首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Zusammenfassung Nach Messungen am Vernagtferner (Ötztaler Alpen) in ungefähr 3000 m Höhe wird der nächtliche Wärmeumsatz der gefrorenen Gletscheroberfläche studiert. Es zeigt sich, daß die Schmelzwärme des gefrierenden Wassers als wesentliches Teilglied der Wärmebilanz in derselben Größenordnung in Erscheinung tritt wie der fühlbare Wärmestrom aus der Luft zum Eis. Schon ein sehr geringer Schmelzwassergehalt des Eises (geschätzt 0,026 g cm–3) bedeutet für den nächtlichen Energieumsatz eine beeutende Wärmequelle. Die Abkühlung des Eises drint in klaren Nächten etwa 10 bis 15 cm in das Eis ein und kann mit 10 bis 15 cal cm–2 angegeben werden. Theoretische Ansätze zeigen, daß die nach Frostnächten beobachtete Verzögerung des Beginns des Schmelzvorganges an der Oberfläche bei beginnender kurzwelliger Einstrahlung durch die Annahme eines Absorptionskoeffizienten des Gletschereises von etwa 0,15 cm–1 auch quantitativ erklärt werden kann. Die Berechnung der Temperaturänderung des Eises nach Frostnächten wurde auf allgemeinere Störfunktionen erweitert.
Summary On the basis of measurements carried out on the Vernagtferner (Oetztal Alps) at approximately 3000 m altitude the nocturnal heat balance of the frozen glacier surface is discussed. It was found that the heat of fusion of the freezing water is an essential component of the heat balance showing the same order of magnitude as the heat current from air to ice. A very small melting-water content in the ice (estimated 0,026 g·cm–3) means quite aconsiderable source of heat for the nocturnal energy exchange. In clear nights, the cooling of the ice reaches depths of 10 to 15 cm and amounts to 10 to 15 cal. cm–2. Theoretical considerations show that the delay of the beginning of the melting-process at the surface observed after frost nights, when short-wave radiation is setting in, can be explained also quantitatively by assuming an absorption coefficient of the glacier ice of about 0,15 cm–1. The calculation of the temperature variation of the ice after frost nights is extended to more generalized perturbation functions.

Résumé L'auteur présente une étude des échanges calorifiques nocturnes de la surface glaciaire d'après des mesures effectuées à environ 3000 m. d'altitude sur le Vernagtferner dans les Alpes de l'Oetztal. On constate que la chaleur de solidification de l'eau représente dans le bilan thermique un facteur ordre de grandeur que l'apport de chaleur de l'air à la glace. Une faible teneur de la glace en eau de fusion (estimée à 0,026 g · cm–3) constitue pour les échanges calorifiques nocturnes déjà une source de chaleur appréciable. Le refroidissement de la glace par nuits claires se fait sentir jusqu'à 10 à 15 cm de profondeur et représente environ 10 à 15 cal·cm–2. Des considérations théoriques montrent que le retard du début de la fusion superficielle après des nuits à gelée, dèe que commence le rayonnement à courte longueur d'onde, s'explique quantitativement en admettant und coefficient d'absorption de la glace d'environ 0,15 cm–1. L'auteur calcule la variation de température de la glace après des nuits à gelés au moyen de fonctions généralisées de perturbation.


Mit 4 Textabbildungen.  相似文献   

2.
On the mass and heat budget of arctic sea ice   总被引:4,自引:0,他引:4  
Summary Measurements during the drift of US Drifting Station A show an annual mass increase of old ice consisting of 12.5 g/cm2 snow and 52 g/cm2 bottom accretion. During the summer seasons 1957 and 1958 an amount of 19.2 and 41.4 g/cm2 respectively, was lost by surface ablation. The ratio of ablation on elevated dry surface and in meltwater ponds is 1:2.5. The average pond area was about 30%. Bottom ablation by heat transfer from the ocean was found to be 22 cm (July to Aug./Sept.).Methods of measuring mass changes are described. In view of their importance as a means of checking the computed heat budget their accuracy is discussed in detail.The heat budget is computed for a selected period during the height of the melt season. The average daily totals are, in cal/cm2: +142 from net short wave radiation –8 from net long wave radiation, +9 from turbulent heat transfer, and –11 from evaporation. The mean daily surface ablation is 0.8 cm. About 90% of it is due to the absorption of short wave radiationOnly 62% of the total heat supply are transformed at the surface. 38% are transmitted into the ice and mainly used to increase the brine volume. The vertical distribution of this energy was used to compute the extinction coefficient for short wave radiation. From 40 to 150 cm depth it is 0.015 cm–1, somewhat smaller than that of glacier ice.The heat used during the summer to increase the brine volume in the ice acts as a reserve of latent heat during the cooling season. By the time an ice sheet of 300 cm thickness reaches its minimum temperature in March, 3000 cal/cm2 have been removed to freeze the brine in the interior of the ice and the meltwater ponds, and 1700 cal/cm2 to lower the ice temperature. Based upon the observed mass and temperature changes the total heat exchange at the upper and lower boundary is estimated. During the period May–August the upper boundary received 8.3 kcal/cm2, while during the period September–April 12.8 kcal/cm2 were given off to the atmosphere. The results are compared with those ofYakovlev, and considerable disagreement is found with respect to the amounts of heat involved in evaporation and in changes of ice temperature (heat reserve).
Zusammenfassung Beobachtungen während der Drift von US Drifting Station A zeigen an altem Eis einen jährlichen Massenzuwachs von 12,5 g/cm2 Schnee und 52 g/cm2 Eis an der Unterseite. Während der Schmelzperioden 1957 und 1958 betrug der Massenverlust an der Oberseite 19,2 bzw. 41,4 g/cm2. Das Verhältnis der Ablation auf trockenen Eisflächen zu der in Wassertümpeln beträgt etwa 1:2,5. Etwa 30% der Gesamtfläche werden im Sommer von den Wassertümpeln eingenommen. Die Ablation an der Unterseite durch Wärmezufuhr vom Meer betrug etwa 22 cm (Juli bis August/September).Die Methoden der Messung des Massenhaushalts werden beschrieben. In Anbetracht ihrer Bedeutung als Kontrolle des berechneten Wärmehaushalts wird ihre Genauigkeit näher untersucht.Die Wärmebilanz der Eisoberfläche wird für einen ausgewählten Zeitraum während des Maximums der Ablationsperiode berechnet. Es ergeben sich folgende mittlere Tagessummen in cal/cm2: +142 kurzwellige Strahlungsbilanz, –8 langwellige Strahlungsbilanz, +9 Konvektionswärmestrom. –11 Verdunstung. Die mittlere tägliche Oberflächen-Ablation betrug in dieser Zeit 0,8 cm. Etwa 90% davon werden durch Absorption kurzwelliger Strahlung verursacht.Nur 62% des gesamten Wärmeangebotes werden an der Oberfläche umgesetzt. 38% gelangen in tiefere Schichten und werden dort hauptsächlich zur Vergrößerung des Volumens der Salzlösung verwendet. Die vertikale Verteilung dieser Energie wird zur Berechnung des Extinktionskoeffizienten für kurzwellige Strahlung herangezogen. In einer Tiefe von 40 bis 150 cm ergibt sich ein Wert von 0,015 cm–1, etwas weniger als in Gletschereis.Die Wärmemenge, welche im Sommer zur Erhöhung der Eistemperatur und der damit verbundenen Vergrößerung des Volumens der Salzlösung aufgewendet wurde, dient während der Abkühlungsperiode als Wärmereserve. Von ihrem Beginn bis zur Erreichung minimaler Eistemperaturen in März werden einer 3 m dicken Eisdecke 3000 cal/cm2 an latenter Wärme (Verkleinerung des Volumens der Salzlösung und Gefrieren der Schmelzwassertümpel) und 1700 cal/cm2 mit der reinen Temperaturerniedrigung entzogen. Auf Grund der beobachteten Massen- und Temperaturänderungen der Eisdecke wird der gesamte Wärmeumsatz an ihren Grenzflächen abgeschätzt. Während der Periode Mai bis August erhält die Oberfläche des Eises 8,3 kcal/cm2 während in der Periode September bis April 12,8 kcal/cm2 an die Atmosphäre abgegeben werden. Die Resultate werden mit denen vonYakovlev verglichen, wobei sich beträchtliche Unterschiede in den Beträgen der Verdunstung und der Wärmereserve der Eisdecke ergeben. Im Zusammenhang mit den unterschiedlichen Beträgen der Wärmereserve wird die spezifische Wärme des Meereises näher diskutiert.

Résumé Les observations faites lors de la dérive du US drifting station A font apparaître un accroissement annuel de masse de la banquise de 12,5 g/cm2 sous forme de niege et de 52 g/cm2 par congélation à la base. Pendant les périodes de fonte de 1957 et de 1958, la perte de masse à la surface fut de 19,2 et 41,4 g/cm2 respectivement. Le rapport de l'ablation sur la glace sèche à celle des flaques est de 1:2,5. Les flaques occupent en été env. 30% de la surface totale. L'ablation à la face inférieure de la banquise par la chaleur de l'eau fut d'environ 22 cm (Juillet à août/septembre).On décrit les méthodes de mesure du bilan de masse et leur précision. On calcule ce bilan de chaleur à la surface au moment du maximum d'ablation et on en donne les composantes suivantes pour les sommes journalières moyennes en cal/cm2: bilan radiatif de courte longueur d'onde +142, bilan radiatif de grande longueur d'onde –8, flux de convection +9, évaporation –11. L'ablation superficielle moyenne est de 0,8 cm par jour dont 90% résulte de l'absorption du rayonnement à courte longueur d'onde.Le 62% seulement de l'apport de chaleur est transformé à la surface de la glace; le 38% pénètre en profondeur et sert surtout à accroître le volume du mélange salin. A une profondeur de 40 à 150 cm le coefficient d'exctinction pour le rayonnement court est de 0,015 cm–1, plus faible que dans le glacier terrestre.La quantité de chaleur accumulée en été sert de réserve pendant la période froide pour élever la température de la glace et pour augmenter le volume de la solution saline. Du début de celle-ci jusqu'au minimum des températures en mars, une couche de 3 m d'épaisseur perd 3000 cal/cm2 en chaleur latente et 1700 cal/cm2 par chute de température. Il est possible d'estimer le bilan total de chaleur des surfaces de la glace à l'aide des variations observées de masse et de température. Pedant la période de mai à août, la surface de la glace reçoit 8,3 kcal/cm2, tandis qu'elle cède à l'air 12,8 kcal/cm2 de septembre à avril. Les résultats obtenus diffèrent de ceux deYakovlev dans les quantités de l'évaporation et de la réserve calorifique de la glace. Discussion au sujet de la chaleur spécifique de la glace de banquise.


With 12 Figures

Contribution No. 51, Department of Meteorology and Climatology, University of Washington.

The field work was carried out while on leave from the Zentralanstalt für Meteorologie und Geodynamik, Wien.  相似文献   

3.
Zusammenfassung Zur Untersuchung der Abnahme der Strahlungsbilanz in den oberflächennahen Schichten eines Gletschers wurde ein thermoelektrischer Strahlungsbilanzmesser gebaut. Er hat eine Empfängerfläche von nur 7,5 mm Durchmesser. Durch seine kleine Ausführung wird eine fast störungsfreie Messung der Strahlungsbilanz in der Oberschicht des Eises möglich, woraus eine direkte Berechnung des Energieumsatzes in dieser Schicht erfolgen kann. Weiter werden einige Hinweise zur Berechnung der optimalen Drahtquerschnitte der zwischen den Empfängerflächen befindlichen Thermosäule gegeben.Die in reinem Gletschereis ausgeführten Strahlungsbilanzmessungen ergaben in der oberflächennahen Schicht (0 bis 20 cm) einen mittleren Extinktionskoeffizienten von 0,14 cm–1. In Tiefen unter 20 cm ist der Extinktionskoeffizient konstant 0,0184 cm–1. In 1 bis 2 cm Eistiefe sind bereits 50% des Energieangebotes an der Oberfläche absorbiert; in 10 cm Tiefe sind nur noch 10% der Oberflächenenergie vorhanden. Damit nimmt die Strahlungsbilanz in der Oberschicht etwas stärker ab als die Totalstrahlung, die mit einem kugelförmigen Empfänger gemessen wird.
Summary A thermoelectric instrument was built to investigate the drop of radiation balance in the top ice layers of a glacier. The radiation sensitive area of the instrument has a diameter of no more than 7,5 mm and allows nearly undisturbed measurement of the radiation balance. The data obtained permit a direct calculation of the energy transformations taking place in these layers. Calculations are given of the optimum wire size for the thermoelectric elements between the two receiver plates.Measurements were made in pure glacier ice. The average extinction coefficient in the layers from 0 to 20 cm depth was found to be 0,14 cm–1. Below that depth the extinction coefficient assumes a constant value of 0,0184 cm–1. Half of the incident energy is absorbed in the first 1 or 2 cm. At a depth of 10 cm only 10 percent of the energy remain. Thus the radiation balance decreases somewhat more sharply than the short-wave radiation measured with a spherical receiver.

Résumé On a construit un appareil de mesure thermoélectrique du bilan de rayonnement pour étudier la diminution de ce bilan dans les couches voisines de la surface d'un glacier. Il a une surface réceptrice d'un diamètre de 7,5 mm seulement; sa petitesse permet une mesure du bilan de rayonnement dans la couche superficielle de la glace sans y apporter de trouble essentiel, d'où résulte un calcul direct de l'échange d'énergie dans cette couche. On donne quelques indications concernant le calcul des sections les plus favorables des conducteurs de l'élément thermoélectrique placé entre les surfaces réceptrices.Les mesures faites dans la glace pure de glacier ont fourni pour la couche voisine de la surface (0 à 20 cm) un coefficient moyen d'extinction de 0,14 cm–1; au-delà de 20 cm, le coefficient est constant et égal à 0,0184 cm–1. A une profondeur de 1 à 2 cm, le 50% de l'énergie incidente est déjà absorbé, à une profondeur de 10 cm le 90%. Ainsi le bilan de rayonnement diminue dans la couche superficielle un peu plus rapidement que le rayonnement global mesuré par récepteur sphérique.


Mit 4 Textabbildungen

Dem Gedenken an Dr.Franz Sauberer gewidmet.  相似文献   

4.
Zusammenfassung Aus einem umfangreichen Material von Registrierungen und Beobachtungen aus der eisnahen Luftschicht auf Alpengletschern werden die Tage mit Gletscherwind herausgegriffen. Neue Erfahrungen über den Tagesgang, die Geschwindigkeitsverteilung und den thermischen Aufbau dieses Schwerewindes werden mitgeteilt. DerTagesgang läßt zwei gleichberechtigte Maxima (vor Sonnenaufgang und vor Sonnenuntergang) und zwei Minima (vor Mittag und vor Mitternacht) erkennen. Die gleiche doppelte Schwankung zeigt auch der vertikale Temperaturgradient als Folge des verschiedenen Tagesganges von Luft- und Eistemperatur. DieGeschwindigkeitsverteilung im vertikalen Aufbau zeigt das Maximum bis zu 3 m/sec unterhalb 2,5 m Höhe. Die Beziehung zwischen Höhenlage und Geschwindigkeit des Maximums läßt sich durch ein einfaches Potenzgesetz beschreiben. Mit Hilfe der für die Geschwindigkeit eines stationären Schwerewindes vonA. Defant abgeleiteten Formel kann es wahrscheinlich gemacht werden, daß die Mächtigkeit der als Gletscherwind abfließenden Kaltluft auf Alpengletschern die Größenordnung Dekameter kaum übersteigt. Derthermische Aufbau der eisnahen Luftschicht verrät sofort die rezente Vorgeschichte der Luft: die als Gletscherwind abfließende gletschereigene Luft ist bei stabiler Schichtung durch einen großen vertikalen Gradienten der Temperatur, infolge vorausgegangener intensiver Wärmeabgabe, charakterisiert; die durch Advektion vom eisfreien Gelände herangeführte gletscherfremde Luft weist einen wesentlich kleineren Temperaturgradienten auf. Mit dem Temperaturgradienten in linearem Zusammenhang stehen unregelmäßige Schwankungen der Temperatur, deren Amplitude bei Gletscherwind am größten ist. Sie sind vorwiegend eine Folge der turbulenten Vermischung der eisnahen Luftschicht und erlauben die Abschätzung eines Mischungsweges für Wärmeübergang. Da die bei turbulenter Vermischung durch die Luft zum Eis fließende Wärmemenge dem vertikalen Temperaturgradienten direkt proportional ist, wird bei Gletscherwind, unabhängig von der absoluten Höhe der Temperatur, die relativ größte Wärmemenge aus der Luft auf das Eis übertragen. Es ist somit sachlich unbegründet, dem Gletscherwind eine konservierende, das Eis vor rascher Abschmelzung schützende Wirkung zuzuschreiben.
Summary From an extensive material of records and observations within the air layer near the ice surface of Alpine glaciers the days with glacier wind were extracted. New results concerning daily variation, velocity distribution, and thermal structure of this gravity-wind are communicated. Thedaily variation shows two maxima of equal significance (before sunrise and before sunset) and two minima (before noon and before midnight). The same double variation becomes also manifest in the vertical temperature gradient as a consequence of the different daily variation of air and ice temperature. The verticalvelocity distribution shows a maximum approaching 3 m/sec below 2.5 m height. The relation between level and velocity of the maximum can be described by a simple exponential law. Using the formula ofA. Defant for the velocity of a stationary gravity-wind, it can be shown that, most likely, the height of the layer of cold air moving downward on Alpine glaciers as glacier wind hardly exceeds the order of magnitude of decameters. Thethermal structure of the air layer near the ice surface reveals its origin: air of glacial origin flowing down as glacier wind is characterized, in case of a stable stratification, by a great vertical temperature gradient after intensive emission of heat; non-glacial air arriving by advection from parts clear of ice has a considerably smaller temperature gradient. There is a linear relation between temperature gradient and irregular variations of temperature the amplitudes of which reach a maximum in glacier wind. They are principally an effect of the turbulent mixing process of the air near the ice surface and make possible estimating a mixing length for the heat transfer. As the quantum of heat being transferred by turbulent mixing from air to ice is directly proportional to the vertical temperature gradient, the relatively highest amount of heat passes from air to ice with glacier wind, independently of the absolute height of temperature. Therefore, there are no objective arguments for attributing to the glacier wind a conserving effect which protects the ice from rapid melting.

Résumé A partir d'un vaste matériel d'observations de la couche d'air voisine de la glace, l'auteur établit une liste des jours avec brise de glacier. Il communique de nouveaux résultats concernant la variation diurne, la répartition des vitesses et les conditions thermiques de ce vent. Lavariation diurne présente deux maxima (avant le lever et avant le coucher du soleil) et deux minima (avant midi et avant minuit). Le gradient vertical de température accuse la même périodicité par suite des variations diurnes différentes des températures de l'air et de la glace. Ladistribution de la vitesse selon la verticale fait ressortir le maximum atteignant 3 m/s au-dessous de 2,5 m de hauteur; l'altitude et la vitesse du maximum sont liées par une loi exponentielle simple. Grâce à la formule deA. Defant concernant la vitesse d'un courant de gravitation stationnaire, on peut montrer que l'épaisseur des brises des glaciers alpins ne dépasse probablement pas une dizaine de mètres. Lastructure thermique de la couche d'air proche de la glace trahit son passé immédiat: cette couche est en effet caractérisée par un fort gradient vertical de température par suite de la perte de chaleur intense, tandis que l'air provenant par advection des parties avoisinantes, libres de glace, possède un gradient notablement plus faible. Il y a en outre des variations de température irrégulières, linéairement liées au gradient de température et dont l'amplitude est maximum par la brise de glacier; elles résultent essentiellement du mélange turbulent de la couche voisine de la glace et permettent d'estimer un parcours de mélange du transfert de chaleur. Comme la quantité de chaleur transmise à la glace par le mélange turbulent de l'air sus-jacent est directement proportionnelle au gradient vertical de température, relativement la plus grande quantité de chaleur passe, par brise de glacier, de l'air à la glace, et cela indépendamment de la valeur absolue de la température. Il n'est donc pas justifié d'attribuer à la brise de glacier la propriété de protéger la glace d'une fusion rapide.


Mit 7 Textabbildungen.  相似文献   

5.
Zusammenfassung Es werden einige Ergebnisse von Messungen der Wind- und Temperaturschichtung in der etwa 2 m mächtigen eisnahen Luftschicht aus zwei mehrtägigen Meßreihen am Vernagtferner (Ötztaler Alpen, 2973 m) und am Hornkees (Zillertaler Alpen, 2260 m) mitgeteilt. Die vertikale Verteilung von Windgeschwindigkeit und Temperatur läßt sich in beiden Fällen durch logarithmische Gesetze beschreiben. Diese gestatten nachPrandtl die Ermittelung des Austauschkoeffizienten und damit die Berechnung des turbulenten Wärmestromes aus der Luft zum Eis im Rahmen der Wärmeumsatzbestimmung der Gletscheroberfläche. Dazu muß der Austauschkoeffizient nach dem Verfahren vonSverdrup oderLettau der vorhandenen, über der schmelzenden Gletscheroberfläche ausgeprägt stabilen thermischen Schichtung angepaßt werden. Die gleiczeitige Messung der Ablation und der Strahlungsbilanz ermöglicht eine direkte Kontrolle der Größenordnung der aus der Luft zugeführten Wärmemenge. Aus der gefundenen guten Übereinstimmung des empirisch ermittelten und der nach den Theorien vonSverdrup bzw.Lettau berechneten Austauschkoeffizienten geht hervor, daß in der eisnahen Luftschicht im Sommer, die durch das Fehlen thermischer Konvektion gekennzeichnet ist, der Austausch von Impuls, Wärme und Feuchtigkeit die gleichen Gesetze zu befolgen scheint.
Summary Basing on two series of measurements carried out during several days on the Vernagt glacier (Oetztal Alps, 2973 m) and on the Hornkees (Zillertal Alps, 2260 m), results are given of measurements of the wind and temperature distribution within a surface air-layer, approximately 2 meters thick, above ice. In both cases the vertical distribution of wind velocity and temperature can be described by logarithmic formulas which allow to calculate, as shown byPrandtl, the exchange (Austausch) coefficient and thereby the turbulent heat-current from air to ice by determining the thermal economy of the glacier surface. For this purpose the exchange coefficient must be fitted, according to the methods ofSverdrup orLettau, to the very stable thermal stratification of the air above the melting surface of the glacier. The simultaneous measurement of ablation and radiation balance makes possible a direct control of the approximate quantity of heat supplied from the air. The good agreement of the exchange coefficient as obtained empirically and calculated by means of the theories ofSverdrup orLettau leads to the conclusion that, within the air-layer above an ice surface during summer where no thermal convection occurs, the exchange of impulse, heat, and humidity appears to obey the same laws.

Résumé L'auteur communique quelques résultats de mesures de la distribution du vent et de la température dans la couche d'air d'environ 2 m d'épaisseur reposant sur la glace, mesures faites en deux séries de plusieurs jours sur le Vernagtferner (Alpes de l'Oetztal, 2973 m) et sur le Hornkees (Alpes du Zillertal, 2260 m). La distribution verticale de la vitesse du vent et de la température obéit à des lois logarithmiques, lesquelles permettent d'aprèsPrandtl le calcul du coefficient d'échange turbulent et celui du courant de chaleur par turbulence entre l'air et la glace dans le cadre de la détermination du bilan thermique de la surface glaciaire. Il faut pour cela adapter d'après le procédé deSverdrup ou deLettau le coefficient d'échange turbulent à la stratification thermique parfaitement stable de l'air reposant sur la surface glaciaire en fusion. La mesure simultaée de l'ablation et du bilan radiatif rend possible le contrôle direct de l'ordre de grandeur de la quantité de chaleur fournie par l'air. L'accord satisfaisant entre les valeurs du coefficient d'échange par turbulence trouvées expérimentalement ou tirées des théories deSverdrup ou deLettau montre que dans la couche d'air voisine de la glace, qui est caractérisée par l'absence de convection thermique, les échanges de quantité de mouvement (impulsion), de chaleur et d'humidité semblent obéir en été aux mêmes lois.


Mit 2 Textabbildungen.  相似文献   

6.
Zusammenfassung Am Hintereisferner wurden im Sommer 1956 Strahlungsmessungen an Gletschereisplatten mit Hilfe eines Solarimeters Moll-Gorczynski durchgeführt. Dabei ergab es sich, daß die Albedo der Eisplatten gesetzmäßig mit der Plattendicke zunimmt und außerdem von der Sonnenhöhe abhängig ist. Durchlässigkeitsmessungen lieferten für die Schicht zwischen 10 und 35 cm Tiefe einen mittleren Extinktionskoeffizienten von 0,085 cm–1.Auf theoretischem Wege wurde versucht, die Beziehungen zwischen Extinktion, Zerstreuung und Reflexion sowie die Strahlungsverhältnisse im Innern der Eisplatten zu erfassen; auf diese Weise war es auch möglich, auf die vertikale Intensitätsverteilung der eindringenden Strahlung in den obersten Dezimetern des Gletschers zu schließen und die in den verschiedenen Tiefenschichten umgesetzten Energiebeträge abzuschätzen.
Summary Measurements of the radiative properties of slabs of glacier ice were implemented in summer 1956 on the Hintereisferner. The instrument used was a Solarimeter Moll-Gorczynski. As a result of these investigations a simple law governing the increase of the albedo of the slabs with thickness could be stated. The albedo was also found to vary with solar altitude. Measurements of transmissiblity yield a mean extinction coefficient of 0,085 cm–1 for the layer between 10 cm and 35 cm below the surface.The interrelations of extinction, diffusion and reflection as well as the radiative properties in the interior of the ice slabs were studied theoretically. The vertical distribution of the downward radiation in the uppermost decimetres of the glacier was deduced from the theory. An estimate was made of the amounts of energy involved in the radiative processes occurring at various levels.

Résumé Des mesures de rayonnement effectuées en été 1956 au Hintereisferner sur des plaques de glace du glacier au moyen d'un solarimètre Moll-Gorczynski, ont montré que l'albédo de ces plaques augmente avec leur épaisseur et dépend de la hauteur du soleil. Des mesures de transparence ont fourni pour la couche de 10 à 35 cm de profondeur un coefficient moyen d'extinction de 0,085 cm–1.En cherchant à établir théoriquement les relations entre l'extinction la dispersion et la réflexion, ainsi que les conditions de rayonnement à l'intérieur des plaques de glace, il fut possible de déterminer la distribution verticale d'intensité du rayonnement incident dans les premiers décimètres de la surface du glacier et d'estimer les quantités d'énergie échangées aux différentes profondeurs.


Mit 6 Textabbildungen  相似文献   

7.
Summary The concept of vegetation as a multi-layered heat exchange system is discussed with reference to measurements in a barley field. These measurements included the monitoring of net radiation at various levels inside the crop and the conducted heat flux in the soil for typical clear and overcast days. The diurnal variations of the components of the heat balance throughout the crop are discussed, computing the combined flux of sensible and latent heat as a remainder term. The results show a complete reversal of the flux of sensible and latent heat from the top of the crop to the soil surface: during the night the surface loses heat by eddy diffusion as well as radiation and during the day it gains heat through both these processes. The total heat exchange between the crop and the atmosphere gives the usual heat gains by eddy diffusion during the night and losses during the day. The radiation absorbed by a layer of vegetation is converted into sensible and latent heat and 80% of the total energy exchange takes place in the upper half of the crop. The magnitude of the exchange process falls off rapidly with depth in the crop.
Zusammenfassung Die Vegetation wird als mehrschichtiges System im Hinblick auf den Wärmeaustausch betrachtet, wobei Messungen in einem Gerstenfeld verwendet werden. Die Messungen umfaßten die Registrieuung der Wärmebilanz in verschiedenen Höhen im Getreidestand und des Wärmeflusses im Boden an typischen klaren und bedeckten Tagen. Der Tagesgang der Komponenten der Wärmebilanz durch die Vegetationsschicht wird untersucht, dabei wird die Summe des Fluesses von fühlbarer und von latenter Wärme als Restglied berechnet. Die Resultate zeigen eine vollkommene Umkehr des Flusses von fühlbarer und latenter Wärme von der Obergrenze des Getreidestandes zum Boden: während der Nacht verliert die Erdoberfläche Wärme sowohl durch turbulenten Austausch wie durch Strahlung, während des Tages nimmt sie durch beide Prozesse Wärme auf. Der gesamte Wärmeastausch zwischen dem Getreidefeld und der Atmosphäre ergibt die gewöhnlichen Wärmegewinne durch turbulenten Austausch bei Nacht und die Wärmeverluste bei Tag. Die von der Vegetationsschicht absorbierte Strahlung wird in fühlbare und latente Wärme umgesetzt, wobei 80% des gesamten Wärmeaustausches in der oberen Hälfte der Vegetationsschicht erfolgen. Die Größe des Austauschprozesses vermindert sich rasch mit der Tiefe in der Vegetationsschicht.

Résumé On considère ici la végétation comme un système à plusieurs strates vis à vis des échanges de chaleur. Pour cela on se sert de mesures effectuées dans un champ d'orge. Ces mesures comprenaient l'enregistrement du bilan de chaleur à différentes hauteurs dans le dit champ ainsi que du flux de chaleur dans le sol à des jours typiques: couverts ou clairs. On étudie l'évolution diurne des composantes du bilan de chaleur au travers de la couche végétale. Pour ce faire, on clacule la somme du flux des chaleurs sensible et latente comme terme final de l'équation. Les résultats montrent une inversion complète du flux de ces deux chaleurs de la surface supérieure du champ jusqu'au sol. Pendant la nuit, la surface du sol perd de la chaleur aussi bien par des échanges turbulents que par rayonnement. Pendant le jour, le sol reçoit de la chaleur par ces deux processus. L'échange total de chaleur entre le champ d'orge et l'atmosphère présente les gains de chaleur ordinaire par turbulence de nuit et les pertes de jour. Le rayonnement absorbé par la couche végétale est transformé en chaleur latente et sensible. 80% de la totalité des échanges de chaleur se passent dans la moitié supérieure de la couche végétale. L'importance des processus d'échange diminue rapidement avec la profondeur de la couche végétale.
  相似文献   

8.
Summary Evaporation and sensible heat flux have been calculated for each month over the Polar Ocean and the Norwegian-Barents Sea. Sverdrup's evaporation formula was used, and it was first examined how the K-coefficient in that formula depends on the wind speed frequency distribution. Thus the effect of the Arctic wind conditions could be taken into account. Seasonal maps were constructed of mean wind speed. Previously obtained surface temperatures were used, but some additional examinations were carried out, using various assumptions for extreme surface temperatures in summer and winter.Evaporation and sensible heat flux were calculated separately for the following areas: Central Polar Ocean, Kara-Laptev Sea, East Siberian Sea, Beaufort Sea, and belts of 5° latitude of the Norwegian-Barents Sea.The values for the different areas are presented in tables and figures. Evaporation over ice surfaces has a double maximum—in spring and fall—and a main minimum in winter. Over open water surfaces the evaporation shows a summer minimum and a broad maximum in winter. If small parts of the ocean were to remain open longer in the fall, or during the whole winter, the heat loss would increase very rapidly.Sensible heat flux is often calculated from evaporation by theBowen ratio. The small evaporation values over the Polar Ocean give unreliable values for sensible heat flux, and instead the formula byShuleikin was used. This permits the determination of sensible heat flux independent of evaporation. The characteristic sensible heat flux curves are quite similar to the evaporation curves. The open water areas in the Polar Ocean show very high values for sensible heat flux. One percent open water, from October to May would increase the heat flux from the Central Polar Ocean from 3.7 to 5.2 Kcal cm–2, year–1. Open areas must remain small as there is not sufficient energy available to maintain such fluxes.Finally, a table gives the monthly values of the total heat loss for the various areas, by evaporation and sensible heat flux.
Zusammenfassung Monatswerte für Verdunstung und Wärmefluß wurden für das Polarmeer und für Nordmeer-Barentssee berechnet. Zur Verdungstungsberechnung wurde die Formel vonSverdrup benutzt, deren K-Koeffizient in seiner Windabhängigkeit neu berechnet wurde. Auf Grund neu konstruierter jahreszeitlicher Karten der mittleren Windgeschwindigkeit konnten die arktischen Windverhältnisse berücksichtigt werden. Wegen der Unsicherheit früher bestimmter Oberflächentemperaturen wurden zusätzliche Berechnungen für Extremfälle im Sommer und Winter durchgeführt, um mögliche Fehlerquellen abzuschätzen. Verdunstung sowie Wärmefluß wurden gesondert für die folgenden Gebiete berechnet: Zentrales Polarmeer, Kara-Laptev-See, Beaufort-See sowie für Bänder von 5° Breite im Gebiet Nordmeer-Barentssee.Die Resultate für die einzelnen Gebiete werden an Hand von Diagrammen und Tabellen diskutiert. Über Eis zeigt die Verdunstung ein doppeltes Maximum im Frühling und Herbst und das Hauptminimum im Winter, während sich über offenem Wasser ein Sommerminimum und ein breites Wintermaximum ergeben. Es zeigt sich, daß bereits relativ kleine Wasserflächen, die länger im Herbst oder während des ganzen Winters offen bleiben, im Polarmeer zu sehr hohen Wärmeverlusten führen.Der Wärmefluß wird oft auf Grund der Verdunstung mit Hilfe derBowen-Formel berechnet. Wegen der geringen Verdunstung über dem Polarmeer führt diese Formel jedoch zu unrichtigen Werten, und es wird deshalb hier dieShuleikin-Formel benützt, die eine Bestimmung des Wärmeflusses unabhängig von der Verdunstung ermöglicht; die charakteristischen Kurven des Wärmeflusses sind den Verdunstungskurven sehr ähnlich. Offenes Wasser im Polarmeer führt auch hier zu sehr hohen Werten; eine offene Wasserfläche von 1% in der Zeit von Oktober bis Mai würde den Wärmefluß vom zentralen Polarmeer von 3,7 auf 5,2 Kcal/cm2 pro Jahr erhöhen. Offene Flächen müssen daher klein bleiben, da der Energievorrat nicht genügend groß für die Aufrechterhaltung eines solchen Energieflusses wäre. Zum Schlusse werden in einer Tabelle Monatswerte der gesamten Wärmeverluste durch Verdunstung und Wärmefluß für die verschiedenen Gebiete gegeben.

Résumé On a calculé des valeurs mensuelles de l'évaporation et du flux de chaleur pour l'Océan Glacial Arctique et pour la région située entre la Mer du Groenland et la Mer de Barents. Dans le cas de l'évaporation, on s'est servi de la formule deSverdrup dont on a déterminé à nouveau le coefficient K en tenant compte de sa dépendance du vent. Il a été possible de tenir compte du vent dans les régions arctiques grâce à l'établissement récent de cartes saisonnières de la vitesse moyenne du vent. En raison de l'incertitude des déterminations antérieures de la température de surface, on a procédé à des calculs supplémentaires pour des cas extrêmes en été et en hiver afin d'évaluer les sources d'erreurs possibles. On a calculé séparément l'évaporation et le flux de chaleur pour les régions suivantes: Centre de l'Océan Glacial Arctique, Mer de Kara-Mer de Laptev, Mer de Beaufort ainsi que pour de bandes de 5° de largeur dans la région comprise entre la Mer du Groenland et la Mer de Barents.On discute les résultats obtenus pour ces différentes zones en partant de diagrammes et de tableaux. Au-dessus de la glace, l'évaporation présente deux maximums, l'un au printemps, l'autre en automme et un minimum principal en hiver. Sur la mer libre, on constate au contraire un minimum en été et un maximum très large en hiver. Il en résulte que des surfaces libres de glace relativement peu étendues qui se maintiennent en automne, voire durant tout l'hiver peuvent déjà provoquer des pertes de chaleur considérables dans l'Océan Glacial Arctique.On calcule souvent le flux de chaleur en se basant sur l'évaporation selon la formule deBowen. Cependant, en raison des faibles évaporations constatées sur l'Océan Glacial, cette formule conduirait à des valeurs fausses. On a donc utilisé ici la formule deShuleikin qui permet la détermination du flux de chaleur indépendamment de l'évaporation. Les courbes caractéristiques du flux de chaleur sont très semblables à celles de l'évaporation. Les surfaces libres de glace de l'Océan Glacial conduisent ici aussi à des valeurs très élevées. Une surface d'eau de 1% restant libre de glace d'octobre à mai augmenterait de flux de chaleur de l'océan de 3,7 à 5,2 Kcal/cm2 par année. Les surfaces d'eau doivent donc rester très petites, car les réserves d'énergie sont insuffisantes pour maintenir un tel flux d'énergie calorifique. On donne enfin dans une table les pertes mensuelles totales de chaleur dues à l'évaporation et au flux de chaleur et cela pour chacune des régions considérées.


With 6 Figures

The research reported in this paper was sponsored in part by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, under Contract AF 19(604)7415.  相似文献   

9.
Zusammenfassung Um die Wirksamkeit des Aufschlags von Wolkentröpfchen auf Eis (Faraday-Sohncke-Effekt) für die Elektrizitätserzeugung in Gewittern beurteilen zu können, werden quantitative Ladungsmessungen im Laboratorium beim Aufprall fallender Wassertropfen auf Hindernisse aus Eis unter möglichst variierten Bedingungen vorgenommen. Ein Tropfen von 20 mg und 20° C aus 75 cm Höhe befreit die Ladung von 3,6·10–13 Coul. Während eine Änderung der Tropfentemperatur den Effekt wenig beeinflußt wird er stark reduziert, wenn man die Temperatur der Eisplatte kräftig erniedrigt, da der Tropfen schließlich sofort festfriert. Veränderung der Fallhöhe und der Tropfenmasse führt zu dem Ergebnis, daß in gewissem Bereich die getrennte LadungQ in Annäherung allein der kinetischen EnergieW des Tropfens proportional ist:Q=2,75·10–16 Coul/erg·W für einen Tropfen von 20° C auf Eis von 0° C. Die Anwendbarkeit dieser Gleichung auf Wolkentröpfchen wird diskutiert. Messungen bei verringertem Reinheitsgrad des Wassers bestätigen die Erfahrung, daß gleichzeitig die befreite Ladung abnimmt.
Summary To study the effect of the impact of cloud droplets upon ice (Faraday-Sohncke-effect) for the production of electricity in thunderstorms laboratory experiments were carried out under various conditions to measure quantitatively electric charges originating from the collision of falling water drops with ice. A droplet of 20 mg and 20° C falling from a height of 75 cm releases the charge of 3,6·10–13 Coul. While the effect is not considerably influenced by a change of the temperature of the droplet it is strongly reduced if the temperature of the ice plate is lowered to such a degree that the droplet immediately freezes. Variation of falling-height and mass of droplets leads to the result that, in a certain range, the separated chargeQ is approximately proportional solely to the kinetic energyW of the droplet:Q=2,75·10–16 Coul/erg·W for a droplet of 20° C on ice of 0° C. Applicability of this equation to cloud droplets is discussed. Measurements carried out with water of reduced purity confirm the experience that in such cases the released charge is smaller.

Résumé En vue d'étudier quantitativement la production d'électricité orageuse par la chute de gouttelettes d'eau sur des grêlons (effet Faraday-Sohncke), les auteurs ont réalisé des expériences et mesuré la charge libérée lors de la chute de gouttelettes sur de la glace dans des conditions variées. Une goutte de 20 mg à 20° C, tombant de 75 cm de hauteur libère la charge de 3,6·10–13 Coul. Tandis que l'effet ne dépend que peu de la température de la goutte, il est fortement réduit si la température de la glace s'abaisse, car la goutte se congèle alors aussitôt. Des essais avec des variations de la hauteur de chute et de la masse des gouttes ont en outre montré que la charge libéréQ est en première approximation proportionelle à la seule énergie cinétiqueW de la goutte:Q=2,75·10–16 Coul/erg·W pour une goutte à 20° C tombant sur de la glace à 0° C. On discute l'application de la formule à des gouttelettes nuageuses. Des mesures faites avec de l'eau non pure confirment le fait connu que la charge libérée diminue alors.


Mit 3 Textabbildungen  相似文献   

10.
Summary One method of computing the seasonal heat budget of the atmosphere involves the seasonal heat storage in the oceans. On the basis of bathythermograph data and ocean surface temperatures, the heat added to, or released by the ocean was computed month by month. The heat stored in the ocean was then compared withGabites' estimate of the heat added by radiation and by means of the latent heat of water vapor. From this comparison, the heating of the atmosphere was approximated. In middle latitudes, the net heating of the atmosphere is close to zero during most of the year, so that even the sign of the atmospheric heating is in doubt there. During most of the year, the atmosphere undergoes net heating in low latitudes, and net cooling in high latitudes. The excess is removed by motions of the atmosphere and the ocean.
Zusammenfassung Eine Methode, das jahreszeitliche Wärmebudget der Atmosphäre zu berechnen, hat auch der Wärmespericherung in den Ozeanen Rechnung zu tragen. Auf Grund von Wasserthermographenwerten und Ozeanoberflächentemperaturen wurden die dem Ozean zugeführten oder von ihm abgegebenen Wärmemengen monatsweise berechnet. Die im Ozean gespeicherte Wärme wurde dann mit der vonGabites aufgestellten Schätzung der durch Strahlung und durch die latente Wärme des Wasserdampfs zugeführten Wärmeenge verglichen und von dieser Vergleichung wurde auf die Erwärmung der Atmosphäre geschlossen. In mittleren Breiten liegt der Erwärmungszuwachs der Atmosphäre während des Großteils des Jahres bei Null, so daß sogar das Vorzeichen der Erwärmung zweifelhaft ist. Während des Großteils des Jahres erfährt die Atmosphäre dagegen in niederen Breiten einen Wärmezuwachs, in hohen Breiten einen Überschuß an Abkühlung. Diese Überschüsse werden durch Bewegungsvorgänge in der Atmosphäre und im Ozean verfrachtet.

Résumé Une méthode visant à calcular le bilan thermique annuel de l'atmosphère doit tenir compte de la chaleur mise en réserve dans les mers. Des mesures de température de l'eau de mer en profondeur et en surface permettent d'établir les quantités de chaleur fournies mensuellement à la mer ou enlevée à celle-ci. La chaleur accumulée fut alors comparée à celle qu'estimeGabites en considérant la chaleur fournie par rayonnement et par la chaleur latente de la vapeur d'eau; on en a tiré une conclusion relative au réchauffement de l'atmosphère. Aux latitudes moyennes, l'accroissement de chaleur de cette dernière est voisine de zéro la plus grande partie de l'année, de sorte que même le signe est douteux. Aux latitudes basses par contre l'atmosphère reçoit de la chaleur pendant la plus grande partie de l'année; elle en perd aux latitudes élevées. Ces gains et ces pertes s'équilibrent in globo par les mouvements de l'air et de l'eau.


With 4 Figures

Presented at the 11th General Assembly, IUGG (IAM), Toronto, Septemer 1957.

Dedicated to Dr.Anders K. Ångström on the occasion of his 70th birthday.  相似文献   

11.
Summary As is known from laboratory experiments and investigations in the free atmosphere, ice crystal formation is initiated either at vapor saturation with respect to water or by crystallization of a droplet. Nuclei with special properties are needed. An explanation of their effectiveness can be given by application of the laws of oriented overgrowth (Epitaxy) between two crystals. Any host crystal having a plane with a geometrical pattern similar to, for instance, the base plane of the ice crystal, can orient an adsorbed layer of H2O molecules already in the ice crystal pattern. The closer the fit between the two crystal planes, the greater the area of oriented H2O molecules will be. By piling up other layers of H2O molecules a very small ice crystal, called ice seed, is created which can grow in supercooled water. This crystal is so small that according to theThomson-Gibbs Law a high supersaturation would be needed to create it directly from vapor. Calculations of the effective temperature of mica, AgI and quartz as freezing nuclei are in fairly good agreement with the experiment. This theory permits an explanation of the observed thresholds of ice formation which occur at about –20°, –30°, –40° and –60°C. Occasionally capillary condensation of water molecules on a freezing nucleus will occur when the vapor is saturated with respect to ice but not with respect to water; this has frequently been erroneously ascribed to ice formation by a real sublimation nucleus.
Zusammenfassung Nach Untersuchungen im Laboratorium und in der freien Atmosphäre entsteht Eis entweder aus Wasserdampf auf dem Umwege über vorherige Kondensation des dampfes oder unmittelbar aus der flüssigen Phase durch Kristallisation. Zur Einleitung des Kristallisationsprozesses sind Kerne (Gefrierkerne) mit besonderen Eigenschaften notwendig. Eine Erklärung ihrer Wirkungsweise wird durch Anwendung der Gesetze über das orientierte Aufwachsen eines Kristalls auf einem anderen gewonnen. Besteht zwischen einer Gitternetzebene irgendeines Kristalls und z. B. der Basisebene des Eiskristalles eine gewisse Ähnlichkeit, die sich nachRoyer hauptsächlich auf die geometrische Anordnung der Kristallbausteine in beiden Flächen bezieht, dann orientiert sich die erste auf der Kristallfläche adsorbierte Moleküllage des Gastkristalls in der für sie typischen Gitteranordnung. Eine weitere, wesentliche Bedingung ist sehr gute Benetzbarkeit des Wirtkristalls durch die Bausteine des Gastkristalls, ohne daß es jedoch zur Auflösung des Wirtkristalls kommen darf. Solche Benetzbarkeit zeigt z. B. eine frisch gespaltete Glimmerfläche. Auf der Oberfläche eines gewöhnlichen, nach seiner Struktur geeigneten Aerosolteilchens werden jedoch nur wenige solcher aktiver Stellen vorhanden sein. Je besser dann die geometrische Ähnlichkeit beider Kristallflächen ist, um so größer ist die Fläche des Gastkristalls, die orientiert werden kann.Diese erste orientierte Molekülschicht des Gastkristalls wirkt orientierend auf die Wassermoleküle der Umgebung oder die durch den Kondensationsprozeß angelagerten Moleküle; dadurch entsteht ein kleiner Eiskristall. Dieses Kriställchen wirkt bei einer bestimmten kritischen Temperatur als Kristallisationskeim für das gesamte Wasser. Die Beziehung zwischen seiner Größe und seiner Wirkungstemperatur kann berechnet werden nach einer vonJ. J. Thomson abgeleiteten Formel. Je größer es ist, um so näher am Gefrierpunkt wirkt es; trotzdem ist es aber noch so klein, daß nach dem Thomson-Gibbsschen Gesetz eine große Übersättigung notwendig wäre, um es direkt aus dem Dampf zu bilden. Durch Analyse der geometrischen Ähnlichkeit zwischen der Basisfläche eines Eiskristalls einerseits und der Spaltfläche von Glimmer, der Basisfläche von Silberiodid und der Basisfläche eines Quarzkristalls anderseits war es möglich, die Größe der Fläche zu berechnen, über die die adsorbierten Wassermoleküle in der Basisflächenstruktur von Eis orientiert werden können. Dadurch war die Größe des Eiskeimes gegeben, dessen kritische Wirkungstemperatur nachJ. J. Thomsons Formel berechnet werden konnte.Die so berechneten Werte stimmen gut mit den experimentell festgestellten Gefriertemperaturen von Wasser auf Glimmer, Silberiodid und Quarz überein. Versuche mit Glimmer deuten darauf hin, daß in der Nähe des Gefrierpunktes eine besonders gute Ableitung der Gefrierwärme erforderlich ist, um den Kristallisationsprozeß in Gang zu bringen. Die Theorie gestattet eine Erklärung der verschiedentlich beobachteten Temperaturschwellen der Eisbildung in den Intervallen –19 bis –24°C, –30 bis –35°C, –39 bis –42° C und –60 bis –65°C. — Kapillarkondensation, durch die an unlöslichen Kondensationskernen Kondensation schon bei 90% rel. Feuchte einsetzen kann, kann das Vorhandensein eines Sublimationskernes vortäuschen.

Résumé D'après les recherches faites au laboratoire et dans l'atmosphère libre, la glace se forme soit à partir de la vapeur d'eau en passant par la condensation préalable, soit directement par cristallisation à partir de la phase liquide. Le processus de cristallisation exige la présence de noyaux de congélation aux propriétés particulières pour s'amorcer; l'action d'un noyau peut s'expliquer par les lois relatives à la croissance orientée d'un cristal sur un autre. S'il existe entre le réseau moléculaire d'un cristal quelconque et le plan de base d'un autre cristal une certaine ressemblance qui d'aprèsRoyer se rapporte essentiellement à la distribution géométrique des éléments cristallins des deux plans de contact, alors la première couche moléculaire du cristal secondaire qui est adsorbée sur une face du premier s'oriente suivant le réseau typique de celui-ci. Une autre condition importante est celle de la parfaite mouillabilité du cristal primitif vis-à-vis du nouveau cristal, sans toutefois que le premier risque de se dissoudre; une face fraîchement clivée de mica par exemple présente cette propriété. Mais la surface d'une particule d'aérosol de structure convenable ne présente que peu de «points actifs» de ce genre. Plus les deux surfaces cristallines mises en présence sont géométriquement semblables, plus la surface du cristal secondaire qui peut être orientée est grande.La première couche moléculaire orientée du cristal secondaire exerce un effet directeur sur les molécules d'eau du milieu ou sur les molécules déposées par le processus de condensation; ainsi naît un petit cristal de glace. A une température critique déterminée, ce dernier joue le rôle de germe de cristallisation pour toute l'eau disponible. La relation entre la grosseur de ce cristal et sa température efficace peut se calculer par une formule due àJ. J. Thomson. Plus le cristal est gros, plus il agit près du point de congélation; cependant il est encore si petit que d'après la loi deThomson-Gibbs il faut une grande sursaturation pour qu'il se forme directement à partir de la vapeur. Par l'analyse de la similitude géométrique entre la surface de base d'un cristal de glace d'une part et la surface de clivage de mica, la surface de base de iodure d'argent ou d'un cristal de quartz d'autre part, on pouvait calculer la grandeur des surfaces sur lesquelles les molécules d'eau adsorbées peuvent être orientées selon la structure de la surface de base de la glace. On obtenait ainsi la grosseur du germe de glace dont on pouvait calculer la température critique efficace d'après la formule deThomson.Ces valeurs calculées sont en bon accord avec les températures de congélation de l'eau sur mica, iodure d'argent et quartz déterminées expérimentalement. Des essais faits avec du mica semblent montrer qu'au voisinage du point de congélation la chaleur de congélation doit pouvoir s'écouler facilement pour mettre en train le processus de cristallisation. La théorie permet d'expliquer les seuils de température de la formation de la glace souvent observés dans les intervalles de –19° à –24°, –30° à –35°, –39° à –42° et de –60° à –65°C. La condensation capillaire par laquelle une condensation peut se produire sur des noyaux insolubles pour une humidité relative de 90% déjà est de nature à faire croire à la présence d'un noyau de sublimation.


With 8 Figures.  相似文献   

12.
Summary A report on the glacio-meteorological research program for investigation of the energy economy in the ablation area of the Greenland Ice Cap is given. Experience obtained at the calibration ofR. Schulze's radiation balance meter and of theMoll-Gorczynski solarimeter is communicated.The contribution of the individual components of heat balance to the transformation of energy is estimated for an ablation period of eleven days. The difference between measured and calculated ablation was found to be 4 per cent.The high contribution of radiation and the insignificant contribution of heat convection are characteristic of the transformation of energy of the melting ice surface on the Greenland Ice Cap. Conditions of evaporation are much more frequent than conditions of condensation. Nevertheless, the amount of evaporated ice is only 1.5 per cent of the melted ice. About 10 per cent of the energy available for melting is consumed for the heating of the ice at lower levels.
Zusammenfassung Es wird über ein glazial-meteorologisches Forschungsprogramm zur Untersuchung des Energiehaushaltes im Ablationsgebiet des Grönlandeises berichtet. Einige Erfahrungen bei der Eichung eines Strahlungsbilanzmessers nachR. Schulze und eines SolarimetersMoll-Gorczynski werden mitgeteilt.Der Beitrag der einzelnen Komponenten des Wärmehaushaltes zum Energieumsatz wird für eine elftägige Ablationsperiode abgeschätzt. Es ergibt sich eine Differenz von 4% zwischen gemessener und berechneter Ablation.Für den Energieumsatz der schmelzenden Eisoberfläche des Grönlandeises ist der hohe Beitrag der Strahlung und der geringfügige Beitrag des konvektiv zugeführten Wärmestromes charakteristisch. Die Bedingung für Verdunstung ist weit häufiger erfüllt als die Bedingung für Kondensation. Trotzdem beträgt die verdunstete Eismasse nur 1,5% der geschmolzenen Eismasse. Für die Erwärmung des Eises werden etwa 10% der für Schmelzung verfügbaren Energie verbraucht.

Résumé Exposé concernant le programme de recherches de glaciologie météorologique sur l'économie énergétique dans le domaine de l'ablation de l'islandsis groenlandais. Expériences faites lors de l'étalonnage d'un intégrateur du bilan radiatif d'aprèsR. Schulze et d'un solarimètre deMoll-Gorczynski.L'auteur tente d'estimer les diverses composantes du bilan radiatif dans le processus énergétique d'ablation glaciaire d'une durée de onze jours; un écart de 4% apparaît entre l'ablation mesurée et calculée.La fusion superficielle du glacier est caractérisée par le rôle prépondérant du rayonnement et par un apport très faible de la chaleur fournie par la convection. Les conditions favorables à l'évaporation sont beaucoup plus fréquentes que celles de la condensation; la masse de glace évaporée ne représente cependant qui le 1,5% de la glace fondue. Le 10% de l'énergie disponible pour la fusion est absorbé par le réchauffement de la glace.


Mit 5 Figures  相似文献   

13.
Production and expenditure rates in the terrestrial budget of various air properties (mass of precipitable water and carbon dioxide, zonal and root mean square momentum, heat, and entropy) are studied. The discussion is based on graphs and diagrams which illustrate the global radiation and heat budget, dynamical energy forms and conversions, hydrologic and carbon dioxide cycles, and meridional cross sections of mass, momentum, heat, and entropy budget terms. A comparison of atmospheric property holdings with expenditure rates results in a fictitious interval of time required to annull the holdings. For momentum, precipitable water, and heat this interval of time has the order of magnitude of 100, 101, and 102 days, respectively.
Zusammenfassung Es werden die Einnahme- und Ausgabeposten beim terrestrischen Haushalt verschiedener Eigenschaften der Luft (Wasserdampf und Kohlensäure als Beispiele von Masseneigenschaften, ferner zonal-vektorieller und skalarer Impuls, Wärme und Entropie) untersucht. Die Diskussion wird durch graphische Darstellungen und Diagramme unterstützt, welche folgende Größen veranschaulichen: den globalen Strahlungs- und Wärmehaushalt, dynamische Energieformen und ihre Umwandlungen, Wasserkreislauf und Kohlensäurekreislauf, sowie Bilanzposten der Massen-, Impuls-, Wärme- und Entropiebilanz in Meridionalschnitten. Eine Vergleichung des Gehalts der Atmosphäre an verschiedenen Eigenschaften mit ihren Verlusten liefert ein fiktives Zeitintervall, in welchem die Reserven aufgebraucht würden, wenn kein Ersatz nachgeliefert würde; die Größenordnung dieses Zeitintervalles ergibt sich zu 100, 101 und 102 Tagen für Impuls, Wasserdampf und Wärme.

Résumé L'auteur étudie la production et la dépense dans le bilan terrestre des différentes propriétés de l'air (la vapeur d'eau et le dioxyde de carbone comme exemples de propriétés de masse, puis la quantité de mouvement zonale-vectorielle et scalaire, la chaleur et l'entropie). Des graphiques illustrent la discussion qui représentent les grandeurs suivantes: économie globale de la radiation et de la chaleur, formes dynamiques de l'énergie et leurs transformations, cycles hydrologique et du dioxyde de carbone, ainsi que les composantes du bilan des masses, de la quantité de mouvement, de la chaleur et de l'entropie en coupes méridionales. La comparaison du contenu des diverses propriétés dans l'atmosphère avec leurs pertes est fournie par un intervalle de temps fictif, pendant lequel les réserves seraient épuisées, au cas où leur renouvellement ferait défaut; l'ordre de grandeur de cet intervalle résulte à 100, 101 et 102 jours respectivement pour la quantité de mouvement, la vapeur d'eau et la chaleur.


With 8 Figures.  相似文献   

14.
Zusammenfassung Die in den Wolken stark verbreitete Unterkühlbarkeit des Wassers sowie die Wirkungsweise der Gefrierkerne wurden im Laboratorium untersucht. Dabei wurden im Gefrierkernspektrum Maxima bei –4, –11 bis –12 und –19°C gefunden. Änderungen der Untersuchungsbedingungen beeinflussen nur die Höhe, nicht aber die Temperatur der Maxima. Auch eine künstliche Beeinflussung des Spektrums ist möglich und äußert sich in gleichem Sinne. Die Stärkere Unterkühlbarkeit kleiner Tropfen (im 3. Maximum) wird als rein statistischer Volumeneffekt erkannt. Wäßrige Lösungen zeigen das Gefrierkernspektrum um die Gefrierpunktserniedrigung verschoben. Diese Ergebnisse sowie die nachgewiesene allgemeine Gültigkeit des Gefrierkernspektrums führen zu dessen Deutung durch temperaturbedingte Strukturänderungen des Wassers; sie erklären die deutlich erkannte Bevorzugung derselben Temperaturbereiche bei der atmosphärischen Niederschlagsbildung, was keine der bisherigen Niederschlagstheorien vermag.Der Gefrierkerngehalt des Wassers wird bestimmt und es wird nachgewiesen, daß diese früh wirkenden Kerne auch im natürlichen Aerosol in genügender Anzahl vorhanden sind. In den verschiedenen Luftmassen werden sehr unterschiedliche Gefrierkerngehalte festgestellt: polare Luftmassen enthalten viele und sehr früh wirkende Gefrierkerne, in rein subtropischen Luftmassen fehlen diese nahezu vollständig. Daraus ist auf maritimen Ursprung dieser Gefrierkerne zu schließen.Zwischen –40° und –50°C, je nach erfaßter Luftmasse, vereist die Mischwolke ganz, nach einem schon früher einsetzenden Anstieg der Eisteilchenzahl. Dabei sind wieder Gefrierkerne beteiligt, und zwar etwa 200 per cm3. Der für die homogene Keimbildung charakteristische starke Anstieg der Eisteilchenzahl tritt erst bei Annäherung an –70°C auf. Die hier gebildete kubische Modifikation des Eises wird durch neue Beobachtungen belegt.Schließlich wird noch die kernfreie Eiskeimbildung durch dielektrische Polarisation erwähnt, welche bei geringer Unterkühlung ausgelöst werden kann, die mechanischen Gefrierauslösungen erklärt und auch in der Atmosphäre vorkommen muß.
Summary The supercooling of water which is found most frequently in clouds, as well as the mechanism of action of freezing nuclei were investigated in the laboratory. The spectrum of freezing nuclei was found to have maxima at –4, –11 to –12 and –19°C. Alterations of the investigation conditions influence only the height but not the temperature of the maxima. Also an artificial influence on the spectrum is possible, and it has the same effect. The fact that small droplets can be supercooled to lower temperatures (in the 3rd maximum) is proved to be merely a statistical volume-effect. Aqueous solutions show the spectrum of freezing nuclei displaced by the lowering of the freezing point. These results and the ascertained general validity of the spectrum of freezing nuclei lead to its interpretation by changes of the structure of water itself, which are determined by temperature. They explain the fact that the formation of atmospheric precipitation prefers the same regions of temperature whereas none of the hitherto existing precipitation theories can do that.The content of freezing nuclei in water is determined, and it is shown that these early active nuclei are also present, in a sufficient number, in the natural aerosol. The contents of freezing nuclei found in various air masses show a great variation: polar air masses contain many and very early active freezing nuclei; these are nearly entirely absent in subtropical air masses. Thence it is concluded that these freezing nuclei are of maritime origin.Between –40° and –50°C, according to the investigated air mass, the mixed cloud, consisting of crystals and droplets, freezes entirely, following an increase of the number of ice particles which takes place somewhat earlier. Freezing nuclei participate in this process, again, their number being of the order of 200/cm3. The strong increase of the number of ice nuclei which is characteristic for the homogeneous formation of particles, takes place only if the temperature approaches –70°C. The cubic modification of ice formed at this temperature is proved by further observations.Finally, we mention the formation of ice particles bare of nuclei by dielectric polarisation which can be caused at slight supercooling. It explains the mechanical release of freezing, a process which should also occur in the atmosphere.

Résumé L'eau surfondue, un état très fréquent dans les nuages, et la manière dont les noyeaux glaçogènes agissent pour former de la glace ont été l'objet de recherches au laboratoire. Au cours de ces expériences, le spectre des noyaux glaçogènes montrait des maxima aux températures de –4, –11 à –12 et –19°C. Des changements dans les conditions expérimentales n'influencent que la hauteur mais pas les températures des maxima. Une influence artificielle sur le spectre est possible et se mainifeste dans le même sens. Le fait que des gouttelettes plus petites peuvent être surfondues à des températures plus basses, fut décelé comme n'étant qu'un effet statistique causé par le volume.Les solutions aqueuses montrent aussi le spectre des noyeaux glaçogènes, mais le spectre y est déplacé par l'abaissement du point de cristallisation. Ces résultats et la validité commune du spectre des noyaux glaçogènes impliquent l'explication de ce spectre par les changements de la structure de l'eau elle-même par la température. Ils expliquent aussi la préférence des mêmes températures lors de la formation des précipitations atmosphériques, ce qu'aucune théorie à ce sujet n'a pu faire jusqu'ici.En mesurant le contenu de l'eau en noyaux glaçogènes on trouve que l'aérosol naturel contient aussi un nombre suffisant de ces noyaux à effet précoce. Dans les diverses masses d'air, le contenu en noyaux glaçogènes est très différent: les masses d'air polaires en contiennent un grand nombre à effect très précoce, dans les masses d'air subtropicales ces noyaux manquent presque complètement. Il s'en suit que ces noyaux glaçogènes sont très probablement d'origine maritime.Entre –40 et –50°C, suivant l'origine de la masse d'air en question, les nuages mixtes, composés de cristaux de glace et de gouttelettes d'eau, gèlent complètement après augmentation préalable du nombre des particules de glace, à laquelle participent de nouveau des noyaux glaçogènes à raison d'environ 200 par cm3. L'augmentation intensive du nombre des particules de glace, caractéristique pour la formation homogène, ne commence qu'en s'approchant de –70°C; de nouvelles observations confirment qu'à cette température se forme une modification cubique de la glace.L'auteur discute encore la formation de la glace par la polarisation diélectrique qui se fait sans noyaux. Elle produit des germes de glace à des températures peu inférieures à 0°C, explique les nucléations mécaniques et doit aussi exister dans l'atmosphère.


Mit 14 Textabbildungen.  相似文献   

15.
Summary Covariances of temperature and meridional wind component at 18 stations in the Northern Hemisphere were computed at 2km-intervals from the surface to 28 km. These covariances are proportional to the northward flux of sensible heat resulting from transient eddies. Cross sections of covariance of temperature and meridional wind component during January and July were constructed for 80°W. At this longitude during January a minimum of eddy heat flux occurred near an altitude of 20 km at all latitudes, and in the higher latitudes a sharp increase began somewhere between 18 km and 22 km. Eddy heat fluxes were generally quite small, in the part of the stratosphere below 20 km. A similar pattern was found at the French station of Chateauroux. The layer which separates the regions of small and large eddy heat fluxes appears to coincide with a null layer described byFaust. However, this sharp dividing line between a lower stratosphere with small eddy heat fluxes and an upper stratosphere with large eddy heat fluxes does not appear at all longitudes. Over Alaska one finds maximum eddy heat fluxes between 20 km and 22 km, and values in the lower stratosphere are much larger than those near 80° W.
Zusammenfassung Die Kovarianz zwischen Temperatur und meridionaler Windkomponente wurde für 18 Stationen der nördlichen Hemisphäre für 2km-Intervalle vom Boden bis 28 km berechnet. Diese Kovarianzen sind dem nach Norden gerichteten mittleren Strom der Wärme proportional, verursacht durch wandernde Wirbel. Für 80°W wurden Querschnitte der Kovarianz zwischen Temperatur und meridionaler Windkomponente konstruiert. In diesem Meridianschnitt tritt ein Minimum des turbulenten Wärmeflusses in nahezu 20 km Höhe in allen Breiten im Januar auf; in höheren Breiten beginnt eine plötzliche Zunahme mit der Höhe zwischen 18 und 22 km. Dieser turbulente Wärmefluß ist im allgemeinen in der unteren Stratosphäre unterhalb 20 km ziemlich klein. Ein ähnliches Verhalten wird bei der französischen Station Chateauroux gefunden. Die Schicht, welche die Regionen des kleinen und des großen turbulenten Wärmeflusses trennt, scheint mit einer vonFaust besprochenen Nullschicht zusammenzufallen. Diese scharfe Trennungslinie zwischen unterer Stratosphäre mit kleinem turbulenten Wärmefluß und der oberen Stratosphäre mit größeren Wirbelköpern der Wärme tritt jedoch nicht an allen Längengraden auf. Über Alaska findet man einen maximalen turbulenten Wärmestrom zwischen 20 und 22 km; auch die Werte in der unteren Stratosphäre sind dort viel größer als diejenigen um 80°W.

Résumé On a calculé la covariance existant entre la température et la composante méridionale du vent. Ces calculs, ont été effectués pour des intervalles de 2 km du sol à 28 km et cela pour 18 stations, de l'hémisphère nord. Ces nord et provoqués par des tourbillons mobiles. On a construit des sections de la covariance entre température et composante méridionale du vent à 80° de longitude W. Sous cette longitude, on constate en janvier un minimum du flux turbulent de chaleur à environ 20 km d'altitude et cela sous toutes les latitudes. Dans les latitudes élevées, on constate en outre une brusque augmentation de ce flux avec l'altitude et cela entre 18 et 22 km. Ce flux turbulent de chaleur est en général assez faible dans les basses couches de la stratosphère, c'est à dire au-dessous de 20 km. On trouve des conditions similaires, à la station française de Chateauroux. La couche qui sépare les régions présentant des flux turbulents de chaleur faible et important semble coïncider avec la couche nulle deFaust. Cette nette ligne de séparation entre la stratosphère inférieure présentant un faible flux turbulent de chaleur et la stratosphère supérieure comportant des corps tourbillonnaires de chaleur importants ne se rencontre cependant pas sous toutes les longitudes. Au-dessus de l'Alaska, on rencontre un courant turbulent de chaleur maximum entre 20 et 22 km. Les valeurs de la stratosphère inférieure y sont aussi beaucoup plus grandes que celles trouvées à 80° de longitude ouest.


With 4 Figures  相似文献   

16.
Zusammenfassung Mit Hilfe von Mikroempfängern wurde das Extinktionsvermögen von oberflächennahen Eisschichten der Gletscher und von verschiedenen Schneesorten im kurzwelligen Spektralbereich untersucht und der Extinktionskoeffizient als Funktion der Tiefe (bis 50 cm) und der Wellenlänge bestimmt. Die räumliche Verteilung der Streustrahlung wurde mit Richtempfängern in drei Filterbereichen (650 m, 825 m, 950 m) gemessen. Es wird gezeigt, daß der Extinktionskoeffizient in den oberflächennahen Eisschichten stark von der Meßrichtung abhängt und dadurch in der Oberschicht die räumliche Strahlungsverteilung mit der Tiefe wesentlich verformt wird. Nur Messungen der Strahlungsbilanz können daher über die absorbierte Strahlungsenergie, die in Wärme umgewandelt wird, Aufschluß geben. In tieferen Schichten (x>25 cm) wird der Extinktionskoeffizient von der Meßrichtung unabhängig. In diesem Bereich wird die Theorie vonR. V. Dunkle undJ. T. Gier angewendet und der Streu- und Absorptionskoeffizient berechnet. Im Schnee wird keine Abhängigkeit des Extinktionskoeffizienten von der Meßrichtung gefuden. Aus den Ergebnissen wurde die Porösität der Oberschicht berechnet und der Betrag der inneren Ablation angegeben. Zur Ausbildung der porösen Oberschicht werden im Extremfall etwa 200 cal/cm2 verbraucht. Die Art der räumlichen Verteilung der Streustrahlung erlaubt eine neue Erklärung für den Tagesgang der Albedo von Eis.
Summary Small sensing elements were used to measure radiation extinction in glacier ice and various types of snow. The extinction coefficient for short-wave radiation as a function of depth (down to 50 cm below the surface) and wavelength is given. The spacial distribution of scattered radiation was measured in three wavelengths (650, 825, and 950 m), by means of directional receivers. It is shown that, in the upper layers, the extinction coefficient strongly depends on the direction of the measurement. Therefore, the spacial distribution of radiation below the surface is deformed, Determination of the radiative energy absorbed by the ice and transformed into heat requires measurements of the radiation balance. At greater depths (>25 cm) the extinction coefficient becomes independent of the direction of measurement. For this range the theory ofR. V. Dunkle andJ. T. Gier was applied and the coefficients of scattering and absorption computed. Observations in snow rendered no dependency of the extinction coefficient on the direction of measurement. Using the present results the porosity of the upper ice layer was calculated and internal ablation determined. Under extreme circumstances, the formation of a porous surface layer consumes about 200 cal/cm2. Considering the spacial distribution of scattered radiation a new explanation of the daily variation of albedo of ice is given.

Résumé On détermine à l'aide de récepteurs de petites dimensions les propriétés de l'extinction (affaiblissement total) des couches de glace proches de la surface des glaciers et de diverses sortes de neige. On s'est attaché à l'étude des ondes courtes du spectre et à la recherche du coefficient d'extinction en fonction de la profondeur (jusqua'à 50 cm) et de la fréquence des ondes. La répartition du rayonnement diffus dans l'espace fut mesurée pour les domaines de 3 filtres (650 m, 825m et 950m). On démontre ensuite que le coefficient d'extinction dépend de la direction de mesure dans les couches superficielles de la glace et que la répartition spaciale du rayonnement est, de ce fait, passablement déformée en profondeur. Seules des mesures du bilan de radiation peuvent donc indiquer l'énergie absorbée qui est transformée en chaleur. Dès que la profondeur dépasse 25cm, le coefficient d'extinction est indépendant de la direction selon laquelle il est mesuré. On applique dans cette zone la théorie deR. V. Dunkle etJ. T. Gier et l'on peut calculer les coefficients d'absorption et de dispersion. Dans la neige par contre, on n'a pas trouvé de relation étroite entre le coefficient d'extinction et la direction de mesure. Partant de ces recherches, on a calculé la porosité des couches superficielles et la valeur de l'ablation interne. Il faut, dans les cas extrêmes, 200 cal/cm2 pour former la couche poreuse superficielle. La manière dont le rayonnement diffus se répartit dans l'espace permet de formuler une nouvelle explication de la variation diurne de l'albédo de la glace.


Mit 6 Textabbildungen  相似文献   

17.
Summary Micrometeorological measurements made at Norway Station, Antarctica, indicate that the exchange of sensible heat between air and snow is excecuted by the aeration. The existence of a laminar sub-layer over permeable snow is in this connection questionable. A zig-zag profile found in the mean vertical distribution of the temperature near the surface indicates that the turbulence in this layer is systematized. From the temperature profile we have estimated the vertical displacement of the elements, and in connection with measurements of the frequency of temperature variations near the surface, we have calculated the heat transfer in the air. An expression for the eddy heat transfer coefficient which contains fairly well defined quantities and proportions has been derived.
Zusammenfassung Aus mikrometeorologischen Messungen auf der Norway Station, Antarctica, wird gefolgert, daß der Austausch von fühlbarer Wärme zwischen Luft und Schnee durch Bodenatmung vor sich geht. Die Existenz einer laminaren Grenzschicht über einer porösen Schneedecke wird in diesem Zusammenhang bezweifelt. Die vertikale Temperaturschichtung der bodennahen Luftschicht zeigt ein Zickzack-Profil und deutet darauf hin, daß die Turbulenz in dieser Schicht systematische Züge enthält. Aus den Temperaturprofilen wird die vertikale Verschiebung der Turbulenzelemente geschätzt. Die gemessene Frequenz der Temperaturschwankungen in der bodennahen Luft ermöglicht die Berechnung der Größe des Wärmeaustausches. Abschließend wird ein Ausdruck für den turbulenten Wärmeaustausch-Koeffizienten abgeleitet, der verhältnismäßig wohldefinierte Größen und Verhältnisse enthält.

Résumé Sur la base de mesures micrométéorologiques effectuées à Norway Station, Antarctique, on déduit que l'échange de chaleur sensible entre l'air et la neige s'effectue par le truchement de la respiration du sol. On met alors en doute l'existance d'une couche limite laminaire au-dessus d'une couverture poreuse de neige. L'étagement vertical des températures dans les couches d'air voisines du sol présente un profil en zig-zag. Par conséquent, la turbulence montre, dans cette zone, des traits systématiques. Par le moyen des profils de température, on estime le déplacement vertical des éléments de turbulence. La fréquence mesurée des variations de température au voisinage du sol permet de calculer l'importance des échanges de chaleur. On en tire, pour terminer, une expression du coefficient d'échange turbulent de la chaleur, expression qui contient des grandeurs et des relations relativement bien définis.


With 1 Figure  相似文献   

18.
Résumé Dans ce travail, nous établissons la formule donnant la chaleur de vaporisation d'une gouttelette de solution en suspension dans l'atmosphère et nous montrons dans quels cas elle peut être remplacée par la formule donnant la chaleur de vaporisation de l'eau en masse.
Summary Our purpose is to establish a formula giving the heat of vaporization of a solution droplet in suspension in the atmosphere. We show in which cases this formula can be replaced by another one giving the heat of vaporization relative to a plane interface.

Zusammenfassung Es wird die Formel für die Verdampfungswärme eines in der Atmosphäre suspendierten Lösungströpfchens aufgestellt und gezeigt, in welchen Fällen sie durch die Formel der Verdampfungswärme einer ebenen Wasserfläche ersetzt werden kann.
  相似文献   

19.
Zusammenfassung Energiehaushalt und freier Wassergehalt beim Abbau der winterlichen Schneedecke wurden in einer 64tägigen Meßreihe untersucht. Zur Messung des freien Wassergehaltes wurde ein neu entwickeltes Gerät verwendet. Das Prinzip des Gerätes beruht auf der Bestimmung der Dielektrizitätskonstanten des feuchten Schnees. Die Ergebnisse zeigen, daß eine Änderung des freien Wassergehaltes zwischen Beginn und Ende einer Meßperiode beim Studium des Energiehaushaltes berücksichtigt werden muß. Eine 1 m dicke Schneeschicht verbraucht zur Vermehrung des freien Wassers um 5 Volumprozent 400 cal/cm2. Für eine 10tägige Meßperiode ist dieser Betrag etwa das Doppelte des fühlbaren und latenten Wärmestromes und etwa 70% der langwelligen Strahlungsbilanz. Der vollständige Energiehaushalt wurde für die 44tägige Ablationszeit berechnet, wobei der Unterschied zwischen berechneter und gemessener Ablation 4,8% beträgt. Zum Vergleich wurden die Komponenten des Energiehaushaltes auch für eine 20tägige Periode ohne Schmelzung ermittelt, wobei sich der große Einfluß der hohen Albedo deutlich zeigt.
Summary The author has investigated the heat balance and contents of free water during the ablation of the snow-cover of the winter in a 64-day series of measurements. For the measurement of the free water content a new device has been developed. The principle of this instrument is based on the determination of the dielectric constant of the wet snow. The results show that a variation of the proportion of free water between the beginning and the end of a period of measurements has to be taken into consideration. To increase the proportion of free water by five per cent of the volume a snow cover crease the proportion of free water by five per cent of the volume a snow cover of 1 m thickness needs 400 cal/cm2. For a 10-day period of measurements this amount equals twice the flow of sensible and latent heat or 70 per cent of the long wave net radiation. The complete heat balance for the ablation time which had a duration of 44 days has been computed. The difference between computed and observed ablation amounts to 4.8 per cent. As a counterpart the components of the heat balance were computed for a 20-day period without melting, too, which showed the large influence of the high albedo.

Résumé En se basant sur une série de mesures s'étendant sur 64 jours, on a examiné le bilan d'énergie et le contenu d'eau libre d'une couche de neige d'hiver dans l'état de disparition. On a utilisé un appareil nouveau pour mesurer la teneur en eau libre. Le principe de cet appareil repose sur la détermination de la constante diélectrique de la neige humide. Les résultats obtenus montrent qu'il faut tenir compte d'une modification de la teneur en eau libre entre le début et la fin d'une période de mesure lors de l'étude des bilans d'énergie. Une couche de neige de 1 m d'épaisseur a besoin de 400 cal/cm2 pour une augmentation de 5% en volume du taux de l'eau libre. Pour une période de mesure de 10 jours, cela représente environ le double du flux de chaleur sensible et latent ainsi qu'à peu près 70% du bilan radiatif à longues ondes. On a calculé le bilan d'énergie complet pour une période d'ablation de 44 jours. La différence entre l'ablation calculée et l'ablation mesurée n'est que de 4,8%. A titre de comparaison, on a déterminé les composantes du bilan d'énergie pour une période de 20 jours sans fonte de neige. On constate alors très nettement l'influence déterminante de l'albédo élevé.


Mit 4 Textabbildungen  相似文献   

20.
Summary This progress report summarises the researches of the cloud physics group at Imperial College during the last four years 1949–1952. It describes work carried out on the following topics: 1. the spontaneous condensation of water vapour; 2. measurements on the concentration and size distribution of sea-salt nuclei over the N. Atlantic and their contribution to atmospheric opacity; 3. laboratory and theoretical studies on the supercooling and freezing of water and aqueous solutions; 4. experimental and theoretical researches on ice crystal growth from the vapour; 5. theoretical computations on the growth of water drops and ice particles in both layer and shower type clouds; 6. studies of the form, structure and development of high-level ice clouds and their formation relative to orographic features; 7. the construction of instruments for precipitation studies.
Zusammenfassung Der vorliegende Bericht gibt einen Überblick über die Forschungen der Arbeitsgruppe für Wolkenphysik am Imperial College in London während der vier Jahre 1949 bis 1952. Es werden Untersuchungen über folgende Probleme beschrieben: 1. Spontane Wasserdampfkondensation; 2. Messungen über die Konzentration und die Größenverteilung von Meersalzkernen über dem Nordatlantik und über ihren Anteil an der atmosphärischen Trübung; 3. theoretische und Laboratoriumsuntersuchungen über Unterkühlung und Gefrieren von Wasser und wässerigen Lösungen; 4. experimentelle und theoretische Untersuchungen über das Wachstum von Eiskristallen aus der dampfförmigen Phase; 5. theoretische Berechnungen über das Wachstum von Wassertropfen und Eispartikeln sowohl in Schicht- wie in Quellbewölkung; 6. Untersuchungen über Form, Aufbau und Entwicklung von hohen Eiswolken und über die Abhängigkeit ihrer Bildung von den orographischen Verhältnissen; 7. Konstruktion von Instrumenten für Niederschlagsuntersuchungen.

Résumé Le présent rapport résume les recherches effectuées par le groupe d'étude de la physique des nuages de l'«Imperial College» au cours des quatre années 1949–1952, et qui ont concerné les domaines suivants: 1. condensation spontanée de la vapeur d'eau; 2. mesure de la concentration et de la distribution de grosseur des noyaux de sel marin au-dessus de l'Atlantique et leur rôle dans le trouble atmosphérique; 3. recherches théoriques et expérimentales sur la surfusion et la solidification de l'eau et de solutions aqueuses; 4. recherches théoriques et expérimentales sur la croissance de cristaux de glace à partir de la phase gazeuse; 5. essais de calcul de l'accroissement de gouttes d'eau et de particules de glace à l'intérieur de nuages stratifiés ou cumuliformes; 6. recherches sur la forme, la structure et le développement des nuages glacés à haute altitude, ainsi que sur le rôle du relief terrestre sur leur formation; 7. construction d'instruments utiles aux recherches pluviométriques.


With 26 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号