首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a uniform transverse magnetic field on the free-convection and mass-transform flow of an electrically-conducting fluid past an infinite vertical plate for uniformly accelerated motion of the plate through a porous medium is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expression for the velocity field and skin-friction are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed.  相似文献   

2.
The problem of the free-convection flow of a viscous heat generating fluid through porous media in a rotating frame of reference is considered for the case when a strong magnetic field is imposed in a direction which is perpendicular to the free-stream and makes an angle to the vertical direction. Analytical expressions for the velocity field and temperature are given, and the influences of the various parameters on the velocity field are discussed.  相似文献   

3.
An analytical study is performed to examine the effects of magnetic field on the free-convection and mass transfer flow through porous medium. The effects of various parameters on the velocity field are discussed by tables.  相似文献   

4.
Effects of temperature-dependent heat source on hydromagnetic free-convection flow (set up due to temperature as well as species concentration) of an electrically-conducting incompressible viscous fluid past a steadily moving vertical porous plate through high porous medium has been analysed when the free stream oscillates in magnitude. The flow is subjected to a constant suction, through the porous plate. The mathematical analysis is presented for the hydromagnetic flow without taking into account the induced magnetic field. This is a valid assumption for small magnemtic Reynold number. Approximate analysis for the velocity and temperature field and their related quantities are obtained. The influence of various parameters entering into the problem is extensively discussed with the help of graphs and tables.  相似文献   

5.
Effects of Hall current on free convection and mass transfer flow through a porous medium bounded by a vertical surface has been analysed. The problem is solved analytically. The velocity profiles are shown on graphs. Effects ofm (Hall parameter).K * (permeability parameter), and Sc (Schmidt number) on velocity are discussed.  相似文献   

6.
Unsteady free-convection oscillatory flow on a porous plate near an infinite vertical plate in a rotating medium in the presence of a constant transverse magnetic field is investigated under an oscillatory forcing effect on the plate. An exact solution of the problem is determined by using the Laplace transform method. The thermal influence on the skin friction at the plate is determined, and the structure of the thermal waves is presented.  相似文献   

7.
The effects of magnetic field and mass transfer on the flow of an elasto-viscous fluid past an infinite vertical plate, when the plate is moving with uniform velocityU, are discussed. The magnetic lines of force are assumed to be fixed relative to the plate. The Laplace transform method is used to obtain the expression for velocity. The effect of various parameters, occurring into the problem, is discussed with the help of tables.  相似文献   

8.
In this work we present the effects of temperature-dependent heat source on hydromagnetic free-convection flow (set up due to temperature as well as species concentration) of an electrically-conducting incompressible viscous fluid past a steady moving vertical porous plate through high porous medium when the free stream oscillates in magnitude. The flow is subjected to a constant suction through the porous plate. As the mean steady flow has been presented gy Gholizadeh (1990), only the solution for the transient velocity profiles, transient temperature profiles, the skin-friction (steady+unsteady), and rate of heat transfer are presented in this work.  相似文献   

9.
Effects of magnetic field and permeability of the porous medium on unsteady forced and free-convection flow past an infinite vertical porous plate in presence of temperature-dependent heat source have been analysed. The Laplace transform method is used to obtain the expression for velocity field, skin friction, and leading edge effects. During the course of discussion, the effects ofM (magnetic parameter),S (heat source parameter), (suction parameter), andK (permeability of porous medium) on velocity field, skin friction, and leading edge effect have been extensively discussed.  相似文献   

10.
Magnetohydrodynamic unsteady flow through a porous medium with the presence mass transfer is considered. The porous medium is bounded by a vertical surface and this surface absorbs the fluid with a constant velocity. Also the free-stream velocity vibrates about a mean constant value. The influences of the permeability parameter and magnetic parameter on the velocity field are discussed.  相似文献   

11.
The two-dimensional unsteady free-convective flow through a porous medium bounded by an infinite vertical plate for an incompressible viscous and electrically conducting fluid is considered, when a strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an angle to the vertical direction. The effects of Hall currents on the flows are studied for various values of .  相似文献   

12.
The influence of free-convection currents and mass transfer in the case of laminar, non-steady boundary layer is studied here. The fluid is the air, considered incompressible and electrically conductive. The free-stream velocity oscillates about a mean value. A pulsated suction is also taken into account. A second meterial lies in small concentration in the fluid and absorbs part of the radiation. The influence of various parameters (G. M. etc.) on the flow is examined.  相似文献   

13.
The three-dimensional unsteady free-convection flows of a viscous fluid near a porous infinite vertical plate in a rotating medium in the presence of a constant transverse magnetic field are investigated under an arbitrary time-dependent heating of the plate. By using the Laplace transform technique, the Green function of the problem is determined and exact solutions are obtained for special cases of the impulsive and the accelerated heating effect for an arbitrary Prandtl number. The thermal influence on skin friction at the plate and the displacement thickness of the boundary layers are discussed.  相似文献   

14.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically-conducting fluid past an infinite, vertical, porous plate for both classes of impulsive as well as uniformly-accelerated motion of the plate is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expressions for the velocity field and skin friction for both cases are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed with the help of graphs and tables.  相似文献   

15.
Unsteady two-dimensional hydromagnetic free convection and mass transfer flow of an electrically-conducting viscous-incompressible fluid, through a highly porous medium bounded by a vertical plane surface of constant temperature is considered. The free-stream velocity of the fluid vibrates about a mean constant value and the surface absorbs the fluid with constant velocity. Expressions for the velocity, temperature, concentration are obtained. Effects of Gr (Grashof number), Gm (modified Grashof number),K (permeability of the porous medium), (frequency parameter), andM (magnetic parameter) upon the velocity field are discussed.  相似文献   

16.
The three-dimensional flow of an electrically conducting and incompressible viscous fluid past a uniformly accelerated infinite vertical porous plate is studied in a rotating fluid. The flow is assumed to be at small magnetic Reynolds number so that the induced magnetic field is neglected. An exact solution has been obtained by defining a complex velocity with the help of the Laplace transform method for the Prandtl number equal to unity. The effects of rotation, magnetic and free-convection parameters are discussed for the whole problem. Also, the skin-friction components on the plate are discussed.  相似文献   

17.
We study the unsteady free-convection flow near a moving infinite flat plate in a totating medium by imposing a time-dependent perturbation on a constant plate temperature. The temperatures involved are assumed to be very large so that radiative heat transfer is significant, which renders the problem very nonlinear even on the assumption of a differential approximation for the radiative flux. When the perturbation is small, the transient flow is tackled by the Laplace transform technique. Complete first-order solutions are deduced for an impulsive motion.  相似文献   

18.
The unsteady free-convection flow of an electrically-conducting fluid near an oscillating vertical plate of infinite extent, is studied in the presence of a uniform transverse magnetic field. Exact solutions for velocity, temperature and skin friction are obtained with the aid of the Laplace transform method, when the plate is oscillating harmonically in its own plane. The influence of various parameters, entering into the problem, is discussed for the velocity field and skin-friction.  相似文献   

19.
We consider the buoyancy-induced flow of an electrically-conducting fluid with radiative heat transfer past a vertical flat plate of infinite length. We assume that the density obeys the simple Boussinesq equation of state while the viscosity and thermal conductivity vary with temperature, that is a compressible fluid. If the temperature of the plate is such that a time-dependent component is superimposed on a constant value, the problem is tackled by asymptotic approximation. The results are compared and contrasted with those of incompressible flow.  相似文献   

20.
The effect of Hall currents on the hydromagnetic free-convection flow of an electrically conducting and incompressible viscous fluid past a uniformly accelerated infinite vertical porous plate is discussed. The magnetic Reynolds number is assumed to be small so that the induced magnetic field can be neglected. The governing equations of the flow are solved by defining a complex velocity with the help of the Laplace transform method when the Prandtl number is equal to unity. The influence of the various parameters on the unsteady flow field is presented for both the cases, cooling and heating of the porous plate by free-convection currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号