首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Re–Os isochron age is reported for massive sulfides from near the basal contact of the Radio Hill layered mafic‐ultramafic intrusion in the west Pilbara Craton, Western Australia. The isochron age is 2892 ± 34 Ma (mean square of weighted deviates = 1.06) with an initial 187Os/188Os = 0.1265 ± 0.0028. This age is in agreement with the ages of other nearby layered mafic intrusions that are considered to have a similar geological evolution to the Radio Hill Intrusion.  相似文献   

2.
Analysis of magmatic and sedimentary rocks of several large igneous provinces has demonstrated that the release of gas during plutonic-metamorphic processes may be linked to global climate change and mass extinctions. Aguablanca, one of the largest Cu–Ni–PGE deposits in Europe, formed during the Variscan orogeny when a mafic magma intruded limestones and shales, creating a contact aureole composed of marble, skarn and hornfels. Our petrological and geochemical investigation of the aureole provides evidence that a combination of the two processes led to the formation of the ore deposit: The assimilation of terrigenous sediments supplied S to the magma while the assimilation of carbonates changed the oxygen fugacity and decreased the solubility of sulfur in the magma. The metamorphic assemblages in the contact aureole are directly related to heterogeneity of the protolith and particularly to the original proportions of calcite and clay. We modeled carbon dioxide degassing during contact metamorphism and showed that pure limestone is relatively unproductive because of its high reaction temperature. The presence of clay, however, leads to the formation of calc-silicates and significantly enhances CO2 degassing. Our estimations suggest that degassing of the Aguablanca contact aureole released about 74.8 Mt of CO2, a relatively low volume that we attribute to the composition of the host rock, mainly a pure limestone. A far larger volume of carbon dioxide was emitted by the contact metamorphism of dolostones in the contact aureole of Panzhihua (part of Emeishan large igneous province, SW China). We propose that the level of emission of carbon dioxide depends strongly on the nature of the protolith and has to be considered when predicting environmental impact during the emplacement of large igneous provinces.  相似文献   

3.
Gossan Hill is an Archean (∼3.0 Ga) Cu–Zn–magnetite-rich volcanic-hosted massive sulfide (VHMS) deposit in the Yilgarn Craton of Western Australia. Massive sulfide and magnetite occur within a layered succession of tuffaceous, felsic volcaniclastic rocks of the Golden Grove Formation. The Gossan Hill deposit consists of two stratigraphically separate ore zones that are stratabound and interconnected by sulfide veins. Thickly developed massive sulfide and stockwork zones in the north of the deposit are interpreted to represent a feeder zone. The deposit is broadly zoned from a Cu–Fe-rich lower ore zone, upwards through Cu–Zn to Zn–Ag–Au–Pb enrichment in the upper ore zone. New sulfur isotope studies at the Gossan Hill deposit indicate that the variation is wider than previously reported, with sulfide δ34S values varying between −1.6 and 7.8‰ with an average of 2.1 ± 1.4‰ (1σ error). Sulfur isotope values have a broad systematic stratigraphic increase of approximately 1.2‰ from the base to the top of the deposit. This variation in sulfur isotope values is significant in view of typical narrow ranges for Archean VHMS deposits. Copper-rich sulfides in the lower ore zone have a narrower range (δ34S values of −1.6 to 3.4‰, average ∼1.6 ± 0.9‰) than sulfides in the upper ore zone. The lower ore zone is interpreted to have formed from a relatively uniform reduced sulfur source dominated by leached igneous rock sulfur and minor magmatic sulfur. Towards the upper Zn-rich ore zone, an overall increase in δ34S values is accompanied by a wider range of δ34S values, with the greatest variation occurring in massive pyrite at the southern margin of the upper ore zone (−1.0 to 7.8‰). The higher average δ34S values (2.8 ± 2.1‰) and their wider range are explained by mixing of hydrothermal fluids containing leached igneous rock sulfur with Archean seawater (δ34S values of 2 to 3‰) near the paleoseafloor. The widest range of δ34S values at the southern margin of the deposit occurs away from the feeder zone and is attributed to greater seawater mixing away from the central upflow zone. Received: 10 June 1999 / Accepted: 28 December 1999  相似文献   

4.
5.
6.
The Garson Ni–Cu–platinum group element deposit is a deformed, overturned, low Ni tenor contact-type deposit along the contact between the Sudbury Igneous Complex (SIC) and stratigraphically underlying rocks of the Huronian Supergroup in the South Range of the 1.85-Ga Sudbury structure. The ore bodies are coincident with steeply south-dipping, north-over-south D1 shear zones, which imbricated the SIC, its ore zones, and underlying Huronian rocks during mid-amphibolite facies metamorphism. The shear zones were reactivated as south-over-north, reverse shear zones during D2 at mid-greenschist facies metamorphism. Syn-D2 metamorphic titanite yields an age of 1,849?±?6 Ma, suggesting that D1 and D2 occurred immediately after crystallization of the SIC during the Penokean Orogeny. The ore bodies plunge steeply to the south parallel to colinear L1 and L2 mineral lineations, indicating that the geometry of the ore bodies are strongly controlled by D1 and D2. Sulfide mineralization consists of breccia ores, with minor disseminated sulfides hosted in norite, and syn-D2 quartz–calcite–sulfide veins. Mobilization by ductile plastic flow was the dominant mechanism of sulfide/metal mobilization during D1 and D2, with additional minor hydrothermal mobilization of Cu, Fe, and Ni by hydrothermal fluids during D2. Metamorphic pentlandite overgrows a S1 ferrotschermakite foliation in D1 deformed ore zones. Pentlandite was exsolved from recrystallized polygonal pyrrhotite grains after cessation of D1, which resulted in randomly distributed large pentlandite grains and randomly oriented pentlandite loops along the grain boundaries of polygonal pyrrhotite within the breccia ore. It also overgrows a S2 chlorite foliation in D2 shear zones. Pyrrhotite recrystallized and was flattened during D2 deformation of breccia ore along narrow shear zones. Exsolution of pentlandite loops along the grain boundaries of these flattened grains produced a pyrrhotite–pentlandite layering that is not observed in D1 deformed ore zones. The overprinting of the two foliations by pentlandite and exsolution of pentlandite along the grain boundaries of flattened pyrrhotite grains suggest that the Garson ores reverted to a metamorphic monosulfide solid solution at temperatures ranging between 550 and 600 °C during D1 and continued to deform as a monosulfide solid solution during D2.  相似文献   

7.
The Eagle Ni–Cu–(PGE) deposit is hosted in mafic–ultramafic intrusive rocks associated with the Marquette–Baraga dike swarm in northern Michigan. Sulfide mineralization formed in association with picritic magmatism in a dynamic magma conduit during the early stages in the development of the ~1.1?Ga Midcontinent Rift System. Four main types of sulfide mineralization have been recognized within the Eagle deposit: (1) disseminated sulfides in olivine-rich rocks; (2) rocks with semi-massive sulfides located both above and below the massive sulfide zone; (3) massive sulfides; and (4) sulfide veins in sedimentary country rocks. The disseminated, massive and lower semi-massive sulfide zones are typically composed of pyrrhotite, pentlandite and chalcopyrite, whereas the upper semi-massive sulfide ore zone also contains pyrrhotite, pentlandite, and chalcopyrite, but has higher cubanite content. Three distinct types of sulfide mineralization are present in the massive sulfide zone: IPGE-rich, PPGE-rich, and PGE-unfractioned. The lower and upper semi-massive sulfide zones have different PGE compositions. Samples from the lower semi-massive sulfide zone are characterized by unfractionated PGE patterns, whereas those from the upper semi-massive sulfide zone show moderate depletion in IPGE and moderate enrichment in PPGE. The mantle-normalized PGE patterns of unfractionated massive and lower semi-massive sulfides are subparallel to those of the disseminated sulfides. The results of numerical modeling using PGE concentrations recalculated to 100% sulfide (i.e., PGE tenors) and partition coefficients of PGE between sulfide liquid and magma indicate that the disseminated and unfractionated massive sulfide mineralization formed by the accumulation of primary sulfide liquids with similar R factors between 200 and 300. In contrast, the modeled R factor for the lower semi-massive sulfide zone is <100. The fractionated sulfide zones such as those of the IPGE-rich and PPGE-rich massive sulfides and the upper semi-massive sulfide zone can be explained by fractional crystallization of monosulfide solid solution from sulfide liquids. The results of numerical modeling indicate that the sulfide minerals in the upper semi-massive sulfide zone are the products of crystallization of fractionated sulfide liquids derived from a primary sulfide liquid with an R factor similar to that for the disseminated sulfide mineralization. Interestingly, the modeled parental sulfide liquid for the IPGE-rich and PPGE-rich massive sulfide zones has a higher R factor (~400) than that for the unfractionated massive sulfide mineralization. Except one sample which has unusually high IPGE and PPGE contents, all other samples from the Cu-rich sulfide veins in the footwall of the intrusion are highly depleted in IPGE and enriched in PPGE. These signatures are generally consistent with highly fractionated sulfide liquids expelled from crystallizing sulfide liquid. Collectively, our data suggest that at least four primary sulfide liquids with different R factors (<100, 200–300, ~400) were involved in the formation of the Eagle magmatic sulfide deposit. We envision that the immiscible sulfide liquids were transported from depth by multiple pulses of magma passing through the Eagle conduit system. The sulfide liquids were deposited in the widened part of the conduit system due to the decreasing velocity of magma flow. The presence of abundant olivine in some of the sulfide ore zones indicates that the ascending magma also carried olivine crystals. Sulfide saturation was attained in the parental magma due in large part to the assimilation of country rock sulfur at depth.  相似文献   

8.
The Agnew–Wiluna greenstone belt in the Yilgarn Craton of Western Australia is the most nickel-sulfide-endowed komatiite belt in the world. The Agnew–Wiluna greenstone belt contains two mineralised units/horizons that display very different volcanological and geochemical features. The Mt Keith unit comprises >500 m-thick spinifex-free adcumulate-textured lenses, which are flanked by laterally extensive orthocumulate-textured units. Spinifex texture is absent from this unit. Disseminated nickel sulfides, interstitial to former olivine crystals, are concentrated in the lensoidal areas. Massive sulfides are locally present along the base or margins of the lenses or channels. The Cliffs unit is locally >150 m thick and comprises a sequence of differentiated spinifex-textured flow units. The basal unit is the thickest, and contains basal massive nickel-sulfide mineralisation. The Mt Keith and Cliffs units display important common features: (i) MgO contents of 25–30% in inferred parental magmas; and (ii) Al/Ti ratios of ~20 (Munro-type). However, the Mt Keith unit is highly crustally contaminated (e.g. LREE-enriched, high HFSEs), whereas the Cliffs unit does not display evidence of significant crustal assimilation. We argue that the distinct trace-element concentrations and profiles of the two komatiite units reflect their different emplacement style and country rocks: the Mt Keith unit is interpreted to have been emplaced as an intrusive sill into dacitic volcanic units whereas the Cliffs unit was extruded as lava flow onto tholeiitic basalts in a subaqueous environment. The mode of emplacement and nature of country rock is the single biggest factor in controlling mineralisation styles in komatiites. On the other hand, evidence of crustal contamination does not necessarily provide information of the prospectivity of komatiites to host Ni–Cu–(PGE) mineralisation, despite being a good proxy for the style of komatiite emplacement and the nature of country rocks.  相似文献   

9.
《Ore Geology Reviews》2003,22(1-2):61-90
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 °C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background.  相似文献   

10.
The West Jordan nickel deposit, in the northern Agnew–Wiluna greenstone belt of Western Australia, is a newly-discovered Type 2 dunite-hosted, low-grade, large tonnage, disseminated sulphide system. Located in the core of a large dunite body, mineralisation is dominated by intercumulus sulphide blebs (20 μm to 6 mm across) in assemblages containing pentlandite, pyrrhotite, heazlewoodite and locally, native nickel, sphalerite and chalcocite. Mineralisation grades between 0.2 and 2 wt.% Ni, with the majority of samples in the 0.35–0.7% Ni range, were consistent with most komatiitic Type 2 systems. Hypogene alteration of the ultramafic host rock is interpreted to have been effected by retrograde metamorphic fluids, and has resulted in extensive serpentinisation and localised, structurally-controlled, talc-magnesite alteration. This gangue alteration has resulted in modification of original magmatic sulphide assemblages, and localised remobilisation of the minor Cu and Zn components of the magmatic sulphides. The deposit is deeply weathered, and all samples utilised in this study were obtained from a series of 12 diamond drill holes which were comprehensively assayed. An igneous stratigraphy is presented which is interpreted to be west-younging, consistent with along-strike deposits to the south, such as the Mount Keith and Yakabindie Type 2 nickel deposits.  相似文献   

11.
The Talvivaara deposit contains 1550 Mt of ore averaging 0.22% Ni, 0.13% Cu, 0.49% Zn and 0.02% Co. The precursors of the host rocks were deposited 2.1–1.9 Ga ago in a stratified marine basin. Fractured talc-carbonate rocks delineate the eastern border of the deposit and serpentinites and talc-carbonate rocks occur along the rift-related sequence to the north and south of Talvivaara. Characteristic features are high concentrations of organic carbon and sulphur with median values of 7.6% and 8.2%, respectively. Organic carbon is graphitic at present and a variety of sulphide textures occur, representing multiphase evolution during diagenesis, tectonic deformation and medium-grade regional metamorphism. The main sulphides of the Talvivaara ore are pyrrhotite, pyrite, sphalerite, chalcopyrite and pentlandite. Sulphides occur both as fine-grained disseminations and coarse grains or aggregates. Chalcopyrite mainly occurs in joint surfaces and quartz-sulphide veins and pentlandite occur as inclusions in pyrrhotite. Alabandite (MnS) occurs in black shales and black metacarbonate rocks. The early low-T sulphide minerals were overprinted by later stage processes. No framboidal pyrite is any longer present, but spheroidal pyrite with a grain size of < 0.01 mm and containing up to 0.7% Ni occurs. During the deposition of the organic-rich mud the anoxic/euxinic bottom waters were enriched in Ni+, Cu+ and Zn2 +. Sulphur isotope δ34S values indicate mixing of sulphur derived from different processes or fractionation by sulphate reduction in a restricted basin. Both thermochemical and bacterial sulphate reductions were important for the generation of reduced sulphur.  相似文献   

12.
Concentrations of platinum group elements (PGE), Ag, As, Au, Bi, Cd, Co, Mo, Pb, Re, Sb, Se, Sn, Te, and Zn, have been determined in base metal sulfide (BMS) minerals from the western branch (402 Trough orebodies) of the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada. The sulfide assemblage is dominated by pyrrhotite, with minor pentlandite, chalcopyrite, and pyrite, and they represent monosulfide solid solution (MSS) cumulates. The aim of this study was to establish the distribution of the PGE among the BMS and platinum group minerals (PGM) in order to understand better the petrogenesis of the deposit. Mass balance calculations show that the BMS host all of the Co and Se, a significant proportion (40–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb, and Te. Osmium and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (∼1 ppm) are concentrated in pentlandite. Silver, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Selenium is present in equal proportions in all three BMS. Iridium, Rh, and Pt are present in euhedrally zoned PGE sulfarsenides, which comprise irarsite (IrAsS), hollingworthite (RhAsS), PGE-Ni-rich cobaltite (CoAsS), and subordinate sperrylite (PtAs2), all of which are hosted predominantly in pyrrhotite and pentlandite. Silver, Au, Bi, Mo, Pb, Re, Sb, and Te are found predominantly in discrete accessory minerals such as electrum (Au–Ag alloy), hessite (Ag2Te), michenerite (PdBiTe), and rhenium sulfides. The enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te, and Zn in chalcopyrite can be explained by fractional crystallization of MSS from a sulfide liquid followed by exsolution of the sulfides. The early crystallization of the PGE sulfarsenides from the sulfide melt depleted the MSS in Ir and Rh. The bulk of Pd in pentlandite cannot be explained by sulfide fractionation alone because Pd should have partitioned into the residual Cu-rich liquid and be in chalcopyrite or in PGM around chalcopyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during its exsolution from MSS. The source of Pd was from the small quantity of Pd that partitioned originally into the MSS and a larger quantity of Pd in the nearby Cu-rich portion (intermediate solid solution and/or Pd-bearing PGM). The source of Pd became depleted during the diffusion process, thus later-forming pentlandite (rims of coarse-granular, veinlets, and exsolution flames) contains less Pd than early-forming pentlandite (cores of coarse-granular).  相似文献   

13.
Magmatic PGE and Ni–Cu deposits form in contrasting geologic environments and periods. PGE deposits predominantly occur in large layered intrusions emplaced during the late Archean and early Proterozoic into stabilized, relatively S-poor cratonic lithosphere that provides enhanced preservation potential. The magmas ascend through intracratonic sutures where extension and rifting is limited. Crystallization under conditions of low regional stress, with limited magma-induced sagging due to underlying thick buoyant sub-continental mantle lithosphere, is consistent with their laterally continuous layering. Most of the global resources occur in three large intrusions: Bushveld, Great Dyke and Stillwater. Due to the large size (tens of kilometres) and limited complexity of the deposits, they are relatively easy to locate and delineate. As a result, the search space is relatively mature and few new discoveries have been made in the last few decades. The parental magmas to the intrusions are predominantly derived from the convecting mantle but, in addition, the involvement of the sub-continental lithospheric mantle is suggested by the relative Pt enrichment of most of the major deposits. In contrast to the PGE deposits, Ni–Cu deposits form throughout geologic time, but with the largest deposits being younger than ca. 2 Ga. The sulfide ores are concentrated under highly dynamic conditions within lava channels and magma conduits. The deposits are preferentially located near craton margins towards which mantle plumes have been channelled and where mantle magmas can readily ascend through abundant trans-lithospheric structures. Magma flow is focused and locally enhanced by shifting compressive–extensional tectonic regimes, and abundant S-rich crustal rocks provide an external S source that is required for the majority of deposits. The igneous bodies hosting the deposits tend to be irregular and small, tens to hundreds of metres in width and height, and are difficult to locate. As a result, the search space remains relatively immature. Understanding their tectonic setting helps reduce the prospective search space for world-class examples.  相似文献   

14.
The gold deposits at Kalgoorlie in the 2.7-Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, occur adjacent to the D2 Golden Mile Fault over a strike of 8 km within a district-scale zone marked by porphyry dykes and chloritic alteration. The late Golden Pike Fault separates the older (D2) shear zone system of the Golden Mile (1,500 t Au) in the southeast from the younger (D4) quartz vein stockworks at Mt Charlotte (126 t Au) in the northwest. Both deposits occur in the Golden Mile Dolerite sill and display inner sericite–ankerite alteration and early-stage gold–pyrite mineralization replacing the wall rocks. Late-stage tellurides account for 20 % of the total gold in the first, but for <1 % in the second deposit. In the Golden Mile, the main telluride assemblage is coloradoite?+?native gold (898–972 fine)?+?calaverite?+?petzite?±?krennerite. Telluride-rich ore (>30 g/t Au) is characterized by Au/Ag?=?2.54 and As/Sb?=?2.6–30, the latter ratio caused by arsenical pyrite. Golden Mile-type D2 lodes occur northwest of the Golden Pike Fault, but the Hidden Secret orebody, the only telluride bonanza mined (10,815 t at 44 g/t Au), was unusually rich in silver (Au/Ag?=?0.12–0.35) due to abundant hessite. We describe another array of silver-rich D2 shear zones which are part of the Golden Mile Fault exposed on the Mt Charlotte mine 22 level. They are filled with crack-seal and pinch-and-swell quartz–carbonate veins and are surrounded by early-stage pyrite?+?pyrrhotite disseminated in a sericite–ankerite zone more than 6 m wide. Gold grade (0.5–0.8 g/t) varies little across the zone, but Au/Ag (0.37–2.40) and As/Sb (1.54–13.9) increase away from the veins. Late-stage telluride mineralization (23 g/t Au) sampled in one vein has a much lower Au/Ag (0.13) and As/Sb (0.48) and comprises scheelite, pyrite, native gold (830–854 fine), hessite, and minor pyrrhotite, altaite, bournonite, and boulangerite. Assuming 250–300 °C, gold–hessite compositions indicate a fluid log f Te2 of ?11.5 to ?10, values well below the stability of calaverite. The absence of calaverite and the dominance of hessite in the D2 lodes of the Mt Charlotte area point to a kilometer-scale mineral and Au/Ag zonation along the Golden Mile master fault, which is attributed to a lateral decrease in peak tellurium fugacity of the late-stage hydrothermal fluid. The As/Sb ratio may be similarly zoned to lower values at the periphery. The D4 gold–quartz veins constituting the Mt Charlotte orebodies represent a younger hydrothermal system, which did not contribute to metal zonation in the older one.  相似文献   

15.
The Kalatongke (also spelt as Karatungk) Ni–Cu–(platinum-group element, PGE) sulfide deposit, containing 33 Mt sulfide ore with a grade of 0.8 wt.% Ni and 1.3 wt.% Cu, is located in the Eastern Junggar terrane, Northern Xinjiang, NW China. The largest sulfide ore body, which occupies more than 50 vol.% of the intrusion Y1, is dominantly comprised of disseminated sulfide with a massive sulfide inner zone. Economic disseminated sulfides also occur at the base of the intrusions Y2 and Y3. The main host rock types are norite in the lower part and diorite in the upper part of each intrusion. Enrichment in large ion lithophile elements and depletion in heavy rare earth elements relative to mid-ocean ridge basalt indicate that the mafic intrusions were produced from magmas derived from a metasomatized garnet lherzolite mantle. The average grades of the disseminated ores are 0.6 wt.% Ni and 1.1 wt.% Cu, whereas those of the massive ores are 2 wt.% Ni and 8 wt.% Cu. The PGE contents of the disseminated ores (14–69 ppb Pt and 78–162 ppb Pd) are lower than those of the massive ores (120–505 ppb Pt and 30–827 ppb Pd). However, on the basis of 100% sulfide, PGE contents of the massive sulfides are lower than those of the disseminated sulfides. Very high Cu/Pd ratios (>4.5 × 104) indicate that the Kalatongke sulfides segregated from PGE-depleted magma produced by prior sulfide saturation and separation. A negative correlation between the Cu/Pd ratio and the Pd content in 100% sulfide indicates that the PGE content of the sulfide is controlled by both the PGE concentrations in the parental silicate magma and the ratio of the amount of silicate to sulfide magma. The negative correlations between Ir and Pd indicate that the massive sulfides experienced fractionation.  相似文献   

16.
The Konkola deposit is a high grade stratiform Cu–Co ore deposit in the Central African Copperbelt in Zambia. Economic mineralisation is confined to the Ore Shale formation, part of the Neoproterozoic metasedimentary rocks of the Katanga Supergroup. Petrographic study reveals that the copper–cobalt ore minerals are disseminated within the host rock, sometimes concentrated along bedding planes, often associated with dolomitic bands or clustered in cemented lenses and in layer-parallel and irregular veins. The hypogene sulphide mineralogy consists predominantly of chalcopyrite, bornite and chalcocite. Based upon relationships with metamorphic biotite, vein sulphides and most of the sulphides in cemented lenses were precipitated during or after biotite zone greenschist facies metamorphism. New δ34S values of sulphides from the Konkola deposit are presented. The sulphur isotope values range from −8.7‰ to +1.4‰ V-CDT for chalcopyrite from all mineralising phases and from −4.4‰ to +2.0‰ V-CDT for secondary chalcocite. Similarities in δ34S for sulphides from different vein generations, earlier sulphides and secondary chalcocite can be explained by (re)mobilisation of S from earlier formed sulphide phases, an interpretation strongly supported by the petrographic evidence. Deep supergene enrichment and leaching occurs up to a km in depth, predominantly in the form of secondary chalcocite, goethite and malachite and is often associated with zones of high permeability. Detailed distribution maps of total copper and total cobalt contents of the Ore Shale formation show a close relationship between structural features and higher copper and lower cobalt contents, relative to other areas of the mine. Structural features include the Kirilabombwe anticline and fault zones along the axial plane and two fault zones in the southern limb of the anticline. Cobalt and copper behave differently in relation to these structural features. These structures are interpreted to have played a significant role in (re)mobilisation and concentration of the metals, in agreement with observations made elsewhere in the Zambian Copperbelt.  相似文献   

17.
We report new data on the stratigraphy, mineralogy and geochemistry of the rocks and ores of the Maslovsky Pt–Cu–Ni sulfide deposit which is thought to be the southwestern extension of the Noril’sk 1 intrusion. Variations in the Ta/Nb ratio of the gabbro-dolerites hosting the sulfide mineralization and the compositions of their pyroxene and olivine indicate that these rocks were produced by two discrete magmatic pulses, which gave rise to the Northern and Southern Maslovsky intrusions that together host the Maslovsky deposit. The Northern intrusion is located inside the Tungusska sandstones and basalt of the Ivakinsky Formation. The Southern intrusion cuts through all of the lower units of the Siberian Trap tuff-lavas, including the Lower Nadezhdinsky Formation; demonstrating that the ore-bearing intrusions of the Noril’sk Complex post-date that unit. Rocks in both intrusions have low TiO2 and elevated MgO contents (average mean TiO2 <1 and MgO?=?12?wt.%) that are more primitive than the lavas of the Upper Formations of the Siberian Traps which suggests that the ore-bearing intrusions result from a separate magmatic event. Unusually high concentrations of both HREE (Dy+Yb+Er+Lu) and Y (up to 1.2 and 2.1?ppm, respectively) occur in olivines (Fo79.5 and 0.25% NiO) from picritic and taxitic gabbro-dolerites with disseminated sulfide mineralization. Thus accumulation of HREE, Y and Ni in the melts is correlated with the mineral potential of the intrusions. The TiO2 concentration in pyroxene has a strong negative correlation with the Mg# of both host mineral and Mg# of host rock. Sulfides from the Northern Maslovsky intrusion are predominantly chalcopyrite–pyrrhotite–pentlandite with subordinate and minor amounts of cubanite, bornite and millerite and a diverse assemblage of rare precious metal minerals including native metals (Au, Ag and Pd), Sn–Pd–Pt–Bi–Pb compounds and Fe–Pt alloys. Sulfides from the Southern Maslovsky intrusion have δ 34S?=?5–6‰ up to 10.8‰ in two samples whereas the country rock basalt have δ 34S?=?3–4‰, implying there was no in situ assimilation of surrounding rocks by magmas.  相似文献   

18.
In the Neoarchean (~ 2.7 Ga) contact metamorphosed charnockitic footwall of the Mesoproterosoic (1.1 Ga) South Kawishiwi intrusion of the Duluth Complex, the primary metamorphic mineral assemblage and Cu–Ni–PGE sulfide mineralization is overprinted by an actinolite + chlorite + cummingtonite + prehnite + pumpellyite + quartz + calcite hydrothermal mineral assemblage along 2–3 cm thick veins. In calcite, hosted by the hydrothermal alteration zones and in a single recrystallized quartz porphyroblast, four different fluid inclusion assemblages are documented; the composition of these fluid inclusions provide p–T conditions of the fluid flow, and helps to define the origin of the fluids and evaluate their role in the remobilization and reprecipitation of the primary metamorphic sulfide assemblage.Pure CO2 fluid inclusions were found as early inclusions in recrystallized quartz porphyroblast. These inclusions may have been trapped during the recrystallization of the quartz during the contact metamorphism of the footwall charnockite in the footwall of the SKI. The estimated trapping pressure (1.6–2.0 kbar) and temperature (810–920 °C) conditions correspond to estimates based on felsic veins in the basal zones of the South Kawishiwi intrusion.Fluid inclusion assemblages with CO2–H2O–NaCl and CH4–N2–H2O–NaCl compositions found in this study along healed microfractures in the recrystallized quartz porphyroblast establish the heterogeneous state of the fluids during entrapment. The estimated trapping pressure and temperature conditions (240–650 bar and 120–150 °C for CO2–H2O–NaCl inclusions and 315–360 bar and 145–165 °C for CH4–N2–H2O–NaCl inclusions) are significantly lower than the p–T conditions (> 700 °C and 1.6–2 kbar) during the contact metamorphism, indicating that this fluid flow might not be related to the cooling of the Duluth Complex and its contact aureole. The presence of chalcopyrite inclusions in these fluid inclusions and in the trails of these fluid inclusion assemblages confirms that at least on local scale these fluids played a role in base metal remobilization. No evidences have been observed for PGE remobilization and transport in the samples. The source of the carbonic phase in the carbonic assemblages (CO2; CH4) could be the graphite, present in the metasedimentary hornfelsed inclusions in the basal zones of the South Kawishiwi intrusion.The hydrothermal veins in the charnockite can be characterized by an actinolite + cummingtonite + chlorite + prehnite + pumpellyite + calcite (I–II) + quartz mineral assemblage. Chlorite thermometry yields temperatures around 276–308 °C during the earliest phase of the fluid flow. In the late calcite (II) phase, high salinity (21.6–28.8 NaCl + CaCl2 equiv. wt.%), low temperature (90–160 °C), primary aqueous inclusions were found. Chalcopyrite (± sphalerite ± millerite), replacing and intersecting the early hydrothermal phases, are associated to the late calcite (II) phase. The composition of the formational fluids in the Canadian Shield is comparable with the composition of the studied fluid inclusions. This suggests that the composition of the fluids did not change in the past 2 Ga and base metal remobilization by formational fluids could have taken place any time after the formation of the South Kawishiwi intrusion.Sulfur isotope studies carried out on the primary metamorphic (δ34S = 7.4–8.9‰) and the hydrothermal sulfide mineral assemblage (δ34S = 5.5–5.7‰) proves, that during the hydrothermal fluid flow the primary metamorphic ores were remobilized.  相似文献   

19.
20.
The Aitik Cu–Au–Ag deposit in the Gällivare area in northern Sweden is Sweden's largest sulphide mine with an annual production of 35 Mt of ore, and the biggest open pit operation in northern Europe. It is proposed in the present study that the Aitik deposit represents a Palaeoproterozoic, strongly metamorphosed porphyry copper deposit that was affected ca. 100 Ma later by a regional IOCG-type hydrothermal event. Consequently, the Aitik deposit might represent a mixed ore system where an early copper mineralisation of porphyry type has been overprinted by later regional IOCG mineralisation.Several attempts have previously been made to genetically classify the Aitik Cu–Au–Ag deposit as a distinct ore type. New geochemical, petrographic, structural, and fluid inclusion results combined with published data have provided the opportunity to present new ideas on the genesis and evolution of the Aitik Cu–Au–Ag deposit. The emplacement of a ca. 1.9 Ga quartz monzodiorite that host the ore at Aitik was related to subduction processes and volcanic arc formation, and synchronous with quartz vein stockwork formation and porphyry copper mineralisation. Highly saline aqueous (38 wt.% NaCl) fluid inclusions in the stockwork veins suggest entrapment at 300 °C and a pressure of nearly 3 kbar, a high pressure for a typical porphyry copper ore, but consistent with conditions at associated deep root zones of intrusion-related magmatic–hydrothermal systems. The highly saline fluid formed disseminated and vein-type ore of mainly chalcopyrite and pyrite within comagmatic volcaniclastic rocks, and caused potassic alteration (biotite, microcline) of the host rocks. The early porphyry copper mineralising event was followed, and largely overprinted, by CO2 and aqueous medium- to high-salinity (16–57 wt.% salts) fluids related to a ca. 1.8 Ga tectonic and metamorphic event (peak conditions 500–600 °C and 4–5 kbar). Extensive deformation of rocks and redistribution of metals occurred. Magnetite enrichment locally found within late veins, and late amphibole–scapolite and K feldspar alterations within the deposit, are some of the features at Aitik implying that aqueous fluids responsible for IOCG-mineralisation (200–500 °C and ~ 1 kbar) and extensive Na–Ca alteration in the region during the 1.8 Ga tectonic event also affected the Aitik rocks, possibly leading to addition of copper ± gold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号