measurements, we obtained three inversion models that present the distribution of the resistivity. We could differentiate between the high resistivity of volcanic rocks and the low resistivity of the clay-dominated sediments. Instead of the deep-rooted intrusions, the geometry of the volcanic rocks is concordant with the sedimentary strata. Since we do not observe any spatial continuity of the bodies, both laterally and vertically, the volcanic rocks might be part of broken intrusive rocks. Furthermore, the size and the sporadically distributed of the rocks also indicated that they are more likely as fragments during the olistostrome deposition, transported from its original location.  相似文献   

17.
Very thick units of massive pumice and lithic clast-rich breccia in the Early Permian Berserker beds at Mount Chalmers, Queensland, are deposits from cold, water-supported, volcaniclastic mass flows emplaced in a below-wave base submarine setting. Adjacent to syn-volcanic andesitic and rhyolitic sills and dykes, the pumice-lithic breccia shows a well-developed eutaxitic texture. The eutaxitic foliation is parallel to intrusive contacts and extends as far as a few metres away from the contact. At these sites, pumice clasts are strongly flattened and tube vesicles within the pumice clasts are compacted and aligned parallel to the direction of flattening. Some lenticular pumice clasts contain small (2 mm), round, quartz-filled amygdales and spherulites. Further away from the sills and dykes, the pumice clasts have randomly oriented, delicate tube vesicle structure and are blocky or lensoid in shape. Round amygdales were generated by re-vesiculation of the glass and the spherulites indicate devitrification of the glass at relatively high temperatures. The eutaxitic texture is therefore attributed to re-heating and welding compaction of glassy pumice-lithic breccia close to contacts with intrusions. In cases involving sills, secondary welding along the contacts formed extensive, conformable, eutaxitic zones in the pumice-lithic breccia that could be mistaken for primary welding compaction in a hot, primary pyroclastic deposit.  相似文献   

18.
We evaluated fault activity in northeast–central Japan based on fault orientation, regional stress field, and slip tendency analysis for active and non‐active faults (i.e. faults for which Quaternary activity has not been identified). Slip tendency is generally higher along active faults than non‐active faults, although a high slip tendency was observed along some non‐active faults, indicating their potential to become active. The potential for fault activity along non‐active faults can be modeled using the temporal evolution from non‐active to active during long‐term crustal deformation. The density of potentially active faults varies spatially across the study areas and reflects the temporal evolution of crustal deformation in northeast–central Japan.  相似文献   

19.
Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North–East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth, the intrusive complex development, the flank creep, the speed of flank deformation and the associated changes in topography. Using different approaches, a similar rift evolution has been proposed in volcanic oceanic islands elsewhere, showing that this model likely reflects a general and widespread process. This study, however, shows that the idea that dykes orient simply parallel to the rift or to the collapse scar walls is too simple; instead, a dynamic interplay between external factors (e.g. collapse, erosion) and internal forces (e.g. intrusions) is envisaged. This model thus provides a geological framework to understand the evolution of the NERZ and may help to predict developments in similar oceanic volcanoes elsewhere.  相似文献   

20.
Preferred orientation of the dominant phyllosilicate phase (serpentine) in the matrix of the Murchison meteorite (C2) was determined by X-ray pole figure goniometry. The basal plane (001) of the phyllosilicate shows a clear preferred orientation of an axial concentration type. The preferred orientation is very weak in comparison with the orientations of known terrestrial tectonites, and it resembles the weakest case observed in the loosely consolidated clayey sediments from the deep ocean bottom. However, gentle sedimentation of platy phyllosilicate grains on a flat surface under a weak gravity field does not generate a sufficient preferred orientation. It is suggested that the preferred orientation in the matrix of Murchison was generated by uniaxial compaction, and the magnitude of strain to give rise to the observed degree of preferred orientation is evaluated as ?9%. There are two possible explanations of the deformation: dynamic compression caused by impact, and static compaction in a parent body. Though the latter case appears to be appropriate in the present case, it is not straightforward, however, to conclude that the suggested deformation is caused by burial compaction along gravity under lithostatic stress in a small primitive parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号