首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Comptes Rendus Geoscience》2008,340(2-3):94-111
In Vietnam, the Triassic Indosinian collision affected coevally the Truong Son belt and the Kontum Massif,which were not independent tectonic units, but parts of the same Gondwana-derived Indochina continental block. This thermotectonic event took place synchronously throughout Vietnam, during the Lower Triassic 250–240-Ma time interval, as demonstrated by numerous geochronological data, combining Ar–Ar and U–Pb dating methods. Structural and kinematic investigations, in the Indosinian metamorphic rocks, reveal that the collisional process resulted from a consistent northwest-striking convergence of Indochina with respect to the adjacent blocks. It is suggested that this motion was taken up by a pair of opposite subduction zones: to the north, beneath South China, and to the west, beneath western Indochina, along the Song Ma and Po Ko sutures, respectively. Tectonic markers, calc-alkaline subduction-related volcanism and granitic intrusions and the generation of high-pressure rocks that have been recently discovered support this geodynamic setting, at least along Po Ko. Along the northwest-trending Song Ma zone, the obliquity of the convergence during subduction and subsequent collision resulted in the development, within the Truong Son Belt, of a set of subparallel dextral mylonitic shear zones, under amphibolite-facies metamorphism. The intermediate segments remained weakly metamorphic or even almost devoid of metamorphism. Along Po Ko, the convergence was near-orthogonal, with a left-lateral strike-slip component; the ongoing continental subduction resulted in the reworking of the Kontum granulitic basement and the development of Indosinian HP granulitic conditions; the subsequent extension-related exhumation operated approximately in the same northwestwards direction. This Indosinian evolution, applied on a continental crust that had been probably affected, as in South China, by a Caledonian-related event, as judged by the general unconformity of the Lower Devonian sediments, the widespread occurrence of magmatic crystallisation ages of ca 450 Ma (Ordovician-Silurian), and by the approximately similar age of the primary granulitic episode in the Kontum Massif. The similarities of the Devonian facies over central, northern Vietnam and South China imply a land connection, possibly as a consequence of a Caledonian collision along Song Ma, but this does not preclude a further oceanic opening and a closure during the Indosinian.  相似文献   

2.
The Paleotethyan evolution of the Southeast Asia has become better understood in recent years. Questions remain, however, over the role of the Dien Bien Phu Suture Zone in the evolution of the Indochina Block and whether the Song Ma Suture represents the boundary between the Indochina Block and the South China Block. Granitoid geochronological and geochemical data obtained in northern Laos provide new information vis-à-vis these arguments. Zircon U–Pb ages together with whole rock, trace and rare earth element data from 27 granitic rocks from five complexes allow us to conclude that these granites are typical of I-type Indosinian volcanic arc granites. However, the 234–256 Ma I-type granites mismatch the initiation age obtained from the ductile shear zone of the Dien Bien Phu Fault, thus repudiating the existence of the Dien Bien Phu Suture Zone. This then implies that the Qamdo–Simao and Indochina blocks were united. The geochemical and geochronological data further suggest that the main crust in the Indochina Block formed in the Late Paleoproterozoic to Early Mesoproterozoic, much later than the Archean crustal formation age identified east of the Song Ma Suture. Moreover, the 440–404 Ma and 234–256 Ma I-type granites suggest that the boundary between Indochina and South China should be the Jinsha River Suture–Song Ma Suture–Kontum Massif, instead of the Jinsha River Suture–Song Chay Suture. Finally, the Emeishan basalt and granite complexes both form part of the South China tectonic units subducting westward under the Qamdo–Simao and Indochina blocks.  相似文献   

3.
越南东北部早中生代构造事件的年代学约束   总被引:6,自引:3,他引:3  
越南东北部-海南岛-粤西南构造带整体上呈NW-SE走向展布于华南板块的南缘,是理解华南构造演化的关键地区.作为印支运动代表性地区的越南东北部地区Song Chay构造带上,下古生界浅变质沉积岩、上古生界至早-中三叠世未变质的沉积盖层中都发育向北东逆冲推覆,韧性变形域表现为NE-SW向的矿物拉伸线理和上部指NE的剪切变形,而脆性变形域则记录了大量NE极性的褶皱和冲断构造.两广交界的云开地体和海南岛地区存在着相同样式的构造变形.关于这期变形的时间,本文通过对野外地层以及所出露不同时期岩体变形特征的综合研究,并结合高质量的锆石U-Pb年代学数据,在越南的东北部厘定为237 ~ 228Ma.这期广泛分布于华南板块南缘构造事件的动力学机制同Day Nui Con Voi(大象山)微陆块与华南板块在早中生代的构造拼合事件相关.本文认为华南板块在早三叠世开始沿着越南东北部的Song Chay缝合带俯冲拼合于Day Nui Con Voi微陆块之下,因此在早-中三叠世时期,在作为俯冲盘的华南板块南缘发育一系列的褶皱和逆冲推覆构造,晚三叠世印支造山作用结束.因此,华南板块南缘的越南东北部-海南岛-粤西南构造带被一同卷入早-中三叠世同印支板块的碰撞造山体系之中.  相似文献   

4.
The Dulong-Song Chay tectonic dome lies on the border of China (SE Yunnan Province) and northern Vietnam, and consists of two tectonic and lithologic units: a core complex and a cover sequence, separated by an extensional detachment fault. These two units are overlain unconformably by Late Triassic strata. The core complex is composed of gneiss, schist and amphibolite. SHRIMP zircon U–Pb dating results for the orthogneiss yield an age of 799±10 Ma, which is considered to be the crystallization age of its igneous protolith formed in an arc-related environment. A granitic intrusion within the core complex occurred with an age of 436–402 Ma, which probably formed during partial closure of Paleotethys. Within the core complex, metamorphic grades change sharply from upper greenschist-low amphibolite facies in the core to low greenschist facies in the cover sequence. There are two arrays of foliation within the core complex, detachment fault and the cover sequence: S1 and S2. The pervasive S1 is the axial plane of intrafolial S0 folds. D1 deformation related to this foliation is characterized by extensional structures. The strata were structurally thinned or selectively removed along the detachment faults, indicating exhumation of the Dulong-Song Chay tectonic dome. The major extension occurred at 237 Ma, determined by SHRIMP zircon U–Pb and 39Ar/40Ar isotopic dating techniques. Regionally, simultaneous tectonic extension was associated with pre-Indosinian collision between the South China and Indochina Blocks. The S2 foliation appears as the axial plane of NW-striking S1 buckling folds formed during a compressional regime of D2. D2 is associated with collision between the South China and Indochina Blocks along the Jinshajiang-Ailao Shan suture zone, and represents the Indosinian deformation. The Dulong granites intruded the Dulong-Song Chay dome at 144±2, 140±2 and 116±10 Ma based on 39Ar/40Ar measurement on muscovite and biotite. The dome was later overprinted by a conjugate strike-slip fault and related thrust fault, which formed a vortex structure, contemporaneously with late Cenozoic sinistral movement on the Ailao Shan-Red River fault.  相似文献   

5.
《Comptes Rendus Geoscience》2008,340(2-3):112-126
Permo-Triassic intermediate–felsic magmatism is developed along the Truong Son fold belt, located in the eastern margin of the Indochina Block. It comprises a succession of the active continental margin associations: calc-alkaline volcano-plutonic associations (272–248 Ma), peraluminous granites (259–245 Ma), and subalkaline felsic volcano-plutonic associations (younger than 245 Ma). Detailed study of geochemical characteristics such as trace elements (LILE, REE, HFSE) and isotopes (Sr, Nd, Pb) indicates that they are homogeneous and that they are products of the Palaeotethys subduction process in relation to Indochina (IC)/North Vietnam–South China (NV–SC) amalgamation (S.L. Chung et al., Abstr., GEOSEA 98, Malaysia, 1998, pp. 17–19). The Indosinian characteristics are represented by mantle–crust interaction in magma generation, controlled by their emplacement localities in relation to the Kontum Uplift. The spatial and temporal evolution of Permo-Triassic magmatism allows reconstructing the geodynamic history of the Indosinian orogeny. It confirms that this event ended in Early to Middle Triassic (246–240 Ma, after C. Lepvrier et al., Tectonophysics 393 (2004) 87–118).  相似文献   

6.
A kinematic and geochronological study has been carried out on the Triassic high-strain shear zones in Hainan Island, the southern South China Block. There are WNW- and NE-trending high-strain shear zones with greenschist- to amphibolite-facies metamorphism in this island. Kinematic indicators suggest a dextral top-to-the-NNE thrust shearing for the WNW-trending high-strain shear zones and a sinistral top-to-the-SE thrust shearing for the NE-trending shear zones. The quartz c-axis orientations of mylonitic rocks exhibit the domination of basal slip and some activation of a rhombohedra gliding system. The timing of shearing for these shear zones has been constrained by the 40Ar/39Ar dating analyses of synkinematic minerals. Middle Triassic (242–250 Ma) and late Triassic–early Jurassic (190–230 Ma) have been identified for the WNW- and NE-trending shear zones, respectively. A synthesis of these kinematic and thermogeochronological data points to a two-stage tectonic model for Hainan Island, that is, top-to-the-NNE oblique thrusting at 240–250 Ma followed by top-to-the-SE oblique thrusting at 190–230 Ma. In combination with the available data from the southern South China and Indochina Blocks, it is inferred that South Hainan and North Hainan have affinity to the Indochina and South China Blocks, respectively. The tectonic boundary between South Hainan and North Hainan lies roughly along the WNW-trending Changjiang–Qionghai tectonic zone probably linking to the Song Ma and Ailaoshan zones. The middle Triassic structural pattern of Hainan Island is spatially and temporally compatible with those of the South China and Indochina Blocks, and thus might be a derivation from the amalgamation of the Indochina with South China Blocks in response to the closure of the Paleotethys Ocean and subsequent subduction/collision.  相似文献   

7.
作为理解华南构造演化的关键地区,在华南板块南缘的云开地体和越北的Song Chay地体发育了早中生代的向北东逆冲推覆的韧性变形.在云开地体,经历角闪岩相和绿片岩相变质的矿物指示了产状平缓的面理上发育明显的北东-南西向矿物拉伸线理.沿着这些矿物拉伸线理,具有上部指向北东的剪切变形.同位素年代学的定年结果指示了变形事件发生...  相似文献   

8.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   

9.
《Comptes Rendus Geoscience》2008,340(2-3):83-93
The underlying cause of Indosinian thermotectonism remains unclear, in part because the term has also been adopted to explain Triassic orogenesis across southern China. This paper puts forward the case that use of the term Indosinian should be confined to Vietnam where deformation is linked to continental accretion as opposed to southern China where Triassic igneous activity, metamorphism and deformation are linked to the development of an active plate margin through north-directed subduction of the Pacific oceanic plate. A review of the regional palaeogeography, as well as palaeontological and thermochronological data, highlights the lack of evidence to support the Indosinian as a major mountain building event. There is no definitive evidence for Triassic collision between the Indochina and South China blocks. Preference is given to a plate tectonic model that explains the Indosinian as a reactivation event driven by accretion of Sibumasu block to Indochina.  相似文献   

10.
The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan–Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at  32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at  27–29 Ma by the biotite 40Ar/39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but  10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28–36 Ma). During 28–17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.  相似文献   

11.
The Kontum massif in Central Vietnam represents the largest continuous exposure of crystalline basement of the Indochina craton. The central Kontum massif is chiefly made of orthopyroxene granulites (enderbite, charnockite) and associated rocks of the Kannack complex. Mineral assemblages and geothermobarometric studies have shown that the Kannack complex has severely metamorphosed under granulite facies corresponding to P–T conditions of 800–850°C and 8±1 kbars. Twenty-three SHRIMP II U–Pb analyses of eighteen zircon grains separated from a granulite sample of the Kannack complex yield ca 254 Ma, and one analysis gives ca 1400 Ma concordant age for a zoned zircon core. This result shows that granulites of the Kannack complex in the Kontum massif have formed from a high-grade granulite facies tectonothermal event of Indosinian age (Triassic). The cooling history and subsequent exhumation of the Kannack complex during Indosinian times ranged from ∼850°C at ca 254 Ma to ∼300°C at 242 Ma, with an average cooling rate of ∼45°C/Ma.  相似文献   

12.
Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245–230 Ma and 460–430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240–220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240–220 Ma. Mesoproterozoic ages (1530–1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure–temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician–Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian–Triassic and the Ordovician–Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U–Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician–Silurian volcanic arc magmatism in the region. Based on the pressure–temperature–time–protolith evolutions, metamorphic rocks from central Vietnam provide a continuous record of subduction–accretion–collision tectonics between the South China and Indochina blocks: in the Ordovician–Silurian, the region was characterized by active continental margin tectonics, followed by continental collision during the Late Permian to Early Triassic and subsequent exhumation during the Late Triassic. The results also suggest that the timing of metamorphism and protolith formation as well as the geochemical features in other Southeast Asian terranes should be verified to achieve a better understanding of the Precambrian to Early Mesozoic tectonic history in Asia.  相似文献   

13.
Volcanoplutonic complexes in NE Vietnam have recently been interpreted as intraplate products of the Emeishan plume. Alternatively, mafic–ultramafic rocks have been considered as dismembered Palaeotethyan ophiolites juxtaposed along a tectonic mélange zone. New U–Pb zircon geochronological and geochemical datasets presented here suggest a complex geological history that records collision between the Indochina–South China blocks. Mafic–ultramafic rocks exposed within a tectonic mélange (Song Hien Tectonic Zone) include sub-alkaline pillow basalts that define two geochemically distinct ophiolitic suites (SH-1: N-MORB-like, SH-2: transitional E-MORB-like). Both suites have geochemical signatures suggestive of crustal contamination, compatible with a volcanic passive margin/rift setting. We suggest that SH-1 basalts may correlate with the Devonian–Carboniferous Jinshajiang–Ailaoshan–Song Ma branch of the Palaeotethys and form part of the associated Dian–Qiong belt, whereas SH-2 basalts are co-magmatic with Middle–Late Permian mafic–ultramafic intrusive rocks (dolerites, gabbros, peridotites) that developed in a rift basin, most likely on the margin of the down-going South China plate during west-vergent subduction beneath Indochina. During continental orogenesis and thrust stacking, these ophiolitic rocks were juxtaposed with other lithotectonic blocks within the Song Hien Tectonic Zone. Post-collisional relaxation led to the development of a rift basin (Song Hien rift) comprising Late Permian–Triassic volcano-sedimentary strata including < 270–265 Ma terrigenous sandstones, < 252 Ma mudstones, and c. 254–248 Ma felsic effusives. Granites and granodiorites were emplaced across NE Vietnam between c. 252 and 245 Ma in a syn- to post-collisional setting. The Late Permian–Early Triassic felsic magmatic rocks best correlate with coeval rocks in SW Guangxi and the Central and Western Ailaoshan fold belts (China) and the Truong Son fold belt (Vietnam); together they signal the final to post-collisional stages of Indochina–South China collision. We demonstrate that the analysed magmatic rocks in the Lo-Gam–Song Hien domains of NE Vietnam are not genetically linked to the Emeishan Large Igneous Province in the Yangtze block of South China, as has been previously widely proposed.  相似文献   

14.
The Song Ma region, which is located in the northwestern Vietnam represents the zone of amalgamation between Indochina and South China blocks. Numerous scattered ultramafic rocks occur in this region in association with Early to Middle Palaeozoic greenschists and paragneisses, and all these rocks were subjected to hydrous metamorphism and deformation. Here, we present new field data, mineral chemistry and geochemistry from a suite of hydrated peridotites within the Song Ma region and discuss the tectonic significances of the region. We also combine the available data within the Song Ma region and Indochina–South China blocks to discuss the tectonic evolution of the subduction zone. Based on the results, we suggest that the peridotites from the Song Ma are mantle residues that suffered a high degree of partial melting in a forearc tectonic setting. The present data together with the available data within the Song Ma region and the Indochina and South China blocks clearly represent a southward directed Middle Palaeozoic subduction system. The Middle Palaeozoic subduction and accretion events mark the evolutionary history along an active convergent margin between the Indochina and South China blocks, possibly related to the amalgamation of the Pangaea supercontinent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
小秦岭金矿田位于华北克拉通南缘,同时也是秦岭复合型造山带的北缘组成部分。这里是我国第二大黄金产地,大规模金的成矿作用形成于早白垩世岩石圈大规模减薄的区域伸展构造背景。此外,越来越多的同位素年代学数据显示区内还存在三叠纪的成矿事件发育钼、铅、铀、铌等与岩浆热液活动密切相关的多金属矿床,主要分布在小秦岭的南北边缘。目前,对于三叠纪多金属成矿作用的构造背景研究尚属薄弱,还没有直接对有关的构造变形开展过专题研究。为此,我们对小秦岭金矿田东端边缘的构造带进行构造观察和测量,并采用~(40) Ar-~(39) Ar年代学方法厘定变形时限,揭示三叠纪成矿事件的构造背景,为深入认识区内三叠纪多金属成矿作用特征和规律提供构造证据。研究表明,小秦岭金矿田三叠纪成矿事件发生于晚三叠世的伸展构造背景,可以划分为两个阶段早期(221~216Ma)是在碰撞向后碰撞转折阶段的重力滑脱构造环境中,发育火成碳酸岩型钼铅、铀铌铅多金属矿床;晚期(214~203Ma)是在后碰撞阶段由俯冲板片断离或岩石圈拆沉作用等深部过程导致的区域伸展构造环境中,发育石英脉型和斑岩型钼矿床。小秦岭中生代晚三叠世和早白垩世两期成矿事件都是在伸展构造背景中的构造-岩浆-流体活动的产物。  相似文献   

16.
The Permo–Triassic collision of the North and South China blocks caused the development of the Dabie–Sulu Orogen in China and Songrim Orogen in the Korean Peninsula. Extension after this collision is known from the Dabie–Sulu Orogen, but post-orogenic extension is not well defined in the Korean Peninsula. Extensional deformation along the southern boundary of the Gyeonggi Massif in Korea is characterized by top–down-to-the-south ductile shearing and subsequent brittle normal faulting, and was predated by regional metamorphism and north-vergent contractional deformation. Extension occurred between ~220 and 185 Ma based on the ages of pre-extensional regional metamorphism and post-extensional pluton emplacement. 40Ar/39Ar dating of syn-extensional muscovite in quartz–mica mylonite yields an age of 187.8 ± 5.6 (2σ) Ma, in agreement with constraints from structural relationships. Together with the extensional deformation identified along the northern boundary of the Gyeonggi Massif (~226 Ma), the extension along the southern boundary is probably related to the exhumation of the massif during late-orogenic or post-orogenic extension associated with the Songrim Orogeny of the Korean Peninsula and forms an important event in the Phanerozoic crustal evolution of East Asia.  相似文献   

17.
New U–Pb and Rb–Sr geochronology on syn- and post-orogenic granites provide constraints on the timing of major tectonic events in the Songpan–Garzê fold belt, west Sichuan, China. The Ma Nai granite was probably syn-kinematic with the main deformation and yields an age of 197±6 Ma that is interpreted as an upper age limit of the Indosinian event. Zircons and apatites from the post-kinematic Rilonguan granite also yield Jurassic ages (195±6 and 181±4 Ma). The post-orogenic Markam massif gives two ages of 188±1 and 153±3 Ma. Both granites are undeformed and cut structures in the Triassic sedimentary rocks. These results demonstrate that the major deformation and décollement tectonics in the Songpan–Garzê fold belt occurred prior to the Early Jurassic. The wide range of ages obtained for post-kinematic granites (from Early Jurassic to Late Jurassic) suggests that, locally, magmatic activity persisted for a long time (at least 50 Ma) after the Indosinian compressional tectonism. No Tertiary ages have been obtained, suggesting that these granites were not affected strongly by the India–Asia collision.  相似文献   

18.
The Truong Son Fold Belt (TSFB) is characterised by Late Carboniferous-Late Triassic metamorphic, volcanic and plutonic rocks, the product of accretion of the Indochina Terrane onto the South China Terrane and a range of composite subduction, collision and extensional events. This study discusses geochronological and geochemical data obtained from a dioritic intrusion and rhyolitic tuff mapped in the Donken area of SE Laos, and previously assigned to the Permian Antoum Granodiorite rock suite within the TSFB. Magmatic zircon U-Pb Q-ICP-MS dating undertaken in this study suggests ages of ca 470 ± 2 Ma for the diorite and ca 476 ± 1.5 Ma for a proximal rhyolitic tuff.Whole-rock geochemistry of both units suggests a subduction-related island arc environment, with calc-alkaline and tholeiitic affinities for the diorite and tuff respectively. The intrusion also exhibits an adakitic signature (high Sr, low Y and HREE contents) suggesting that Ordovician magmatism also occurred within the Indochina Terrane, associated with an enigmatic, early Gondwana subduction event. This intrusion appears part of a broader, bilateral Early Ordovician magmatism, newly linked to the south-east subduction of the Tamky-Phuoc Son Ocean underneath the Kontum terrane, and a north-west subduction beneath the Truong Son terrane. Significantly, sub-economic hydrothermal Cu mineralisation observed within the dioritic intrusion, hints at the presence of local Ordovician, porphyry-style base metal enrichment.  相似文献   

19.
Fifteen new K–Ar ages in the range of 79–31 Ma are partially confirmed by three 40Ar/39Ar plateaus and isochron data of 64.9±0.4, 55.5±0.1 and 52.8±0.6 Ma. The new geochronological data reveal a much more detailed picture of the subduction imprint in the Hurd Peninsula. Using cutting relationships, the dyke emplacement history is divided into four episodes. The Late Cretaceous–Paleocene dykes in the range of 80–60 Ma are related to the main magmatism in Livingston Island and most likely reflect the final stages of subduction of the proto-Pacific oceanic crust. The Early Eocene dykes (56–52 Ma) fill the gap in volcanic activity 70–50 Ma ago. They are the only magmatic event manifested at this time in the region. The 45–42 Ma dykes may be related to the intrusion of the Barnard Point tonalite. Three samples of Oligocene age appear to represent the last igneous activities on the Hurd Peninsula prior to the opening of the Bransfield Strait.  相似文献   

20.
The Ogcheon metamorphic belt in central Korea has been interpreted to be the eastward extension of the Nanhua Basin (aulacogen) of southeast China. In this paper, comparisons are made between the two regions based on stratigraphic, thermal-tectonic and other considerations. From this comparison, correlation of geological events between the Nanhua Basin and Ogcheon metamorphic belt are at best equivocal. The closest similarity is the presence in both regions of two major diamictite units, of glacial origin and Neoproterozoic age (750–690 Ma range) in China but of controversial origin and uncertain age in Korea. Volcanic rocks in both regions appear to have similar petrological and geochemical traits and are interpreted to be rift-related. However, their ages are different, mostly 795–780 Ma in the Nanhua Basin and c. 750 Ma in central Korea, so correlation remains uncertain. More isotopic data from both regions may shed light on this comparison. Correlation between other pre-Carboniferous stratigraphic units in the two regions is hampered by the uncertainty about the stratigraphic age and succession in the Ogcheon metamorphic belt, stemming mainly from the absence of fossils and the strong tectonic–metamorphic overprint. Both regions appear to have undergone deformation and metamorphism during the Middle Triassic (Indosinian, Songrim), in some uncertain way related to the collision between the North and South China plates. In the Ogcheon metamorphic belt, there has been no confirmation of a Mid Palaeozoic event, but in the Nanhua Basin that event is recorded by stratigraphic and palaeogeographic evidence. In the Nanhua Basin, there is no evidence for an Early Permian metamorphic event that appears, on isotopic grounds, to have affected the Ogcheon metamorphic belt. This apparent difference has been interpreted as a result of diachronous deformation during Late Palaeozoic–Early Mesozoic plate collisions that took place earlier in the east, in Korea, than in the west in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号