首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
上海中心城区暴雨内涝阈值研究   总被引:1,自引:0,他引:1  
基于上海暴雨积水110报警数据和自动气象站逐小时降水数据,利用时空过程分析法研究了暴雨积水与降水强度以及累积雨量的关系,建立了中心城区暴雨内涝的阈值指标,结果表明,中心城区暴雨积水程度与1 h降水强度和2 h累积雨量密切相关。当降水强度达30~40 mm·h-1时,中心城区就会出现暴雨积水。当降水强度达50 mm·h-1、2 h累积雨量达70 mm时,暴雨积水会明显增多。相对于暴雨发生的时间,暴雨积水具有明显的滞后效应,一般滞后1~2 h。下垫面状况、人口和道路密度也影响到暴雨积水的发生。综合海拔高程、下垫面类型、排水管网等多因素,开展中心城区精细化的暴雨内涝风险情景模拟及灾害损失评估,是下一步的研究方向。  相似文献   

2.
杨辰  顾宇丹  王强  曲凌鸽  金玲  常炉予 《气象科技》2018,46(5):1004-1011
气候变化情景下随着城市雨岛效应的增强,极端降水呈逐渐增加的趋势,从而将加重城市未来的防汛形势。本文采用上海暴雨内涝评估模型(SUM),分析各排水区块的暴雨内涝脆弱性特征,并基于未来降雨强度的模式模拟结果进行极端降雨条件下中心城区内涝情景模拟,分析气候变化对城市排涝的影响,评估RCP4.5和RCP8.5情景下上海市暴雨内涝适应性。结果表明:上海市的静安、黄浦、虹口和长宁等区的暴雨内涝脆弱性相对较高,在未来气候变化情景下上海市中心的城区内涝逐渐增强,以3年一遇的降水强度为例,中心城区积水面积增幅约为3.74km2/10a;在当前排水能力下,上海市中心城区各排水区块平均每10a增加14.86%的透水面积才能抵消气候变化所带来的城市内涝的增加,其中浦东地区的透水面积预期增幅总体上低于浦西。  相似文献   

3.
基于南昌市2008年以来11次城市内涝和气象资料,采用灰色关联度、多元线性回归等方法,建立了南昌城市内涝积水深度评估模型.结果表明,面雨量、降水强度、降水持续时间和强降水站次数是影响南昌市内涝积水深度的主要因素,建立的城市内涝积水深度多元线性回归模型具有一定的精度,可用于对城市内涝积水深度的灾后快速评估和预评估.  相似文献   

4.
为分析不同设计暴雨雨型对天津中心城区内涝的影响,采用天津城市暴雨内涝模型水动力数学模型,以天津中心城区为研究区域进行城市内涝数值模拟。通过对2018—2019年天津市3次不同降水过程进行模型模拟效果检验表明,该模型具有一定的模拟精度。在此基础上,对不同重现期、不同历时、不同概率的时段雨型为降雨边界的内涝过程进行模拟,对比分析内涝积水总量、积水面积等模拟结果。结果表明:3种代表性设计暴雨雨型,短历时(6 h)且重现期较短(<10 a)的暴雨,强降水持续时间长,且峰现时间较早的雨型,积水总量及面积最大,而重现期较长的暴雨(≥10 a),强降水时段集中,峰值出现最早的雨型,积水总量及面积最大。12 h和24 h等长历时的降水,则规律相反。  相似文献   

5.
基于水动力方法构建的广州城市暴雨内涝模型,结合精细化降水预报,对内涝点的积水深度及风险等级进行模拟,结果表明,模型对近两年内涝点内涝风险等级命中率达65%,对总降水量为50~100 mm的降水过程命中率最高为72.8%。模型对2020年“5.22”特大暴雨过程模拟的积水深度和实况相比偏弱,误差主要分布在30 cm以内,大约占64%,大部分模型模拟积水深度偏小,主要位于广州中北部地区;此外,模型对积水1m以下内涝点的积水有不错的模拟能力,而对2m左右的深积水模拟能力还有限。不同重现期雨情下,广州中心城区的降雨量和历时越大,积水面积越大。1 h重现期雨情下,积水深度一般在20 cm以下,部分在20~59 cm;3 h降雨情景下,积水明显加深,积水深度一般在20~59 cm,部分在0~20 cm和60~119 cm。总体而言,模型模拟结果与实测内涝积水情况基本一致,模型准确度可满足业务需求。  相似文献   

6.
西安城市内涝分布特征及其与降雨量的关系   总被引:2,自引:0,他引:2       下载免费PDF全文
利用西安市市政部门2007—2012年城市内涝资料及相应时段西安城区自动气象站逐小时降雨资料,对西安城区17例内涝过程进行了时空分布特征分析,对58个内涝点内涝进行了内涝等级划分并研究了积水深度与降雨强度的关系,建立了部分内涝点积水深度与降雨量方程。结果表明:西安城市内涝点空间分布较为均匀;内涝发生频率最高为41%,最低为18%;7—8月为城市内涝发生高峰期,占年内涝总次数的70%;07:00—08:00、15:00—16:00为城市内涝日变化中两个明显的高峰时段;城市内涝按积水深度划分为微风险、低风险、中风险、高风险四个等级,其中中风险等级内涝占西安总内涝次数的45%;短时强降水是造成城市积涝的主要原因,1h和3h降雨量是积水深度的重要影响因素。  相似文献   

7.
利用多普勒雷达产品、精细化数值预报产品和城市密集自动雨量观测站数据,以内涝积水模型和内涝风险等级划分原理为核心,研发精细化到街区的南宁市暴雨内涝监测系统,实现城市内涝的实时监测、提前预警和风险预估,并将内涝预警信息以多种途径发布;将该系统用于2015年5月4日的短时强降雨造成城市内涝过程,验证结果表明:模拟结果与观测结果基本相符,最大积水深度和位置基本一致,但个别点存在两者异常偏大情况,排水管网初始场数据不完善是导致模拟结果产生异常的主要原因。应用结果表明,该系统具备一定的暴雨内涝动态监测预报能力,对提高对城市暴雨内涝灾害的监测预警和风险评估水平起到了一定作用。  相似文献   

8.
乌鲁木齐河流域致灾洪水临界雨量分析   总被引:1,自引:0,他引:1  
采用乌鲁木齐河流域的气象资料、水文资料以及地理信息数据和暴雨洪涝灾情数据,以乌鲁木齐河流域为研究对象,在了解其致灾降雨特征的基础上,利用统计模型和HBV水文模型分别分析其临界致灾雨量,评估模型计算过程和结果的优劣,讨论模型结果在天山山脉浅山地带中小河流域的合理性。在历史洪水过程的降雨量验证的基础上,通过对模型和计算过程及与实际情况的比较,HBV水文模型得到的二级和三级预警致灾临界雨量分别是40.6 mm和25.9 mm,而统计模型得到的二级和三级预警致灾临界雨量分别是47.5 mm和26.9 mm,两种方法模拟得到的致灾临界雨量均是合理并且实际可能出现的;从相关性上来看HBV水文模型模拟的结果要优于统计模型计算的结果,对西北地区有融雪性洪水补给的河流径流模拟具有借鉴意义。  相似文献   

9.
利用石家庄市高精度城市地理信息、排水工程设施、河道地形、气象降水等基础数据,基于天津城市内涝模型技术,构建了石家庄市暴雨内涝数学模型。同时在原有工作基础上,对模型网格概化方式和计算模式加以改进,将城市河网、路网、管网和社区的计算网格分层划分,形成分区、分层和立体多重的内涝计算模式。选取典型暴雨个例对模型的模拟效果进行验证,结果表明城区最大积水落区预报成功率达70%以上,模拟的积水深度误差主要分布在0.2 m以内。此外,基于WEBGIS技术开发的石家庄城市内涝监测预警平台,进一步增强了模型的表现力。  相似文献   

10.
以福州市城区地表和明渠河道为主要模拟对象,结合福州市城区高精度地理信息、排水设施、排水运作方式等数据,建立福州城市暴雨内涝数学模型。利用该模型对福州市历史上3次典型降雨过程以及不同重现期降雨造成的城区内涝灾害进行模拟。对模型的模拟结果与实况积水进行评估表明,3次降雨过程的模拟与实况积水深度绝对误差小于10 cm的积水点分别占比为50%、78%、76%。模型对雨强较大的短时强降雨过程,模拟效果稍差,模拟积水比实况积水整体偏小;对长时间、雨强比较平均的降雨,整体模拟效果较好。利用模型对不同重现期降雨下福州市城区内涝灾害风险进行评估表明,模型能够客观反映不同重现期降雨过程下福州市城区内涝灾害风险分布。  相似文献   

11.
本文以成都主城区为例,运用气象数据、地理信息数据、社会经济统计数据及内涝灾情资料,通过多种常用分布函数的对比,选出重现期降水估算的最优函数,采用Pilgrim & Cordery法推求研究区的小时雨型,然后结合改进的基于FloodArea内涝模型,开展了24 h历时20、30、50、100 a一遇降水情景内涝模拟,并利用修订的内涝公路风险等级标准和财产损失曲线,探讨100 a一遇降水情景下内涝交通风险等级和居民室内财产损失风险。结果表明:①GEV(Generalized Extreme Value Distribution)分布函数是成都主城区重现期降水估算的最优函数;主城区24 h历时小时雨型呈双峰型, 且峰值出现在降水过程前部。②基于FloodArea模型,通过对输入数据或参数的改进,能够较好模拟城市内涝空间分布;各降水情景模拟结果显示高新南区、高新西区、青羊区内涝淹没范围占比相较其他地区偏高。③24 h历时100 a一遇降水情景内涝可造成成都主城区86.1%公路长度占比出行困难,其中一级风险公路长度占比为105%,二、三级风险公路长度占比分别为27.5%、28.4%,成华区内涝公路风险最高。④24 h历时100 a一遇降水情景内涝可造成居民室内财产潜在损失约占主城区GDP(Gross Domestic Product)的0.8%,其中武侯区财产损失风险最大,潜在损失占其GDP的1.6%。  相似文献   

12.
利用潍坊各区县2008—2017年的气象观测资料、地理空间数据和社会经济数据,基于GIS技术和自然灾害风险指数模型,考虑短时强降雨对潍坊市城市内涝造成的影响,对潍坊市强降雨洪涝风险的致灾因子危险性、孕灾环境敏感性、承灾体易损性、防灾减灾能力多个因子定量分析,构建了潍坊市强降雨洪涝灾害风险评价模型,并编制了潍坊市强降雨洪涝灾害风险区划。结果表明:灾害发生的高风险区主要位于高密、诸城等地区,潍坊北部地区孕灾环境敏感性指数较大,市中心区域则因人口、经济地位显著而易损性风险较大。该风险区划结果基本反映了潍坊市强降雨洪涝灾害的潜在风险,为潍坊市的洪涝灾害防灾减灾提供技术支持和决策依据。  相似文献   

13.
基于水务部门排水管理中心的内涝灾情信息,运用统计学等研究方法,分析广州市城市内涝分布特征,结果表明:广州全市内涝点最多的是中心城区天河,最少的是郊区的从化.全年发生内涝次数最多的月份是5、6月,最少的月份是2、12月;全天最容易发生内涝的时间是08:00、13:00和19:00.内涝发生时对应的最大小时雨量主要集中在5...  相似文献   

14.
Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century(1916–2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatial and temporal scales is analyzed, and the effects of urbanization on hourly rainstorms studied. Results show that:(1) Over the last century, extreme hourly precipitation events enhanced significantly. During the recent urbanization period from 1981 to 2014, the frequency of heavy precipitation increased significantly, with a distinct localized and abrupt characteristic.(2) The spatial distribution of long-term trends for the occurrence frequency and total precipitation intensity of hourly heavy precipitation in Shanghai shows a distinct urban rain-island feature; namely, heavy precipitation was increasingly focused in urban and suburban areas.Attribution analysis shows that urbanization in Shanghai contributed greatly to the increase in both frequency and intensity of heavy rainfall events in the city, thus leading to an increasing total precipitation amount of heavy rainfall events. In addition,the diurnal variation of rainfall intensity also shows distinctive urban–rural differences, especially during late afternoon and early nighttime in the city area.(3) Regional warming, with subsequent enhancement of water vapor content, convergence of moisture flux and atmospheric instability, provided favorable physical backgrounds for the formation of extreme precipitation.This accounts for the consistent increase in hourly heavy precipitation over the whole Shanghai area during recent times.  相似文献   

15.
天气雷达定量降水估测不同校准方法的比较与应用   总被引:1,自引:3,他引:1  
张亚萍  张勇  廖峻  邓承之  李晶 《气象》2013,39(7):923-929
利用天气雷达联合地面雨量计定量降水估测的局地平均校准法和局地分级平均校准法,分布估计2012年7月21日20:00至22日01:00 BT重庆市荣昌县及附近的降水。结果表明,局地分级平均校准法较局地平均校准法对强降水的估测效果好,同时两种方法的降水估测效果均与所取的局地校准半径大小有关。对降水分布及洪水灾情的分析表明,降水分布与河网的结合是进行中小河流洪水气象风险预报的重要着眼点。  相似文献   

16.
利用实测淹没深度、数字高程(DEM)、土地利用类型、小时降水、定量降水估测(Quantitative Precipitation Estimation,QPE)等数据,通过FloodArea模型对新疆博尔博松流域3次(2013年8月25日、2015年6月28日、2016年6月17日)洪水过程进行再现模拟,对模拟结果的分布特征进行分析,以实测数据进行精度检验,并建立了面雨量-淹没深度关系,在此基础上确定了研究区四个淹没等级对应的致灾临界雨量。运用不同数据模拟得出淹没分布特征为随着时间的变化淹没深度具有上升的趋势,淹没过程可分为蓄积期、稳定增长期和波动上升期3个阶段;通过精度验证得出:FloodArea模型运用自动站降水数据模拟的淹没深度与实测数据相比偏高,而QPE、R-QPE(订正后QPE)数据模拟的则偏低,这三种数据的模拟结果与博尔博松村和塔尔村两个考察点的绝对误差分别为0.46 m、0.78 m、0.35 m和1.35 m、1.44 m、0.65 m,R-QPE数据模拟出的淹没深度效果最好,更能精确地反映出该流域洪水淹没情况;通过相关性分析可知,模拟洪水淹没深度与7 h累计时效的面雨量的相关性最好,相关系数达到了0.989,在此基础上建立了面雨量-淹没深度的关系;按照面雨量-淹没深度的关系和山洪灾害等级划分标准得出,预警点累计时效7 h面雨量对应四个等级的致灾临界雨量阈值分别为:四级6.25 mm、三级23.61 mm、二级49.64 mm、一级75.67 mm。  相似文献   

17.
屈产河流域位于黄土高原东部,流域内植被稀疏,土层厚而松,降水少且集中,遇暴雨天气容易发生泥石流、山洪等灾害。本文基于2020年8月5~6日罕见强降水的实地灾情调查结果,对FloodArea模型在屈产河流域的淹没水深和风险评估结果进行检验。结果表明:屈产河流域地势低洼的河道附近及干沟地区山洪风险较大;此次强降水过程屈产河流域最大淹没深度2.8 m,受洪灾影响人口为5475人,受影响GDP为3615×10^(4)元,耕地和居民地受灾面积分别为20.7 km^(2)和0.7 km^(2)。模拟最大淹没深度、受影响GDP和受灾面积与实际调查情况基本一致,但受影响人口低于实际调查结果,该结果表明FloodArea模型在屈产河流域具有较好的洪水淹没模拟效果,可用于暴雨洪涝灾害风险评估与预警业务。  相似文献   

18.
城市内涝的发生与气象条件紧密相关,强降水是致灾的关键因素。通过分析把握剑河县城降雨变化趋势,结合城区的易涝点及历史积水资料,得到内涝灾害风险的分布特征及演变规律,进一步开展气象条件致灾关键环节分析,有助于剑河县内涝灾害气象决策服务更加精细化,为加强城市灾害的应急处置和应对防范能力体系建设提供气象支撑。通过对剑河县国家气象观测站2007~2021年降水数据进行分析,剑河县城降水主要集中在4~9月,占全年降水的74.5%,该时段也是剑河县城短时强降水、大雨、暴雨的集中高发期,4~9月大雨以上量级降水出现日数呈增多趋势,近15a来1h最大降水量呈逐年波动增加趋势,且主要发生在4~9月。结合DEM数字高程数据得到的易积水路段点及历史积水内涝资料分析,当短时强降水发生时,县城易积水路段会出现不同程度的积水,当小时雨强达到20mm且未来降水持续时,有积水达到10~20cm的风险,对行人过往造成影响,需加强监测并提示相关部门注意易积水路段可能出现积水风险;小时雨强超过30mm时,有积水超过20cm的风险,对车辆及低洼路段建筑影响较大,需及时联系相关部门建议在易积水路段采取相应排水措施,避免出现积水内涝情况影响居民工作生活,同时开展公众服务建议居民注意出行安全;小时雨强超过50mm时,将出现30cm以上积水,对过往车辆及低洼段建筑影响很大,行驶车辆应当就近到安全区域暂避,避免将车辆停放在低洼易涝等危险区域,如遇严重水浸等危险情况应当立即弃车逃生。相关应急处置部门和抢险单位应当严密监视灾情,做好内涝可能引发的其他灾害应急抢险救灾工作。  相似文献   

19.
Climate change is expected to influence the occurrence and magnitude of rainfall extremes and hence the flood risks in cities. Major impacts of an increased pluvial flood risk are expected to occur at hourly and sub-hourly resolutions. This makes convective storms the dominant rainfall type in relation to urban flooding. The present study focuses on high-resolution regional climate model (RCM) skill in simulating sub-daily rainfall extremes. Temporal and spatial characteristics of output from three different RCM simulations with 25 km resolution are compared to point rainfall extremes estimated from observed data. The applied RCM data sets represent two different models and two different types of forcing. Temporal changes in observed extreme point rainfall are partly reproduced by the RCM RACMO when forced by ERA40 re-analysis data. Two ECHAM forced simulations show similar increases in the occurrence of rainfall extremes of over a 150-year period, but significantly different changes in the magnitudes. The physical processes behind convective rainfall extremes generate a distinctive spatial inter-site correlation structure for extreme events. All analysed RCM rainfall extremes, however, show a clear deviation from this correlation structure for sub-daily rainfalls, partly because RCM output represents areal rainfall intensities and partly due to well-known inadequacies in the convective parameterization of RCMs. The results highlight the problem urban designers are facing when using RCM output. The paper takes the first step towards a methodology by which RCM performance and other downscaling methods can be assessed in relation to the simulation of short-duration rainfall extremes.  相似文献   

20.
“菲特”(1323)台风降水的极端性分析   总被引:9,自引:9,他引:0  
王晓  余晖  鲍旭炜  白莉娜 《气象科学》2017,37(4):514-521
基于1981—2013年间的热带气旋降水资料,使用百分比法研究了台风"菲特"所带来降水的极端特性,并进行了降水重现期特征分析。结果表明:台风"菲特"期间的日降水量、小时雨强、过程降水量超过"单站热带气旋极端降水阈值"和"中国热带气旋极端降水阈值"的站点几乎覆盖了整个上海以及浙江北部地区,并且日降水量和过程降水量达百年一遇标准的也占相当大的比例,甚至有的站点创历史极值,此次过程在这些地区是很罕见的。相比较而言,"菲特"影响期间,极端日降水和极端过程降水的分布范围以及极端性都大于小时雨强,极端过程降水较极端日降水分布范围小,但极端性更强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号