首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper outlines a methodology for evaluating the likelihood of catastrophic landslide occurrence on gentle slopes in liquefiable soils during earthquake. The approach is based on a modified Newmark sliding block model of assessing the earthquake-induced undrained landslide displacements for conditions of no shear stress reversals on the sliding surface. By employing the shear resistance-displacement relationship from undrained monotonic ring shear tests, the simulation model incorporates the sensitivity of computed displacements to variations in yield acceleration. The proposed approach involves an examination of undrained seismic slope performance under various horizontal seismic waveforms scaled to different specific values of the peak earthquake acceleration. An example problem illustrates how the proposed methodology may be used to demarcate, based on the magnitude of permanent seismic displacement, the levels of low, moderate and high risk of catastrophic landslide on a gentle slope in a saturated cohesionless soil susceptible to liquefaction during earthquake.  相似文献   

2.
3.
Discontinuous deformation analysis (DDA) is a numerical approach used to simulate the post-failure behavior of a blocky assembly. Three available algorithms incorporate seismic impacts into DDA simulations for earthquake-induced slope failure. The following methods are used: directly applying time-dependent accelerations to falling/sliding blocks (Method 1); adding time-dependent accelerations to base block (Method 2); and time-dependently constraining seismic displacements of the base block (Method 3). However, incorrect absolute movements of falling/sliding and base blocks were obtained using Method 1. Additionally, relative movements between falling/sliding blocks and the base block are opposite to those simulated by the other two algorithms—Methods 2 and 3. Since locating an earthquake-induced landslide before an earthquake is extremely difficult, the seismic movements of base rock are recorded. Method 1 applies recorded seismic data to sliding blocks in conflict with d’Alembert’s principle of mechanics. Additionally, in Method 2, when the computation time step must be longer than the time in seismic data, computational results reveal abnormal base block displacements due to the non-zero velocity recorded at the end time of seismic data in seismic DDA. In this study, a novel algorithm to diminish the velocity of the base rock in the seismic analysis is utilized to modify Method 2. Furthermore, this work confirms that DDA with the modified Methods 2 and 3 is a practical approach for earthquake-induced landslide simulations.  相似文献   

4.
This study proposes a calculation method for regional earthquake-induced landslide susceptibility that applies the permanent seismic displacement calculated using Newmark’s sliding block analysis with estimated vertical and horizontal seismic motions. The proposed method takes into account the direction of slope failure based on the specified slope azimuth. The study results reveal the importance of predominant slope failure direction using a simple infinite slope model subjected to earthquakes. The target area for the earthquake-induced landslide susceptibility analysis constituted a region of more than 2000 km2 surrounding the epicenter of the Mid Niigata prefecture earthquake in 2004. An earthquake-induced landslide susceptibility map was created based on the proposed method with a specific combination of friction angle and cohesion, and the resulting data were compared to the landslide inventory map produced from aerial photographs following the Mid Niigata prefecture earthquake in 2004. To create the susceptibility map, geomaterial cohesion values for the slope were back-calculated to satisfy the minimum safety factor in the static state. This study also proposes a calculation method for the prediction rate and determines the back-calculated strength parameters of geomaterials. The proposed regional landslide susceptibility map will be useful for understanding potential slope failure locations and magnitude of damage, as well as for planning field investigation and preventing secondary disasters immediately after earthquakes.  相似文献   

5.
 Different models were developed for evaluating the probabilistic three-dimensional (3-D) stability analysis of earth slopes and embankments under earthquake loading using both the safety factor and the displacement criteria of slope failure. In the 3-D analysis, the critical and total slope widths become two new and important parameters. The probabilistic models evaluate the probability of failure under seismic loading and consider the different sources of uncertainties involved in the problem, i.e. uncertainties stemming from the discrepancies between laboratory-measured and in situ values of shear strength parameters, randomness of earthquake occurrence, and earthquake-induced acceleration. The models also take into consideration the spatial variabilities and correlations of soil properties. The developed models are incorporated in a computer program, PTDDSSA (probabilistic three-dimensional dynamic slope stability analysis). These developed analysis/design procedures are incorporated within a code named SARETL (stability analysis and remediation of earthquake-triggered landslides) that was developed in this study for stability analysis and remediation of earthquake-triggered landslides. In addition to the dynamic inertia forces; the developed system takes into consideration the local site effects. The code is capable of: 1. Prediction of permanent deformations that result from landslides under seismic loading using both probabilistic and deterministic approaches. 2. The assessment of landslide hazard that affects major transportation routes in the event of earthquakes, and the preparation of earthquake-induced landslide hazard maps (i.e. maps that show expected displacements and probability of slope/embankments failure) for different earthquakes magnitudes and environmental conditions. 3. Proposing a mitigation strategy against landslides and suggesting guidelines for remedial measures. The developed expert system is applied to a major highway case study. Design maps are developed for the highway under seismic loading. Received: 18 March 1999 · Accepted: 11 October 1999  相似文献   

6.
Mingjing Jiang  Di Wu 《Landslides》2018,15(11):2227-2241
Submarine landslide due to seismic loading in methane hydrate-rich zone was simulated in this study using coupled computational fluid dynamics and discrete element method. Dynamic features and Magnus force were incorporated in the coupling scheme to improve the simulation fidelity in dynamic problem. A sinusoidal type seismic loading was applied to a steep submarine slope, which was characterized by a strong inter-layer of methane hydrate-bearing sediments. The simulation results show that a flow-type sliding occurs and the sliding ends with a gentle slope of accumulated debris material. The fluid flows in an eddy pattern near the sliding mass. The presence of methane hydrate can increase the strength and decrease the damping of the sediment. When MH saturation is low (25 and 30%), the combined seismic loading and particle-fluid interaction damage the MH-rich layer, which allows settlement behind the slope crest and upheaval in front of the slope toe. The two ground deformation patterns (settlement and upheaval) are not observed when MH saturation is high (40 and 50%) because the sediment strength is great enough to resist seismic damage. The lower damping in higher MH saturation sediment allows more energy to be transferred from ground base to potential sliding mass and consequently the sliding initiates earlier. Implications of the simulation results in the assessment of earthquake-induced submarine hazards are discussed.  相似文献   

7.
重庆小南海滑坡形成机制离散元模拟分析   总被引:1,自引:0,他引:1  
申通  王运生  吴龙科 《岩土力学》2014,35(Z2):667-675
重庆小南海滑坡是烈度相对较低地区发生的地震高位滑坡,其成因一直令人费解。基于重庆黔江小南海相关研究资料,通过对复原的小南海坡体进行失稳分析,计算得出使岩体产生崩滑破坏的地震力临界条件,即只有当地震波地形放大后滑坡才能启动。为了进一步验证计算所得的结论,运用UDEC软件建立小南海典型二维场地模型,施加相应的地震力对坡体失稳崩滑的全过程进行模拟,以研究地震作用下地形放大效应触发具平行坡面陡倾控制性结构面的高位岩质斜坡地震机理。研究结果表明,在地震波传播过程中,具平行坡面陡倾控制性结构面的高陡突出地形对地震波有明显的放大作用。该坡体运动模式为:峰值加速度放大-增加的振幅迫使岩体顺平行坡面陡倾控制性结构面迅速拉裂-沿缓倾层面滑移-高速脱离滑源区-巨大的势能和动能驱动坡体做长距离运动,其间伴随解体、颗粒间相互碰撞、铲刮作用,具有二相甚至三相流体性质。分析揭示地震力作用下斜坡体中质点加速度具有地形放大效应。对比结构面监测点和基岩监测点加速度放大系数,表明,滑坡启动时具有较大的加速度,当遇到平行坡面的不连续结构面时,斜坡动力响应强烈,最终导致坡体失稳。  相似文献   

8.
滑坡运动过程模拟避免了试验尺度与监测手段的限制,可以详细观察破坏过程,是定量评估滑坡灾变风险的重要研究手段。开展滑坡运动过程模拟的首要工作是建立滑坡模型。颗粒流程序(PFC) 虽然是滑坡运动过程模拟应用最广泛的程序之一,但在建立滑坡模型的前处理方面较弱,使得其在滑坡运动过程模拟中的推广应用受到限制。对此,本文指出了Ball-Ball和Ball-Wall两种建模方法的适用性、优缺点及滑体滑床边界确定方法,并以2014年地震触发的红石岩滑坡为例,以Brick填充法为基础,从获取地形数据、确定滑体和滑床区域、建立滑体和滑床几何模型、生成颗粒模型4个步骤出发,提出了基于数字等高线地形图建立PFC二、三维复杂滑坡模型的前处理方法,弥补了PFC软件前处理的不足,从而为今后基于PFC的滑坡运动过程模拟提供有益的帮助。  相似文献   

9.
充分考虑振动台实验揭示出来的基本地震滑坡单元体震动滑移特征,总结得到其永久位移的估算方法:(1)考虑地震动惯性力和重力的联合作用,计算相应向上和向下滑移的屈服加速度,以反应其可能向上和向下滑移的行为;(2)在适度简化斜坡岩土体动力学模型的基础上,考虑斜坡岩土体自振特性和滑体所在高度对地震波的放大效应,得到滑体附近的局部地震加速度;(3)考虑滑体附近局部加速度和滑移屈服加速度的控制作用,计算每一地震波的周期内滑体相对滑床所能达到的最大滑移速度(向上和向下),进而得到相对动能;(4)考虑到滑体的动能基本耗散在滑带上,基于能量守恒原理,将相对动能除以滑带上的摩擦力,即可估算出每一周期内的永久位移;(5)将每一地震波周期内产生的永久位移相累加,即可得到总体的滑动位移。经与实验结果对比,本估算方法具有较高的精度与可靠性,虽只考虑了水平向地震动作用的影响,但对于存在竖向地震动的情况,其思路同样适用,只是需要计入竖向地震动惯性作用力的影响。  相似文献   

10.
Earthquake-induced landslides are responsible worldwide for significant socioeconomic losses and historically have a prominent position in the list of natural hazards affecting the Iran plateau. As a step toward the development of tools for the assessment and the management of this kind of hazard at regional scale, an empirical estimator of coseismic displacements along potential sliding surfaces was obtained through a regression analysis for the Zagros region, a mountainous Iranian region subjected to earthquake-induced landslides. This estimator, based on the Newmark’s model, allows to evaluate the expected permanent displacement (named “Newmark displacement”) induced by seismic shaking of defined energy on potential sliding surface characterized by a given critical acceleration. To produce regression models for Newmark displacement estimators, a data set was constructed for different critical acceleration values on the basis of 108 accelerometric recordings from 80 Iranian earthquakes with moment magnitudes between 3.6 and 7. The empirical estimator has a general form, proposed by Jibson (Eng Geol 91:209–218, 2007), relating Newmark displacement to Arias intensity (as parameter representing the energy of the seismic forces) and to critical acceleration (as parameter representing the dynamic shear resistance of the sliding mass). As an example of application, this relation was employed to provide a basic document for earthquake-induced landslide hazard assessment at regional scale, according to a method proposed by Del Gaudio et al. (Bull Seismol Soc Am 93:557–569, 2003), applied to the whole Iranian territory, including Zagros region. This method consists in evaluating the shear resistance required to slopes to limit the occurrence of seismically induced failures, on the basis of the Newmark’s model. The obtained results show that the exposure to landslide seismic induction is maximum in the Alborz Mountains region, where critical accelerations up to ~0.1 g are required to limit the probability of seismic triggering of coherent type landslides within 10% in 50 years.  相似文献   

11.
简化Bishop法是评价圆弧形滑动面滑坡稳定性的"严格"方法,计算方法简便、精确,已有相关学者研究了其严格性,但却没有与之相适应的滑坡剩余下滑推力解析法,给滑坡(边坡)的综合治理带来了一定困难。本文从简化Bishop法计算原理出发,考虑坡体自重、外力、水平地震力、滑动面处的孔隙水压力等,利用力多边形法则,得到了两类简化Bishop法剩余下滑推力分析模型,即:Ⅰ型(Ti ≥ 0)和Ⅱ型(Ti < 0);针对两类模型推导出了第i-1条块的下滑推力,然后,使Fi-1参与到第i条块的力多边形受力模型中,从上往下逐条块计算下滑推力,进而推导出条块i的剩余下滑推力解析计算公式。该解析法与传递系数法隐式解所计算的剩余下滑推力进行比较,总体上呈现出简化Bishop法剩余下滑推力高于传递系数法隐式解,两者的剩余下滑推力差值随着安全储备的增大而减小,且该解析法适用于安全储备要求较高的滑坡(边坡),该解析法为圆弧形滑动面滑坡(边坡)治理设计提供了一定的理论依据。  相似文献   

12.
Semi-empirical models based on Newmark’s sliding block permit the estimation of expected co-seismic displacements in relation to one or more parameters which characterize the ground motion that theoretically caused them. Taking this into consideration, a regression analysis, based on a double-phase viscoplastic (DPV) model, was developed using 96 Italian ground motion accelerograms for a total of 1,448 combinations obtained for different parametric conditions of the indefinite slope model. Repeated stability analysis, performed by means of the DPV model, allows for the assessment of the seismic instability of a slope in relation to different reached behaviour levels, as well as seismically induced permanent displacements. At these behaviour levels, co-seismic increases and possible subsequent decreases of viscoplastic shear strengths are associated. This implies that the post-seismic persistent mobility (collapse) of the slope can be obtained from the computation. On the other hand, coherently with the increasing of shear resistances during fast sliding displacements in clay soils, the seismic-forced displacements result substantially lower than corresponding values obtained by means of the rigorous Newmark’s sliding block. In addition, in relation to some seismic ground motion parameters, regression and functional border and separation curves were obtained with the aim of providing an expeditious seismic slope stability evaluation in reference to the co-seismic and post-seismic behaviour of clayey slopes. Regarding this, the real behaviour of two historical landslide events is discussed in the light of the results of the regression analysis outlined in this work.  相似文献   

13.
In relation to the assessment of earthquake-induced landslide hazard, this paper discusses general principles and describes implementation criteria for seismic hazard estimates in landslide-prone regions. These criteria were worked out during the preparation of a hazard map belonging to the official Italian geological cartography and they are proposed as guidelines for future compilation of similar maps. In the presented case study, we used a procedure for the assessment of seismic hazard impact on slope stability adopting Arias intensity Ia as seismic shaking parameter and critical acceleration a c as parameter representing slope strength to failures induced by seismic shaking. According to this procedure, after a preliminary comparison of estimated historical maximum values of Ia with values proposed in literature as landslide-triggering thresholds, a probabilistic approach, based on the Newmark’s model, is adopted: it allows to estimate the minimum critical acceleration a c required for a slope to keep under a prefixed value, the probability of failures induced by seismic shakings expected in a given time interval. In this way, one can prepare seismic hazard maps where seismic shaking is expressed in an indirect way through a parameter (the critical acceleration) representing the “strength” that seismic shakings mobilise in slope materials (strength demand) with a prefixed exceedance probability. This approach was applied to an area of Daunia (Apulia—southern Italy) affected by frequent landslide phenomena. The obtained results indicate that shakings with a significant slope destabilisation potential can be expected particularly in the north-western part of the area, which is exposed to the seismic activity of Apennine tectonic structures.  相似文献   

14.
A failed slope may not necessarily require a remedial treatment if it can be shown with confidence that the maximum movement of the slide mass will be within tolerable limits, i.e., not cause loss of life or property. A permanent displacement analysis of a landslide for static and seismic conditions is presented using a continuum mechanics approach. Computed values of displacement for static conditions compare favorably with field measurements and computed values of seismic displacements for a postulated earthquake motion appear reasonable. Also, the seismic displacements using the continuum mechanics approach compare favorably with those obtained using the Newmark sliding block procedure for assessing seismically-induced slope deformations.  相似文献   

15.
赵海军  马凤山  李志清  郭捷  张家祥 《地球科学》2022,47(12):4401-4416
应用概率地震危险性评价模型进行地震滑坡危险性区划,是解决潜在地震诱发滑坡危险性评价中震源不确定性与诱发滑坡时空不确定性的有效方法 .通过理论分析,结合鲁甸地震区的实际情况,对基于力学原理的Newmark滑块位移模型与概率地震滑坡危险性分析方法中的参数的不确定性问题进行了分析,将斜坡岩土体地震作用下的强度衰减效应、地震加速度地形放大效应、断层破碎带效应融合到了斜坡累积位移计算模型中,进行了模型计算参数的优化.改进后的分析模型,更好地反映了高陡斜坡地形与断层破碎带对地震滑坡灾害发育的控制作用,在鲁甸地震区域滑坡应用中,优化模型中的滑坡失稳极高风险区与实际地震滑坡分布表现出了较好的一致性,在超越概率2%的滑坡失稳概率分布中,鲁甸地区包谷垴-小河断裂、鲁甸-昭通断裂带及牛栏江河谷地带地震滑坡高-极高风险区分布面积增幅十分显著.因此,在Newmark滑块位移模型中考虑地震动参数与岩土参数动态响应规律与变量间的定量关系,对于提高区域斜坡稳定性分析的可靠性具有重要意义.  相似文献   

16.
A high steep rock hill with two-side slopes near National Road 213 is used as a prototype in this paper. The full process from initial deformation to sliding of the slope during ground shaking is simulated by a new discrete element method—continuum-based discrete element method. Then, the seismic responses of a high steep rock hill with two-side slopes are researched from the base of time, frequency and joint time–frequency domain using Hilbert–Huang transform and Fourier Transform. The findings are: first, the stress concentration phenomenon occurs at the top of the sliding mass, and then some tension and shear failure points appear, which expand from the top toward the toe of the sliding mass along the structural plane. At the same time, the number of tension failure points gradually increases. Then the toe of the sliding mass fails, and shears out from its toe which results in the landslide. If the material parameters are under the same conditions, the landslide in the middle of the slope occurs before that at the foot of slope, and the starting time of landslide and the arrival time of the peak ground acceleration are synchronous or the former slightly lags behind the latter. The difference of distribution and dissipation of earthquake energy in the sliding body and sliding bed is the major influence factor to induce the landslide. When the accelerations are small, the instantaneous frequency of accelerations between sliding bed and sliding body is generally consistent, the energy transmittance coefficients of the sliding structural plane and the controlled frequency band of the energy all range in a limitation; with the increase of the seismic intensity, the instantaneous frequency and the energy transmittance coefficients gradually decrease, and then they are steady within the lower limitation. At the same time, the controlled frequency band also shifts gradually from high frequency band to the lower one. Based on the input seismic wave, the peak acceleration amplifies as the increase of elevation, regardless of the monitoring points on the steep slope, gentle slope side or inside of the slope. Generally speaking, amplification of the vertical peak acceleration is stronger than that of the horizontal peak acceleration, and amplification of the peak acceleration on a steep slope is stronger than that on a gentle slope, and that of inside of the slope is the weakest amplification.  相似文献   

17.
Particularly in the last decade, landslide susceptibility and hazard maps have been used for urban planning and site selection of infrastructures. Most of the procedures for preparing of landslide susceptibility maps need high-quality landslide inventory map. Although the rainfall and seismic activities are accepted as triggering factor for landslides, designation of the triggering factor for each landslide in the inventory is almost impossible when well-documented records are unavailable. Therefore, during preparation of landslide susceptibility map, whole landslide records in the inventory map are used together without classifying based on the triggering factors. Although seismic activity is accepted as a triggering factor, possible effect of the use of seismic activity on production of landslide susceptibility map was investigated in this study, and the subject is open to discussion. For this purpose, a series of stability analyses based on circular failure and infinite slope model were performed considering different pseudostatic conditions. The results of analyses show that gentle slopes have higher susceptibility to failure than steeper ones, even if their stability conditions (susceptibilities) are similar for static condition. The seismic forces acting on failure surfaces may not be sufficiently taken into consideration in the conventionally prepared landslide susceptibility maps. Employing the general decreasing trend in stability condition based on slope face angle and the seismic acceleration, a new procedure was introduced for preparing of the landslide susceptibility map for a scenario earthquake. The prediction performance of occurring landslides increased after the procedure was applied to the conventionally prepared landslide susceptibility map. According to the threshold independent spatial performance analyses of the proposed methodology and the produced landslide susceptibility maps, the area under ROC curve values were calculated as 0.801, 0.933, and 0.947 for the maps prepared by considering conventional method and scenario earthquakes having M w values of 5.5 and 7.5, respectively.  相似文献   

18.
The Niumiangou landslide (~7.5 × 106 m3) was the largest that occurred in the town of Yingxiu (the epicentral area) during the 2008 Wenchuan earthquake. This landslide originated on a steep slope (~30°) that was located directly above the rupture surface of the responsible fault and then traveled ~2 km after flowing down the axes of two gently sloping (<12°) valleys. Evidence at the site indicates that the landslide materials were highly fluidized and underwent rapid movement. To examine the initiation and movement mechanisms of this landslide, we performed a detailed field survey, conducted laboratory tests on samples taken from the field, and analyzed the seismic motion. We conclude that the landside materials were displaced due to seismic loading during the earthquake and that liquefaction may have been triggered in saturated layers above the sliding surface with progressive downslope sliding, which resulted in the high mobility of the displaced materials. The liquefaction of colluvial deposits along the travel path due to loading by the sliding mass enhanced the mobility of the displaced mass originating in the source area. Using an energy-based approach, we estimated the dissipated energy in our cyclic loading test and the possible energy dissipated to the soil layer on the slope by the earthquake. We infer that the seismic energy available for the initiation of the slope failure in the source area may have greatly exceeded the amount required for the initiation of the liquefaction failure. The slope instability might have been triggered several seconds after the arrival of seismic motion.  相似文献   

19.
Advanced seismic slope stability analysis   总被引:2,自引:1,他引:1  
The objective of this study was to present an advanced methodology for assessing seismic slope stability by taking into account the uncertainties related to the main input parameters. The methodology was applied on a real landslide in order to show the advantages of using the proposed procedure and establish the baseline trends of dynamic response and calculated permanent seismic displacements. It involves the following steps: preliminary analysis, probabilistic static and seismic factor of safety analysis, and permanent seismic displacement analysis. Estimating post-failure maximum seismic deformation of landslide mass and sounding properties is the most important part of this study. It involves both Newmark sliding block method and continuum mechanics approach, applied for characteristic set of input values in order to have more accurate assessment of slope performance and determine the relative importance of input parameters. The results of the analysis showed the benefits of using the proposed step-by-step methodology. The obtained difference in the results between the two methods depends strongly on the set input data for a particular analysis.  相似文献   

20.
小坡度海底土层地震液化诱发滑移分析方法   总被引:1,自引:0,他引:1  
冯启民  邵广彪 《岩土力学》2005,26(Z1):141-145
地震可使海底砂质、粉质土层液化并导致上部土层的滑移。基于有效应力有限元动力分析方法和Newmark刚性滑块理论,提出了一种计算海底小坡度(≤5o)土层地震液化引起侧向滑移的简化方法。该方法将波浪荷载简化为海底恒定的上覆压力和初始孔压,忽略了海水粘性对海底土层地震反应的影响,利用改进的Seed孔压模型进行动力分析和液化判别,用Newmark滑块理论计算了土层侧向滑移。通过算例和对比分析,研究了海水深度和土层坡度对侧向滑移的影响,表明该方法的有效性,可为近海工程场地地震地质灾害评价提供参考数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号