首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between  17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at  16.5 ka. Total pollen accumulation rates ranged between  180 and 1200 grains cm− 2 yr− 1. At  15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At  14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from  15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from  4.5 to 2 ka.  相似文献   

2.
A high-resolution pollen and Pediastrum record, spanning 12,500 yr, is presented for Lake Bayanchagan (115.21°E, 41.65°N, and 1355 m a.s.l.), southern Inner Mongolia. Individual pollen taxa (PT-MAT) and the PFT affinity scores (PFT-MAT) were used for quantitative climatic reconstruction from pollen and algal data. Both techniques indicate that a cold and dry climate, similar to that of today, prevailed before 10,500 cal yr B.P. The wettest climate occurred between 10,500 and 6500 cal yr B.P., at which time annual precipitation was up to 30–60% higher than today. The early Holocene increases in temperature and precipitation occurred simultaneously, but mid-Holocene cooling started at approximately 8000 cal yr B.P., 1500 yr earlier than the drying. Vegetation reconstruction was based on the objective assignment of pollen taxa to the plant functional type. The results suggest that this region was dominated by steppe vegetation throughout the Holocene, except for the period 9200 to 6700 cal yr B.P., when forest patches were relatively common. Inner Mongolia is situated at the limit of the present East Asian monsoon and patterns of vegetation and climate changes in that region during the Holocene probably reflect fluctuations in the monsoon's response to solar insolation variations. The early to middle Holocene monsoon undoubtedly extended to more northern latitudes than at present.  相似文献   

3.
This paper documents a continuous  44,000-yr pollen record derived from the Mfabeni Peatland on the Maputaland Coastal Plain. A detailed fossil pollen analysis indicates the existence of extensive Podocarpus-abundant coastal forests before  33,000 cal yr BP. The onset of wetter local conditions after this time is inferred from forest retreat and the development of swampy conditions. Conditions during the last glacial maximum ( 21,000 cal yr BP) are inferred to have been colder and drier than the present, as evidenced by forest retreat and replacement of swampy reed/sedge communities by dry grassland. Forest growth and expansion during the Holocene Altithermal ( 8000–6000 cal yr BP) indicates warm, relatively moist conditions. Previous records from Maputaland have suggested a northward migration of Podocarpus forest during the late Holocene. However, we interpret a mid-Holocene decline in Podocarpus at Mfabeni as evidence of deforestation. Forest clearance during the mid-Holocene is supported by the appearance of Morella serrata, suggesting a shift towards more open grassland/savanna, possibly due to burning. These signals of human impact are coupled with an increase in Acacia, indicative of the development of secondary forest and hence disturbance.  相似文献   

4.
The Iberian Peninsula and the Maghreb experience moderate earthquake activity and oblique,  NW–SE convergence between Africa and Eurasia at a rate of  5 mm/yr. Coeval extension in the Alboran Basin and a N35°E trending band of active, left-lateral shear deformation in the Alboran–Betic region are not straightforward to understand in the context of regional shortening, and evidence complexity of deformation at the plate contact. We estimate 86 seismic moment tensors (MW 3.3 to 6.9) from time domain inversion of near-regional waveforms in an intermediate period band. Those and previous moment tensors are used to describe regional faulting style and calculate average stress tensors. The solutions associated to the Trans-Alboran shear zone show predominantly strike-slip faulting, and indicate a clockwise rotation of the largest principal stress orientation compared to the regional convergence direction (σ1 at N350°E). At the N-Algerian and SW-Iberian margins, reverse faulting solutions dominate, corresponding to N350°E and N310°E compression, respectively. Over most of the Betic range and intraplate Iberia, we observe predominately normal faulting, and WSW–ENE extension (σ3 at N240°E). From GPS observations we estimate that more than 3 mm/yr of African (Nubian)–Eurasian plate convergence are currently accommodated at the N-Algerian margin,  2 mm/yr in the Moroccan Atlas, and  2 mm/yr at the SW-Iberian margin. 2 mm/yr is a reasonable estimate for convergence within the Alboran region, while Alboran extension can be quantified as  2.5 mm/yr along the stretching direction (N240°E). Superposition of both motions explains the observed left-lateral transtensional regime in the Trans-Alboran shear zone. Two potential driving mechanisms of differential motion of the Alboran–Betic–Gibraltar domain may coexist in the region: a secondary stress source other than plate convergence, related to regional-scale dynamic processes in the upper mantle of the Alboran region, as well as drag from the continental-scale motion of the Nubian plate along the southern limit of the region. In the Atlantic Ocean, the  3.5 mm/yr, westward motion of the Gibraltar Arc relative to intraplate Iberia can be accommodated at the transpressive SW-Iberian margin, while available GPS observations do not support an active subduction process in this area.  相似文献   

5.
Integration of on-land and offshore geomorphological and structural investigations coupled to extensive radiometric dating of co-seismically uplifted Holocene beaches allows characterization of the geometry, kinematics and seismotectonics of the Scilla Fault, which borders the eastern side of the Messina Strait in Calabria, Southern Italy. This region has been struck by destructive historical earthquakes, but knowledge of geologically-based source parameters for active faults is relatively poor, particularly for those running mostly offshore, as the Scilla Fault does. The  30 km-long normal fault may be divided into three segments of  10 km individual length, with the central and southern segments split in at least two strands. The central and northern segments are submerged, and in this area marine geophysical data indicate a youthful morphology and locally evidence for active faulting. The on-land strand of the western segment displaces marine terraces of the last interglacial (124 to 83 ka), but seismic reflection profiles suggest a full Quaternary activity. Structural data collected on bedrock faults exposed along the on-land segment provide evidence for normal slip and  NW-SE extension, which is consistent with focal mechanisms of large earthquakes and GPS velocity fields in the region. Detailed mapping of raised Holocene marine deposits exposed at the coastline straddling of the northern and central segments supplies evidence for two co-seismic displacements at  1.9 and  3.5 ka, and a possible previous event at  5 ka. Co-seismic displacements show a consistent site value and pattern of along-strike variation, suggestive of characteristic-type behaviour for the fault. The  1.5–2.0 m average co-seismic slips during these events document Me  6.9–7.0 earthquakes with  1.6–1.7 ka recurrence time. Because hanging-wall subsidence cannot be included into slip magnitude computation, these slips reflect footwall uplift, and represent minimum average estimates. The palaeoseismological record based on the palaeo-shorelines suggests that the last rupture on the Scilla Fault during the February 6, 1783 Mw = 5.9–6.3 earthquake was at the expected time but it may have not entirely released the loaded stress since the last great event at  1.9 ka. Comparison of the estimated co-seismic extension rate based on the Holocene shoreline record with available GPS velocities indicates that the Scilla Fault accounts for at least  15–20% of the contemporary geodetic extension across the Messina Strait.  相似文献   

6.
A laminated sequence (core BAP96-CP 24°38.12′N, 110°33.24′W; 390 m depth) from the Alfonso Basin in Bay of La Paz, southern Gulf of California, contains a record of paleoceanographic and paleoclimatic changes of the past 7900 yr. Radiolarian assemblages and magnetic susceptibility are used as proxies of oceanographic and climatic variability. The records provide a regional scenario of the middle and late Holocene, suggesting two major climatic regimes and several millennial-scale events. Conditions relatively warmer and drier than today occurred from 7700 to 2500 cal yr BP, promoting the intensification of evaporation processes and the prevalence of the Gulf of California water in the Basin. These conditions correlate with strong droughts in the middle Holocene of North America and with minimal incursion of tropical waters into the Gulf of California. Proxies indicate a warm scenario and the dominance of the Equatorial Surface Water in the Alfonso Basin from 2400 to 700 cal yr BP, suggesting the intensification of ENSO cycles. A climatic signal between 1038 and 963 cal yr BP may be correlated with global signal of the “Medieval Warm Period.” Several cooling events are recognized at 5730, 3360, 2700, 1280 and 820 cal yr BP and are associated with intensification of northwest winds leading to upwellings and enhanced productivity in the Basin.  相似文献   

7.
Picea is an important taxon in late-glacial pollen records from eastern North America, but little is known about which species of Picea were present. We apply a recently developed palynological method for discriminating the three Picea species in eastern North America to three records from New England. Picea glauca was dominant at  14,500–14,000 cal yr BP, followed by a transition to Picea mariana between  14,000 and 13,500 cal yr BP. Comparison of the pollen data with hydrogen isotope data shows clearly that this transition began before the beginning of the Younger Dryas Chronozone. The ecological changes of the late-glacial interval were not a simple oscillation in the position of a single species' range, but rather major changes in vegetation structure and composition occurring during an interval of variations in several environmental factors, including climate, edaphic conditions, and atmospheric CO2 levels.  相似文献   

8.
Numerous cirques of the Lofoten–Vesterålen archipelago in northern Norway have distinct moraine sequences that previously have been assigned to the Allerød-Younger Dryas ( 13,400 to 11,700 yr BP) interval, constraining the regional distribution of the equilibrium-line altitude (ELA) of cirque and valley glaciers. Here we present evidence from a once glacier-fed lake on southern Andøya that contests this view. Analyses of radiocarbon dated lacustrine sediments including rock magnetic parameters, grain size, organic matter, dry bulk density and visual interpretation suggest that no glacier was present in the low-lying cirque during the Younger Dryas-Allerød. The initiation of the glacial retreat commenced with the onset of the Bølling warming ( 14,700 yr BP) and was completed by the onset of Allerød Interstade ( 13,400 yr BP). The reconstructed glacier stages of the investigated cirque coincide with a cool and dry period from  17,500 to 14,700 yr BP and a somewhat larger Last Glacial Maximum (LGM) advance possibly occurring between  21,050 and 19,100 yr BP.  相似文献   

9.
The Yidun Arc is a Triassic volcanic arc located between the Songpan Garzê Fold Belt and the Qiangtang Block, southwest China. To constrain the age of a number of the major granitic plutons from the Yidun Arc, laser ablation ICP-MS U/Pb analysis of zircon was conducted. Hafnium isotope data was also acquired through laser-ablation multicollector ICPMS analysis of zircon, with the aim of gaining insight into the age and nature of the source region of the plutons. Three age groups have been identified from seven granite samples: Early–Middle Triassic ( 245 to 229 Ma), Late Triassic ( 219 to 216 Ma) and Cretaceous ( 105 to 95 Ma). Hafnium analysis shows the Triassic granites to have negative and variable εHf values and Mesoproterozoic ( 1.6 Ga) depleted-mantle model ages, which is interpreted to reflect derivation from an isotopically heterogeneous, largely crustal source. The Cretaceous granite shows higher and less variable εHf values and slightly younger model ages ( 1.3 Ga), and is interpreted to be derived from melting of a more homogeneous crustal source. A depleted-mantle model age of  1.5 Ga is calculated from the pooled Triassic and Cretaceous samples. The source region for these magmas may be tentatively correlated with Mesoproterozoic material of the Yangtze Craton, which has been suggested to underlie the Yidun Arc; however, further work is necessary to demonstrate this suggestion.  相似文献   

10.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

11.
High velocity (1 m/s) friction experiments on bituminous coal gouge display several earthquake-related phenomena, including devolatilization by frictional heating, gas pressurization, and slip weakening. Stage I is characterized by sample shortening and reduction in the coefficient of friction (μ) from  1 to 0.6. Stage II is characterized by high frequency ( 5 Hz) oscillations in stress and strain records and by gas emissions. Stage III is marked by rapid weakening (μ  0.1 to 0.35) and sample shortening, together with continued gas emissions. Stage IV produces stable stress records and continued weakness (μ  0.2), but without gas emission. Stage I shortening is due to compaction of the gouge and the weakening is attributed to mechanical or thermal effects. Stage II behavior is interpreted as due to coal gasification and fluctuations in fluid pressure, resulting in high frequency stick-slip type behavior. Dramatic reduction in shear stress in stage III is attributed to gas pressurization by pore collapse and corresponds to a frictional instability, analogous to nucleation of an earthquake. Microstructural observations indicate the deformation was brittle during stages I and II but ductile during stages III and IV. Time dependent finite element frictional heat models indicate the center of the samples became hot ( 900 °C) during stage II, whereas the edge of samples remained relatively cold (< 300 °C). Vitrinite reflectance of coal samples shows an increase in reflectance from  0.5 to  0.8% over the displacement interval 20–40 m (20–40 s), indicating that the reflectance responds to frictional heating on a short time scale. The energy expended per unit area in these low stress, large displacement experiments is similar to that of higher stress ( 50 MPa), short displacement ( 1 m) earthquakes ( 107 J/m2).  相似文献   

12.
A comprehensive record of lake level changes in the Dead Sea has been reconstructed using multiple, well dated sediment cores recovered from the Dead Sea shore. Interpreting the lake level changes as monitors of precipitation in the Dead Sea drainage area and the regional eastern Mediterranean palaeoclimate, we document the presence of two major wet phases ( 10–8.6 and  5.6–3.5 cal kyr BP) and multiple abrupt arid events during the Holocene. The arid events in the Holocene Dead Sea appear to coincide with major breaks in the Near East cultural evolution (at  8.6, 8.2, 4.2, 3.5 cal kyr BP). Wetter periods are marked by the enlargement of smaller settlements and growth of farming communities in desert regions, suggesting a parallelism between climate and Near East cultural development.  相似文献   

13.
The lack of paleoecological records from the montane Atlantic Rainforest of coastal Brazil, a hotspot of biological diversity, has been a major obstacle to our understanding of the vegetational changes since the last glacial cycle. We present carbon isotope and pollen records to assess the impact of the glaciation on the native vegetation of the Serra do Mar rainforest in São Paulo, Brazil. From ca. 28,000 to  22,000 14C yr BP, a subtropical forest with conifer trees is indicative of cool and humid conditions. In agreement carbon isotopic data on soil organic matter suggest the presence of C3 plants and perhaps C4 plants from  28,000 to  19,000 14C yr BP. The significant increase in the sedimentation rate and algal spores from  19,450 to  19,000 14C yr BP indicates increasing humidity, associated to an erosion process between  19,000 and  15,600 14C yr BP. From  15,600 14C yr BP to present there is a substantial increase in arboreal elements and herbs, indicating more humid and warmer climate. From  19,000 to  1000 14C yr BP, δ13C values indicated the predominance of C3 plants. These results are in agreement with studies in speleothems of caves, which suggest humid conditions during the last glacial maximum.  相似文献   

14.
Pollen analysis of sediments from a high-altitude (4215 m), Neotropical (9°N) Andean lake was conducted in order to reconstruct local and regional vegetation dynamics since deglaciation. Although deglaciation commenced 15,500 cal yr B.P., the area around the Laguna Verde Alta (LVA) remained a periglacial desert, practically unvegetated, until about 11,000 cal yr B.P. At this time, a lycopod assemblage bearing no modern analog colonized the superpáramo. Although this community persisted until 6000 cal yr B.P., it began to decline somewhat earlier, in synchrony with cooling following the Holocene thermal maximum of the Northern Hemisphere. At this time, the pioneer assemblage was replaced by a low-diversity superpáramo community that became established 9000 cal yr B.P. This replacement coincides with regional declines in temperature and/or available moisture. Modern, more diverse superpáramo assemblages were not established until 4600 cal yr B.P., and were accompanied by a dramatic decline in Alnus, probably the result of factors associated with climate, humans, or both. Pollen influx from upper Andean forests is remarkably higher than expected during the Late Glacial and early to middle Holocene, especially between 14,000 and 12,600 cal yr B.P., when unparalleled high values are recorded. We propose that intensification of upslope orographic winds transported lower elevation forest pollen to the superpáramo, causing the apparent increase in tree pollen at high altitude. The association between increased forest pollen and summer insolation at this time suggests a causal link; however, further work is needed to clarify this relationship.  相似文献   

15.
This paper explores the environmental conditions that faced the people of ancient Jawa during the Holocene, as well as previous prehistoric periods of the mid-late Pleistocene. Calcite speleothems in a lava tube are dated using the U-Th method, to marine oxygen isotope stage 7 from  250 to 240 ka and from  230 to  220 ka; and the stage 5/4 transition between  80 and 70 ka. The available evidence indicates general aridity of the Black Desert during most of the mid-late Quaternary, punctuated by short wetter periods, when the Mediterranean cyclonic systems intensified and penetrated the north Arabian Desert. These Mediterranean systems had a longer and more intense effect on the desert fringe closer to the Mediterranean and only rarely penetrated the Black Desert of Jawa. The results do not exclude some increase of rainfall which did not change water availability dramatically during the warm Holocene. The ancient Jawa city appears to have depended on technological ability to build elaborate runoff-collection systems, which became the prime condition for success.  相似文献   

16.
Coaly source rocks are sufficiently different from marine and lacustrine source rocks in their organic matter characteristics to warrant separate guidelines for their assessment using Rock-Eval pyrolysis. The rank threshold for oil generation is indicated by the increase in BI (S1/TOC) at Rank(Sr)9–10 (Tmax 420–430 °C, Ro 0.55–0.6%), and the threshold for oil expulsion is indicated by the peak in QI ([S1+S2]/TOC) at Rank(Sr)11–12.5 (Tmax 430–440 °C, Ro 0.65–0.85%). The pronounced rank-related increase in HI (S2/TOC) prior to oil expulsion renders the use of immature samples inappropriate for source rock characterisation. A more realistic indication of the petroleum generative potential and oil expulsion efficiency of coaly source rocks can be gained from samples near the onset of expulsion. Alternatively, effective HI′ values (i.e. HIs near the onset of expulsion) can be estimated by translating the measured HIs of immature samples along the maturation pathway defined by the New Zealand (or other defined) Coal Band. Coaly source rocks comprise a continuum of coaly lithologies, including coals, shaly coals and coaly mudstones. Determination of the total genetic potential of coaly source rock sequences is best made using lithology-based samples near the onset of expulsion.  相似文献   

17.
Jun-Hong Zhao  Mei-Fu Zhou 《Lithos》2008,104(1-4):231-248
Numerous Neoproterozoic felsic and mafic–ultramafic intrusions occur in the Hannan region at the northern margin of the Yangtze Block. Among these, the Wudumen and Erliba plutons consist of granodiorites and have SHRIMP zircon U–Pb ages of  735 Ma. The rocks have high K2O (0.8–3.6 wt.%) and Na2O (4.4–6.4 wt.%) and low MgO (0.4–1.7 wt.%). They also have high Sr/Y (32–209) and (La/Yb)n ratios (4.4–38.6). Their εNd values range from − 0.41 to − 0.92 and zircon initial 176Hf/177Hf ratios from 0.282353 to 0.282581. These geochemical features are similar to those of adakitic rocks produced by partial melting of a thickened lower crust. Our new analytical results, combined with the occurrence of voluminous arc-related mafic–ultramafic intrusions emplaced before 740 Ma, lead us to propose that the crustal evolution in the northern margin of the Yangtze Block during Neoproterozoic involved: (1) rapid crustal growth and thickening by underplating of mafic magmas from the mantle which was modified by materials coming from the subducting oceanic slab from  1.0 to  0.74 Ga, and (2) partial melting of the thickened lower crust due to a thermal anomaly induced by upwelling of asthenosphere through an oceanic slab window, producing the  735 Ma adakitic Wudumen and Erliba plutons. Our model suggests that the crustal thickness was more than 50 km at the northern margin of the Yangtze Block at  735 Ma, and rule out the possibility of a mantle plume impact causing the > 735 Ma magmatism in the region.  相似文献   

18.
A pollen record from Lake Xere Wapo, southeast New Caledonia, is the longest continuous terrestrial record to be recovered from the tropical southwest Pacific and reveals a series of millennial scale changes in vegetation over the last 130,000 yr. A comparison of the Lake Xere Wapo record with the key northeast Australian record of Lynch's Crater reveals regional patterns of change. From 120,000 to 50,000 yr ago the vegetation around Lake Xere Wapo alternated between rainforest and maquis with fire an important disturbance factor. In the last 50,000 yr fire is almost absent from the record and the vegetation assumes a character unprecedented in the preceding 100,000 yr, dominated by Dacrydium and Podocarpus pollen. The most compelling aspect of the comparison with Lynch's Crater is that the much-discussed Araucaria decline at around 45,000 yr ago in northern Queensland is matched by a similar decline in the Lake Xere Wapo record.  相似文献   

19.
Plant macrofossils from the “Mamontovy Khayata” permafrost sequence (71°60′N, 129°25′E) on the Bykovsky Peninsula reflect climate and plant biodiversity in west Beringia during the last cold stage. 70 AMS and 20 conventional 14C dates suggest sediment accumulation between about 60,000 and 7500 14C yr B.P. The plant remains prove that during the last cold-stage arctic species (Minuartia arctica, Draba spp., Kobresia myosuroides) coexisted with aquatic (Potamogeton vaginatus, Callitriche hermaphroditica), littoral (Ranunculus reptans, Rumex maritimus), meadow (Hordeum brevisubulatum, Puccinellia tenuiflora) and steppe taxa (Alyssum obovatum, Silene repens, Koeleria cristata, Linum perenne). The reconstructed vegetation composition is similar to modern vegetation mosaics in central and northeast Yakutian relict steppe areas. Thus, productive meadow and steppe communities played an important role in the Siberian Arctic vegetation during the late Pleistocene and could have served as food resource for large populations of herbivores. The floristic composition reflects an extremely continental, arid climate with winters colder and summers distinctly warmer than at present. Holocene macrofossil assemblages indicate a successive paludification possibly connected with marine transgression, increased oceanic influence and atmospheric humidity. Although some steppe taxa were still present in the early Holocene, they disappeared completely before 2900 14C yr B.P.  相似文献   

20.
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L  50 km × W  23 km. The maximum slip ( 2.7 m) occurred  30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred  40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is  7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号