首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全球闪电活动与气候变化   总被引:5,自引:0,他引:5  
郄秀书 《干旱气象》2003,21(3):69-73
全球闪电活动与气候变化关系的研究正受到越来越多的重视,该文从卫星上观测到的全球闪电活动、闪电活动和全球电路对温度的响应,闪电和对流层上部水汽的联系,闪电和N0,等几方面进行了阐述,指出了闪电活动在气候变化研究中的重要性。同时,文中还对影响闪电活动和起电过程的热力动力作用以及气溶胶的作用等进行了分析。  相似文献   

2.
闪电活动的气候学特征研究进展   总被引:8,自引:1,他引:7  
综述了闪电活动与气候和气候变化相关研究的一系列最新进展。这些研究表明全球闪电活动可以通过卫星光学方法、地面的单站舒曼共振法以及低频多站时差法进行观测,其结果指出全球闪电密度高值区主要分布在海岸地区、山地地区、中尺度气旋多发地区以及热带辐合带的辐合区内,大陆、海岛、沿海地区所发生的闪电占全球的88%,全球3个闪电密度极大值依次出现在赤道地区的非洲刚果、南美洲大陆和东南亚。大量的研究结果表明全球闪电活动是与气候和气候变化相关的,在日、5 d、季、半年、年、ENSO、10 a多个时间尺度上,闪电活动对温度做出了一定的正响应,但在更长时间尺度上这种敏感性似乎是减弱的。闪电活动因易于被持续监测而可以作为监测气候一些重要参数变化的有利工具。闪电活动是氮氧化物(NOx)的重要产生源,这与臭氧等温室气体以及地球辐射之间存在密切关系。在短时间尺度上,对流层上层水汽和全球闪电活动之间存在非常好的相关性。气溶胶对雷暴以及闪电活动的影响还不明确。气候变化与雷暴和闪电活动之间的相互耦合机制还有待于更多的观测和深入的研究。  相似文献   

3.
Review on Climate Characteristics of Lightning Activity   总被引:1,自引:0,他引:1       下载免费PDF全文
Latest research results on the correlation between lightning activity and climate and climate change are reviewed. The results indicate that global lightning can be measured by using satellite optical sensor, Schumann resonances, and the time-of-arrival (TOA) techniques at very low frequency. It is observed that high lightning density areas mainly lie in seaboards, mountains, high frequency mesoscale cyclone areas, and convergent regions such as the intertropical convergence zone. Eighty-eight percent of global lightning discharges occurs in continent island and seaboard areas. The three regions hit most frequently by lightning are Congo in equatorial Africa, South America, and South and Southeast Asia. A lot of studies reveal that the global lightning activity is directly related to the earth's climate and climate change. The global lightning activity responds positively to temperature changes on many time scales, such as diurnal, pentad, intraseasonal, semiannual, annual, ENSO, and decadal time scales. However, the sensitivity of lightning to temperature changes appears to diminish at longer time scales. Since lightning can be monitored easily and continuously, it becomes a useful and important parameter for monitoring climate change. The lightning discharge is a significant producing source of nitrogen oxides (NOx) in the atmosphere, which is closely associated with ozone production and the earth's radiation balance. There exists a robust positive correlation between lightning activity and upper tropospheric water vapor on short time scales. The effect of aerosol on thunderstorm and lightning is uncertain. More observations and investigations are needed to identify the coupling mechanism between lightning and climate change.  相似文献   

4.
The global electrical circuit, which maintains a potential of about 280 kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30–35 km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ± 1.25 A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical − CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.  相似文献   

5.
Variability of global lightning activity on the ENSO time scale   总被引:2,自引:0,他引:2  
Global lightning activity has been studied on the ENSO (El Niño Southern Oscillation) time scale based on recordings of the Earth's Schumann resonances at Nagycenk (NCK), Hungary as well as observations from the OTD (Optical Transient Detector) and the LIS (Lightning Imaging Sensor) satellites in space. Both the intensity and position of lightning activity vary on the ENSO time scale. The magnitude of the global variation in lightning flash rate is ~10% from La Niña to El Niño. In general, more lightning is observed in the tropical–extratropical land regions during warm, El Niño episodes, especially in Southeast Asia. Although oceanic lightning activity is a minor contributor to global lightning, an opposite behavior is observed in the Pacific and other oceanic regions. More lightning is present during cold, La Niña conditions than during the warm, El Niño episodes. The annual distribution of global lightning is slightly offset from the equator into the Northern Hemisphere due to the north–south asymmetry of the land/ocean area ratio. Schumann resonance intensity variations suggest a southward (equator-ward) shift and satellite observations support this and show in addition an eastward shift in the global position during warm, El Niño episodes. The greatest lightning contrast between warm El Niño and cold La Niña episodes has been identified at the latitudes of descending dry air in the Hadley circulation.  相似文献   

6.
Research topics on the global electrical circuit are addressed that have received attention in recent years. These topics include the diurnal variation of the global circuit, surface measurements of electric field at high latitude, the annual variation, the semiannual variation, the role of lightning as a source for the global circuit, the electrical contribution of mesoscale convective systems, the possible effect of thunderstorms on the E and F regions of the ionosphere, the evidence for a global circuit impact from nuclear weapons tests, the controversy over long-term variations, the response to climate change, and finally the impact of the global circuit on climate.  相似文献   

7.
本文简要介绍了雷暴在全球电路中的作用,并通过太阳活动对全球大气电参量的调制过程,从雷暴着手讨论了太阳活动与天气之间的可能耦合机制,提出了进一步研究的设想。  相似文献   

8.
Summary The influence of thunderstorms on the atmospheric radio noise field strength (ARNFS) over Kalyani (West Bengal) at 27 kHz has been analyzed over a two-year period. The results show that the median noise level decreases during the winter and reaches a maximum during the monsoon months. A comparison of the seasonal occurrence of thunderstorm-days with ARNFS indicates that both of them have similar trend over time. However, the trend is more pronounced during daytime, indicating relationship between solar activity, thunderstorms and ARNFS. In this paper, we have attempted to investigate how tropical thunderstorm and lightning activity might be responsible for the solar modulation of atmospheric electrification. The influence of ionizing radiation on the electrical global circuit of the atmosphere is also critically analyzed.With 7 Figures  相似文献   

9.
 The variability of near surface temperature on global and regional spatial scales and interannual time scales from a 1000 year control integration of the Hadley Centre coupled model (HADCM2-CTL) are compared with the observational record of surface temperature. The model succeeds in reproducing the observed patterns of natural variability, with high variability over the northern continents and low variability over much of the tropics. The model global mean variability has similar strength to observed global mean variability on time scales less than 20 years. The warming seen in the historical record is outside the range of natural variability as simulated in HADCM2-CTL. The model has El-Ni?o/Southern Oscillation (ENSO)-like behaviour with a central Pacific, peak to peak, strength of approximately 3 K. Changes in near surface temperature in the central Pacific are strongly correlated with changes in near surface temperature over most of the tropics, large regions of the extra-tropics and changes in tropical ocean upper 250 m heat content. Tropospheric temperature changes and tropical surface pressure changes are also strongly correlated with changes in the central Pacific surface temperature. Oceanic regions show significant departures from an AR1 or first order Markov behaviour in the Northwest Atlantic, Northwest Pacific and Arctic oceans. The Northwest Atlantic region has large amounts of variability over periods greater than 50 years. This variability is associated with a jump in the strength of North Atlantic meridional stream function. The spectra of the Western European and Continental US land regions are not significantly different from an AR1 process. The flow through the Drake Passage has an interannual standard deviation of approximately 2.5 Sv with significant departures from an AR1 process at time scales greater than 40 years. Winter northern hemispheric 500 hPa geopotential height shows some evidence of multiple regimes but no year to year persistence of these regimes. Received: 31 January 1996/Accepted: 22 July 1996  相似文献   

10.
This work analyzes some physical and microphysical properties of Mesoscale Convective Systems (MCSs) and cloud-to-ground lightning. Satellite data from the GOES-10 infrared and NOAA-18 and TRMM microwave channels and lightning information from the Brazilian lightning detection network (BrasilDAT) were utilized for the period from 2007 to 2009. Based on an automatic MCSs detection method, 720 MCSs life cycles were identified during the period and in the region of study, with a lightning detection efficiency of over 90%. During the diurnal cycle, maximum electrical activity occurred close to the time of maximum convective cloud fraction (18 UTC), and 3 h after the maximum normalized area expansion rate. Diurnal cycles of both properties were modulated by diurnal heating, and thus could be used to monitor diurnal variability of lightning occurrence. The electrical activity was more intense for the widest (Pearson’s correlation of 0.96) and deeper (Pearson’s correlation of 0.84) clouds, which reached 390 km size and 17 km maximum cloud top height. Area growth during the initial phase of MCSs exerted a strong influence on their size and duration, and thus also showed a potential for defining the possibility of electrical activity during their life cycle. The average lightning life cycle exhibited a maximum close to MCSs maturation, while the maximum average lightning density occurred in the MCSs initial life cycle stage. The growth rate of electrical activity during the early stages can indicate the strength of convection and the possible duration of systems with lightning occurrence. Strong condensation processes and mass flux during the growth phase of the systems can provide favorable conditions for cloud electrification and lightning occurrence. A comparison of high microwave frequencies with lightning data showed a strong relationship of vertically integrated ice content and particle size with lightning occurrence, with Pearson's correlation of 0.86 and 0.96, respectively. The polarization difference in the 85 GHz channel showed that electrical activity increases linearly with polarization reduction, associated with a high value of Pearson's correlation coefficient (above 0.90). This suggests that regions with more intense electrical activity are predominantly located in areas with a high concentration of larger ice particles that are vertically oriented, due to the existence of intense updrafts and the electric field. These results demonstrate the potential use of thermodynamic, dynamic and microphysical characteristics for analyzing thunderstorms severity, and as additional information for nowcasting and monitoring electrical activity over large regions that lack ground-based lightning sensors.  相似文献   

11.
Since the global circuit is maintained by currents from thunderstorms and electrified clouds, which are controlled by temperature, we are investigating the use of ionospheric potential (VI) as a measure of the variation of global temperature. We report positive correlation between VI and global temperature obtained from three different data sets. VI is also positively correlated with an inferred global lightning/deep cloud index which is positively correlated with global temperature. Thus, there is a consistent picture of warmer temperatures leading to more deep convection and higher VI. Since a series of single VI soundings at any appropriate location may provide a globally representative measure of temperature variation in real time, it is suggested that routine monitoring of this parameter could provide considerable cost and operational advantages compared to current methodology involving observations at thousands of ground stations and satellite radiation measurements.  相似文献   

12.
赵鹏国  银燕  周筠珺  肖辉 《气象科学》2015,35(2):126-132
利用一维雷暴云起电放电模式,初步模拟了STEPS(夏季雷暴降水与闪电研究计划)一次雷暴个例的一些基本电学特性。模拟的电荷结构为:雷暴云上部为正电荷,下部为负电荷,即符合典型雷暴云的偶极性电场分布特征,放电层电场随时间变化规律呈锯齿状分布。在此基础上,对云底高度和温度垂直递减率进行了敏感性试验,研究这两种因子对雷暴电过程的影响。结果表明:当云底高度降低时,放电高度升高,闪电频数增加,首次放电时间随之提前,即放电过程变强。温度垂直递减率增大,闪电频数降低,首次放电时间随之延后,正负电荷的分布范围减小。  相似文献   

13.
两级雷击电涌保护器配合的过电流和过电压变化特征   总被引:1,自引:0,他引:1  
通过对电气系统受两级雷击电涌保护器(surge protective divice,SPD)配合保护下的过电流和过电压变化特性的分析研究,建立过电压两级保护线路的瞬态Kirchhoff方程组,对各SPD、级间电缆(或解耦器)和负载的端电压、电流进行模拟计算,绘制时序波形图,获得两级SPD(首级为火花间隙、次级为压敏电阻)配合保护下的雷击过电流的分流特性和负载过电压变化特性,为雷击过电压过电流的多级保护提供理论分析方法,可供电气系统多级雷电防护工程设计参考。  相似文献   

14.
Intracloud (IC) and cloud-to-ground (CG) lightning flashes produce transient changes in the electric field (E) above a thundercloud which drive transient currents in the global electric circuit (GEC). Using in-cloud and above-cloud E data from balloons, ground-based E data, and Lightning Mapping Array data, the above-cloud charge transfers due to lightning transients are estimated for five IC and five CG flashes from four thunderstorms that occurred above the mountains in New Mexico, USA, in 1999. For the five CG flashes (which transferred − 4 to − 13 C to the ground), the transient currents moved + 1 to + 5 C of charge upward from cloudtop toward the ionosphere, with an average transient charge transfer of about 35% of the charge transferred to ground. For the five IC flashes (which neutralized 6 to 21 C inside the cloud), the transient currents moved − 0.7 to − 3 C upward, with an average transient charge transfer of about 12% of the lightning charge. Estimates for three thunderstorms indicate that the transient currents made only a small GEC contribution compared to the quasi-stationary Wilson currents because of the offsetting effects of IC and CG flashes in these storms. However, storms with extreme characteristics, such as high flash rates or predominance of one flash type, may make a significant GEC contribution via lightning transients.  相似文献   

15.
The lightning activity of convective systems is a sometimes fruitful indicator of their precipitation production. The present study compares rain volume with different types of lightning activity in several convective systems. The study uses data obtained in the Paris area where two lightning detection systems coexist. The Météorage network provides the location and the polarity of cloud-to-ground flashes, while the SAFIR system detects the total flash activity: cloud-to-ground, intra-cloud flashes and VHF individual sources within a given time window. The overall spatial correlation between rain and lightning appears to be very consistent for all lightning types. A pixel-to-pixel study shows that positive CG flashes are associated with higher rainwater volume than negative flashes. Introducing a weight coefficient for positive CG flashes considerably improves the correlation between rain amount and lightning production. Taking into account the specific contribution of each type of lightning flash, the amount of rain can be estimated from the total electrical activity of each system. Comparison with the amount derived from radar measurement shows reasonable agreement. Finally, the parallel time evolutions of rain and lightning rates display quite similar characteristics.  相似文献   

16.
基于Scott提出的土壤电参数等效模型和二维分形布朗运动粗糙地表模型,利用Cooray和Wait近似算法,研究了地表湿度引起的土壤电参数变化对雷电回击电磁场传播的影响.结果表明:土壤湿度的增加引起垂直电场和水平磁场的上升随时间减小,对峰值影响不太明显;土壤湿度对水平电场的影响很大,水平电场的峰值与湿度成反比.实际上,雷暴天气往往伴随降水,因此对雷电电磁辐射环境的研究应该考虑土壤湿度的影响.  相似文献   

17.
从空间探测闪电的综述   总被引:10,自引:0,他引:10  
陈洪滨  吕达仁 《气象学报》2001,59(3):377-383
从空间探测闪电 30多年的历史看 ,一些卫星闪电遥感仪器已提供了许多极有价值的资料 ,例如 ,闪电全球范围内发生的频率 ,其随纬度和季节的变化以及日变化 ,超级闪电的发生等等。这些资料在雷电灾害预警预防、强对流天气监测、某些军事目标的识别等业务和科研工作中得到了应用。本文是关于空间探测闪电的一个综述 ,主要介绍过去 35a一些星载闪电光学探测器 ,并给出由这些仪器观测资料分析所得到的一些重要结果。最后 ,对发展中国星载闪电探测器提出几点建议。  相似文献   

18.
Summary Lightning is more frequent in deep convective storms formed by conditional instability. It has been shown that conditional instability increases with the wet bulb potential temperature. The incidence of lightning in Gaborone, Botswana was monitored over a period of two years with a CGR3 flash counter. The data were compared with the measured wet bulb temperatures. The results indicate that the monthly lightning activity in Gaborone increases by an order of magnitude for every 2°C rise in wet bulb temperature. There is also evidence to show that, in general, the ratio of lightning incidence to rainfall is significantly reduced as the wet bulb temperature decreases. Periods of continuous rain over a few days were generally characterised by a fall in the wet bulb temperature with a corresponding decrease in lightning activity. In consistence, one such nine day period was observed where the lightning incidence was sustained right through when the wet bulb temperature did fall. However, there is some evidence to indicate that the relationship does not hold very well during unusual winter lightning activity.With 5 Figures  相似文献   

19.
Two British scientists, G.C. Simpson and C.T.R. Wilson, held contrasting views on the electrical polarity of thunderclouds for nearly half of the 20th century. Simpson's perspective was dominated by the measured charge on rain, by the breaking drop theory for the charging of raindrops, and later, by the branching behavior of lightning flashes. Wilson's view was dominated by his work on the field changes accompanying lightning, by his knowledge of the corona current from the ground beneath electrified clouds, and ultimately by his unifying global circuit hypothesis, requiring a source current to maintain a negatively charged Earth against dissipation. Simpson's observed tripole structure of thunderclouds provided partial resolution to the controversy, but the main positive dipole supported Wilson's view, which survives today.  相似文献   

20.
Colin Price   《Atmospheric Research》2009,91(2-4):479-484
With recent projections of a warmer climate in the future, one of the key questions is related to the impact of global warming on thunderstorms, and severe weather. Will lightning activity increase in a warmer world? Since the majority of global lightning activity occurs in the tropics, changes in future global lightning activity will depend on changes in the tropical climate. The latest IPCC [Intergovernmental Panel on Climate Change (IPCC). 2007] projections show a partial drying out of the tropical landmasses as the global climate gets warmer. This is caused by both changes in rainfall patterns, but also due to increases in evapo-transpiration. We would expect a drier climate to produce fewer thunderstorms, and less lightning. However, experimental and modeling studies have shown that as tropical regions dry in the present climate, they experience greater lightning activity. This paradox may be explained by noting that while drier climate conditions result in fewer thunderstorms and less rainfall, the thunderstorms that do occur are more explosive, resulting in more lightning activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号