首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用2013-2016年惠州市5个环保国控站的PM质量浓度和国家基本气象观测站的气象要素观测数据及NCEP/NCAR日平均再分析资料,统计分析了惠州市大气颗粒物质量浓度变化特征及其与气象条件的关系。结果表明:2013-2016年惠州市大气颗粒物质量浓度、污染日数和超标日数均呈明显下降趋势,2016年PM10年平均质量浓度已接近年平均质量浓度限值一级标准,PM2.5年平均质量浓度达到年平均质量浓度限值二级标准。大气颗粒物质量浓度冬季的最高、秋季的次之,非汛期的(10月次年3月)显著高于汛期的(4-9月)。PM2.5污染日均出现在非汛期,尤其是冬季的1和12月,大多出现在晴朗干燥的东北风天气下。分析惠州市20132016年间两次长时间大气颗粒物污染过程发现,这两次大气颗粒物污染过程出现在冷空气减弱、冷高压东移出海后或下一波冷空气来临前,但随着南下冷空气的到来,北风加大或带来明显降水,空气质量明显好转。  相似文献   

2.
利用地面气象观测资料、空气质量监测数据、NCEP FNL1°×1°再分析资料和风廓线雷达探测资料,对冷空气影响下2021年1月初佛山地区出现的一次短时污染天气过程进行分析。结果表明:冷锋前的偏北风对污染物起传输作用,冷锋后较强偏北风对污染物的清除作用显著。低空逆温层的厚度增加、高度的下降抑制垂直运动,致使污染物更容易累积在近地面层,加剧了污染形成;利用风廓线雷达分析本地风场,可以较为准确地判断逆温层的高度,并能发现逆温层出现时间比达到中等污染时间提早了约10 h;对低层风场的风向、风速进行研判能够预测污染物的移动,为下游提前预警提供指示作用。  相似文献   

3.
选取2016年12月17—22日青岛一次典型重污染天气,利用大气污染物监测结果、地面气象要素观测资料和欧洲中期天气预报中心(ECMWF)ERA5再分析数据对此次过程中大气污染物及气象场的变化特征进行分析。观测分析表明此次污染过程持续时间长达5 d以上,其中19—21日为重污染天气(PM 2.5 日均质量浓度ρ>150 μg·m-3)。根据气象场和PM2.5质量浓度变化特征,此次污染过程可分为3个阶段:17日02时—19日08时为青岛污染物累积阶段,研究区受西南风控制,PM2.5质量浓度逐渐上升,700 hPa等压面上高空槽的维持及槽前持续的南风、西南风有利于污染物累积,同时近地面相对湿度增加,是此次持续性重污染天气形成的重要条件;19日09时—20日20时为青岛污染维持加剧阶段,相对湿度大、风速很小,污染物扩散条件差,PM2.5质量浓度最高;20日21时—22日08时为青岛污染消散阶段,青岛对流层中下层及地面风速均增大并产生弱降水,有利于污染物扩散稀释和湿清除,PM2.5质量浓度逐渐降低。WRF-Chem数值模式能够较好地模拟出主要气象要素和青岛PM2.5 质量浓度的变化特征,模拟结果表明山东省内污染物排放贡献了青岛PM2.5的49.5%;污染物跨省输送对此次污染事件也有重要贡献,其中来自研究区以南的安徽和江苏的排放对青岛PM2.5的贡献率可达25.5%。  相似文献   

4.
利用常规高空和地面气象观测资料、湘潭市空气质量监测数据并结合HYSPLIT4后向轨迹模式对2020年10月28—31日污染天气特征及成因进行分析。结果表明此次污染过程分为3个阶段:第1阶段为北方偏二次型传输阶段,此阶段北风风力较大,在强北风的推动下华北地区污染物(PM2.5)向南传输影响湘潭;第2阶段为大气高湿静稳条件下本地源(工业源、移动源、扬尘源、生物质燃烧源)排放累积阶段,此阶段地面转均压场,整层大气湿度接近饱和并出现弱降水,气态污染物在污染过程中发生二次转化,颗粒物吸湿增长,且近地面出现逆温,不利于污染物的垂直扩散,导致边界层内的污染物不断累积,污染加重,推高了湘潭的PM2.5浓度峰值;第3阶段为污染物缓慢清除阶段,随着新一波冷空气影响湘潭地区,水平扩散条件逐步改善,且上游空气质量优良,本地污染物得到有利扩散,此次污染过程结束。  相似文献   

5.
北京2004年一次强沙尘暴过程的辐射特征研究   总被引:5,自引:1,他引:5  
利用2004年3月27~29 日北京沙尘暴期间观测的辐射、气象以及气溶胶质量浓度的资料,分析了该过程的地面辐射、气象要素以及气溶胶与辐射相互作用的变化特征.结果表明,沙尘暴期间紫外辐射的衰减与可见光辐射强度衰减规律不一致.紫外衰减主要受到细粒子浓度影响,同时紫外辐射占总辐射的比重与气溶胶中细粒子含量成负相关;而可见光辐射强度衰减与总辐射衰减同步.辐射变化和气溶胶质量浓度观测结果均表明,此次沙尘暴过程分为3个阶段,即,细粒子累积期、外地沙尘输入期和清除期.在沙尘暴期间地面一直维持一个低压、干冷的状态;当过程结束后,气压急剧增高,并在一段时间内处于高压控制之下.  相似文献   

6.
利用气象数据、环境空气质量监测数据及卫星遥感监测火点数据,对广西2020年2月的一次区域性大气污染过程成因进行分析.结果表明,气温上升、湿度增加、风速减小是本次污染过程的气象成因;污染期间CO与PM10和PM2.5同步上升,更多指向生物质燃烧源的贡献;卫星遥感监测火点及后向轨迹聚类分析显示,污染过程的发生受秸秆焚烧及林...  相似文献   

7.
利用德阳2014—2021年气象观测数据和大气颗粒污染物数据,分析了PM2.5和PM10浓度变化特征及其与气象要素相关性,并以2017年1月25—28日PM2.5污染过程为案例,开展了污染过程的气象条件和后向轨迹分析。结果表明:(1)2014—2021年德阳PM2.5和PM10浓度呈下降趋势,二者浓度的日最大值、最小值分别出现在11时、17时,月均浓度都表现出“夏低冬高”的特征。(2)德阳四季PM2.5和PM10日均浓度均与降水量及地面风速呈显著负相关关系,而与相对湿度、气温、气压的相关性则存在季节差异。(3)地面均压场、气压梯度小、风力微弱的静稳天气条件以及上游污染物的输入是导致此次重污染形成和加重的主要因素。  相似文献   

8.
利用多源观测资料综合分析了2015年11月沈阳地区一次PM2.5 重污染天气的气象条件、垂直风场演变、大气边界层特征以及污染物的来源。结果表明:本次重污染过程中,沈阳市区PM2.5浓度长达81h超过250μg · m^-3 ,其中峰值浓度达到1287μg · m^-3 ,重污染期间PM2.5 /PM10 的比例最高为90%。受地面倒槽和黄淮气旋影响,近地面层持续存在的逆温层、高相对湿度和弱偏北风为颗粒物吸湿增长和长时间聚集提供有利的天气条件。风廓线雷达风场资料显示在重污染期间,近地面层存在弱风速区、凌乱风场和弱下沉气流。利用风廓线雷达资料计算了边界层通风量(Ventilation Index,VI)和局地环流指数(Recirculation,R),边界层通风量VI和PM2.5 存在明显的负相关,非污染日VI是重污染日的2倍,局地环流指数R在重污染天气前大于0.9,而在污染期间部分空间R小于0.8。通过后向轨迹模式和火点监测资料分析发现,沈阳上空300m高度气团来自于生物质燃烧区域,而且沈阳地区NO2和CO浓度的变化与PM2.5一致,说明本次重污染过程也可能和生物质燃烧有关。  相似文献   

9.
利用2016—2018年重庆市荣昌区冬季PM2.5质量浓度监测数据,结合地面气象观测资料、L波段探空雷达资料、ERA-Interim再分析资料及全球资料同化系统(GDAS)数据,并与HYSPILT模型相结合,分析荣昌区冬季PM2.5污染的气象影响因素及区域传输特征.结果表明:(1)2016—2018年荣昌区冬季PM2....  相似文献   

10.
2011年1月大气环流和天气分析   总被引:3,自引:0,他引:3  
韦青 《气象》2011,37(4):508-512
2011年1月大气环流主要特征如下:北半球极涡中心位于北美北部,强度比常年同期偏弱.中高纬度地区环流呈现三波型分布,东亚大槽、北美槽强度偏弱,西欧槽接近常年同期,东亚锋区明显南压.南支槽位于90°E附近,强度与常年相当.西北太平洋副热带高压明显偏弱.1月主要气候特点:全国平均气温为-8.3℃,比常年同期(-5.9℃)偏低2.4℃,全国平均降水量为8.2 mm,比常年同期(12.1 mm)偏少3.9 mm.华北、黄淮等地区干旱持续发展,冷空气活动频繁,南方雨雪冰冻灾害严重.月内有3次中等强度冷空气及6次降水过程.  相似文献   

11.
天津城区秋季PM2.5质量浓度垂直分布特征研究   总被引:6,自引:2,他引:6  
孙玫玲  穆怀斌  吴丹朱  姚青  刘德义 《气象》2008,34(10):60-66
为研究天津大气颗粒物的污染水平和时空分布特征,利用天津大气边界层观测铁塔(255m),分别在40m、120m、220m处设立监测点,通过监测到的PM2.5的质量浓度,结合PM10、能见度等资料来分析污染物的时空分布规律和分布特征.结果表明,天津城区PM2.5污染水平相当严重,日均质量浓度远高于美国1997年制定的65μg*m-3的排放标准.混合层厚度和稳定度的变化对PM2.5浓度变化有一定的影响,随混合层厚度的变化,不同高度PM2.5质量浓度值有所不同.23时至11时,120m浓度明显高于其它各层,11-18时,由于大气扩散能力的增强,三层污染物质量浓度开始下降,而到了18-23时,低层污染物浓度较高,各层浓度总体趋势为120m>40m>220m.PM2.5质量浓度的日变化与稳定度的变化较一致.气象条件和早晚出行高峰期的影响导致PM2.5的质量浓度出现峰值.PM10与PM2.5的总体变化趋势基本一致,说明污染物来源基本相同.能见度水平和细粒子污染水平呈现较好的负相关,细粒子质量浓度的高低是决定能见度好坏的主要因子.降水过程是颗粒物从大气中清除的重要机制.  相似文献   

12.
南京市PM2.5物理化学特性及来源解析   总被引:7,自引:0,他引:7  
在夏、冬两季,分别在南京市4个站点进行为期7天的气溶胶PM2.5采样,同步采集并分离主要排放源的PM2.5样品,用X射线荧光光谱仪(XRF)分析得到气样及源样中PM2.5的化学成分,对南京市PM2.5的物理化学特性、富集因子进行了分析,并应用化学质量平衡法(CMB)计算各类源对气溶胶PM2.5的贡献。结果表明,南京市PM2.5的夏、冬平均值分别为69.1、139.5μg.m-3,PM2.5/PM10的全年平均值为63.9%;富集成分中,S、As、Zn、Pb等主要来源于人为污染源,Na则主要来源于海洋。来源解析的结果表明,各类污染源对南京市气溶胶PM2.5的贡献率分别为:扬尘37.28%、煤烟尘30.34%、硫酸盐9.87%、建筑尘7.95%、汽车尘2.98%、冶炼尘2.57%、其他源9.01%。作者还对扬尘中的PM2.5进行了来源解析。  相似文献   

13.
北京雾、霾天细粒子质量浓度垂直梯度变化的观测   总被引:6,自引:3,他引:6  
近年来北京城市区域雾霾天气显著增加,不仅严重影响工农业生产和交通运输,还严重影响人体健康.2007年夏秋季节,北京325 m气象塔8、80和240m平台梯度观测结果表明,雾、霾、晴三种典型天气状况大气细粒子质量浓度垂直分布各有特点,雾天(11月5~6日)低层浓度明显偏高,6日从低到高3层PM2.5(空气动力学直径小于等于2.5μ的大气气溶胶)浓度日均值分别为352.6±79.3、224.7±69.0、214.8±32.8 μg·m~(-3);霾天(8月19~20日)细粒子上下混合均匀,19日从低到高3层PM2.5浓度分别为89.8±29.3、88.9±29.8、90.0±31.7 μg·m~(-3);晴天(8月22~23日)细粒子昼夜变化明显,夜间在80 m高度出现明显分层,23日80 m以下平均值为32.6±13.1μg·m~(-3),240 m平均值为27.4±13.5μg·m~(-3).雾天细粒子主要来源于局地,霾天细粒子污染表现为时空分布十分均匀的城市群区域污染特征且污染物积累;连续晴天细粒子明显被清除.  相似文献   

14.
本文利用MODIS和MISR卫星反演的地面PM2.5浓度和来自大气化学和气候模式比较计划(ACCMIP)的4个耦合了大气化学模块的气候模式(GFDL-AM3、NCAR-CAM3.5、GISS-E2-R和MIROC-CHEM)模拟的PM2.5浓度数据,评估分析了4个全球模式对中国地区地面PM2.5浓度时空变化特征的模拟能力。结果表明:4个模式集合模拟的PM2.5浓度在中国东部模拟效果较好。对比单个模式,GFDL-AM3模式对中国PM2.5浓度的空间分布型模拟效果最好。模式结果之间的一致性差异显著的地区主要出现在新疆中部和内蒙古西部地区。从整个中国地区的区域平均的时间序列来看,4个模式集合平均结果与观测结果相差不大,基本能够反映出东北、华中、华东沿海、新疆西部地区的PM2.5浓度的变化趋势。  相似文献   

15.
基于观测数据空间插值、数值模拟以及最优插值同化方法构建了京津冀地区PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)空间插值数据、模拟数据和同化数据,并首次比较分析了三种数据在PM2.5污染回顾分析上的应用潜力和优缺点。针对2014年2月19~28日京津冀地区PM2.5污染过程的分析发现:(1)观测空间插值数据难以完整表征PM2.5污染的时空演变特征,在没有观测覆盖区域误差较大,容易出现虚假的高低值中心;(2)模拟数据具有较高时空分辨率,对PM2.5污染时空演变特征描述更加细致,但在这次污染过程中仍存在较大不确定性,其均方根误差大于100μg/m3;(3)同化数据不仅能对PM2.5空间分布特征进行细致描述,其数据精度在独立验证站点也显著高于模拟数据,其均方根误差比模拟数据低约50%,与站点观测数据的相关系数也比模拟数据高0.2以上。基于PM2.5同化数据,对这次京津冀PM2.5污染过程的时空演变特征进行了详细回顾分析,发现这次污染过程存在自京津冀南部PM2.5污染累积并向北输送发展的生成特点,消亡过程为风向转换下自北向南清除,造成京津冀南部城市先污染后清除,北部城市后污染先清除,并且有慢累积、快清除的特征。从发展演变过程中污染所占空间面积来看,25日PM2.5污染范围最大,覆盖模式第三区域60.5%面积。  相似文献   

16.
Based on GISS-E2-R model simulations, the changes in PM2.5 and ozone concentrations during 2016– 35 are analyzed over the Jing-Jin-Ji region under different future emissions scenarios: 2.6, 4.5, 6.0, 8.5 Representative Concentration Pathways scenarios(RCP2.6, RCP4.5, RCP6.0, and RCP8.5), compared to the baseline periods of 1851–70(pre-industrial) and 1986–2005(present day). The results show that PM2.5 increases under all emissions scenarios, with the maximum value occurring in the southeastern part of the region under most scenarios. As for ozone, its concentration is projected to increase during 2016–35 under all emissions scenarios, compared to the baseline periods. The temporal evolutions of PM2.5 and ozone show PM2.5 reaching a peak during 2020–40, while ozone will likely increase steadily in the future.  相似文献   

17.
为探讨“人类活动—大气污染—气温变化”的关系反应链,从宏观尺度阐明PM_(2.5)浓度变化对气温的影响,利用1951—2017年中国822个气象站点日最高气温、日最低气温和日平均气温资料,1998—2016年中国年均PM_(2.5)浓度遥感图像数据、地表太阳辐射数据,1998—2016年中国各省(区)逐年能源消耗总量、地区生产总值及夜间灯光指数数据,运用Slope趋势变化分析方法与相关性分析法,分析了中国PM_(2.5)浓度的变化趋势及其影响因素。结果表明:1998—2016年中国黄淮海区、东北区PM_(2.5)浓度上升速度最快,分别为1.42μg·m^(-3)·a^(-1)、1.44μg·m^(-3)·a^(-1),而其他地区相对变化不明显;黄淮海区PM_(2.5)浓度平均值高,地表太阳辐射降低,对该区年最高气温有明显的抑制作用,但对年平均气温和年最低气温的影响不明显。东北区PM_(2.5)浓度增长速率较高,但年平均浓度值低,该地区有着较高的水热配合度,PM_(2.5)对年最高气温的抑制作用不明显;能源消耗总量与PM_(2.5)浓度呈显著的正相关。  相似文献   

18.
本文首先对中国PM2.5和近地面臭氧浓度的观测进行了简要的综述;并利用2010-2013年全球对流层臭氧的卫星观测数据给出了对流层臭氧浓度在全球和中国地区的分布特征,其平均值分别为29.78 DU和33.97 DU。然后,利用一个气溶胶大气化学-全球气候双向耦合模式模拟了中国地区PM2.5的浓度分布和季节变化,其年平均值为0.51×10-8 kg/m3。在此基础上又分析了5种典型气溶胶对PM2.5总浓度在不同季节的贡献。结合IPCC第五次评估报告(AR5),讨论了气溶胶和温室气体及其前体物的排放与辐射强迫的联系,以及减排大气臭氧前体物和气溶胶颗粒物质(PM)对气候变化的可能影响。指出减排臭氧前体物对气候的影响还不完全清楚,对短寿命的温室气体和黑碳气溶胶的减排是一种短期(未来50年)的辅助措施;为了保证全球平均温度增长不超过2℃,减少二氧化碳的排放仍是我们需要坚持的长期战略。短期和长期的减排战略对于保护环境和减缓气候变化都是至关重要的。  相似文献   

19.
采用江苏省淮安市地面5个监测站2013年1月1日2015年12月31日PM10、PM2.5、SO2、NO2、CO、O3逐日质量浓度资料及同期气象资料,统计分析了该地区大气污染季节变化特征及其与气象条件的关系;采用MODIS的光学厚度AOD (Aerosol Optical Depth)资料和火点资料分析了2013年12月发生在淮安的一次持续性大气污染事件。研究结果表明,淮安空气质量AQI指数(Air Quality Index)在春冬季较高,夏秋季较低,污染天气发生在春冬季的概率为23.6%,夏秋季的概率为13.3%。淮安地区的首要大气污染物为颗粒物污染,其中PM10、PM2.5占比分别达到25.2%、48.9%,PM10中PM2.5比率年平均为61.0%,臭氧是第2大污染物,占比为25.8%。表征大气柱气溶胶浓度的AOD的季节变化与地面颗粒物浓度截然不同,颗粒物浓度 1月和12月出现极高值,而这两个月AOD月平均值却在一年中达到极低值,AOD最高值出现在7月。另外,AQI与降水、气温、风速、相对湿度呈负相关关系,但相关程度较弱。  相似文献   

20.
利用北京市环境保护监测中心和美国大使馆的细颗粒物(PM2.5)逐时监测数据,中国科学院大气物理研究所325 m气象梯度塔资料以及实况天气图和探空资料,对2015年11月27日至12月1日北京的PM2.5重污染过程的边界层特征进行了分析。研究发现:这次重污染过程持续时间长、强度大,其中PM2.5浓度超过75 μg/m3的时次共计126 h,超过150 μg/m3共计116 h,小时最高PM2.5浓度为522 μg/m3。在高低空环流场配置的影响下,近地面静风和多层逆温结构抑制了污染物在水平和垂直方向上的输送,加上边界层内的深厚湿层,使得其中气溶胶不断吸湿增长,高PM2.5浓度得以维持。在重污染期间,湍流动能较低,不利于污染物的水平和垂直扩散。垂直方向的湍流动能一直占水平方向的15%~20%左右,水平湍流动能占主要贡献。摩擦速度与湍流动能呈现出相似的变化趋势,不同高度之间的摩擦速度差别不大。超出前后时次一个数量级的湍流强度尖峰的出现是湍流场发生调整的一个信号,是PM2.5浓度发生剧烈转变的前兆,预示着污染状况更加糟糕。重污染过程中感热通量的输送方向为从地面向大气输送,感热通量和潜热通量都大幅减少,并且表现出明显的日变化特征。对湍流功率谱计算和分析表明,在重污染过程期间,时间尺度为5 min至6 h的中尺度过程对从地面到大气方向的动量和热量通量输送做出了重要贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号