首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problems related to the role of both natural and anthropogenic factors in global climate change are considered. The role of ocean circulation in the Earth’s global thermodynamic processes is qualitatively analyzed. The balances of greenhouse gases in the atmosphere and in the ocean and the effect of anthropogenic factors are analyzed. The requirements for new-generation models of the Earth’s climate are formulated.  相似文献   

2.
A review is given of methods for the synthesis of climate statistics for breakwater design, particularly with respect to the waves. Sources considered are wind data and wave data, both visual and instrumental. The need to extract information from all potential sources is stressed. Some methods to be used for this purpose are mentioned, and an indication is given of results which have been obtained. Uncertainties inherent in estimation of climate parameters are discussed, particularly for extreme events.  相似文献   

3.
World fisheries, already vulnerable, are under increasing pressure from the impacts of climate change. Using the Tasmanian rock lobster industry as a case study, we considered the efficacy of risk perception as a tool to inform how to communicate the science of climate change and suggestions for management in relation to development of adaptation strategies for fisheries. Fishers surveyed in this study operate in a fishery that is expected to undergo large changes as a consequence of climate change. Fishers also reported observations of similar large changes in the marine environment and lobster fishery consistent with climate change; yet most fishers surveyed expressed doubts about whether climate change was a real process. The important point for adaption of the industry to climate change is that fisher perceptions of risk tended to create barriers to acceptance of climate change as an issue. This means that there is a barrier to communication and awareness about climate change and thus a barrier to future action on the issue. Improving acceptance of climate change and thus ability to adapt will require the development of communications that are culturally appropriate and palatable to fishers. We argue that the application of social learning principles in communications about climate change may be one constructive way forward.  相似文献   

4.
南极海冰是全球气候系统的重要组成部分。不同于北极海冰的快速减少,近40年来,南极海冰范围在2014年前是缓慢增加、后是突变减少。单一的大尺度大气环流因素无法解释南极海冰的长期变化趋势,海洋?大气相互作用对海冰的耦合影响还未得到充分研究。受南极海冰厚度遥感观测和数值模拟能力所限,现有数据仍无法准确量化全球变化背景下南极海冰的厚度和体积变化;目前南极海冰变化的气候效应还未充分明确。当前国内外对南极海冰研究的不足迫切要求发展长期可靠的南极海冰厚度数据,以突破南极海冰体积变化研究的难题,同时应综合考虑多气候模态和海气系统耦合的作用,研究南极海冰变化的机制及其气候效应。  相似文献   

5.
The wave climate off northern Norway is considered and the investigation is based on wave measurements made at Tromsøflaket by means of a waverider buoy during the years 1977–1981. Data quality of waverider measurements is briefly commented upon; however, more emphasis is given to an evaluation of the long-term representativity of the actual measuring period and to a procedure accounting approximately for a lack of representativity. The wave climate is presented in terms of a smoothed joint probability density function of the significant wave height, Hs, and the spectral peak period, Tp. Based on this distribution a consistent design curve in the Hs, Tp space is established.  相似文献   

6.
Because of its vast volume and heat capacity, the ocean contains most of the memory of the earth's ocean - atmosphere coupled system. It has been suggested that the ocean may delay global warming by absorbing large amounts of heat, that it may cause ab- rupt climate change due to its disrupted thermohaline circulation, and that it may set the time-scales for various climate oscilla- tions. Although the slow pace and persistence of oceanic variations give hope to long-range prediction, there still exist large uncer- tainties in climate predictability. Presently available observations and models are generally inadequate for studying and predicting long-term climate changes. However, some short-term fluctuations such as ENSO have been well studied and shown to be highly predictable even with simplified models.  相似文献   

7.
The St. Petersburg Baltic eutrophication model (SPBEM) is used to assess the ecological condition of the sea under possible changes in climate and nutrient loads in the 21st century. According to model estimates, in the future climate water quality will worsen, compared to modern conditions. This deterioration is stronger in the climate warming scenario with a stronger change in future near-surface air temperature. In the considered scenarios of climate change, climate warming will lead to an increase in the area of anoxic and hypoxic zones. Reduction of nutrient loading, estimated in accordance with the Baltic Sea Action Plan, will only be able to partially compensate for the negative effects of global warming.  相似文献   

8.
Understanding fishermen's perspectives and responses relating to climate variability is important for sustainable fisheries management. To this end, a survey of captains of commercial passenger fishing vessels (CPFVs) was conducted in San Diego. The survey demonstrates that fishermen have observed and adapted to changes in the environment and fish populations associated with climate variability. However, only 12.9% of respondents agreed that global climate change is a possibility. In order to explain fishermen's divergent beliefs on climate change, a semiparametric discrete choice model is used to identify the potential determinants. The empirical results highlight the importance of the following factors: fishermen's experience, observations of the phenomena that are associated with climate variability, and an interaction of fishermen's experience and their observations.  相似文献   

9.
The INMCM5.0 numerical model of the Earth’s climate system is presented, which is an evolution from the previous version, INMCM4.0. A higher vertical resolution for the stratosphere is applied in the atmospheric block. Also, we raised the upper boundary of the calculating area, added the aerosol block, modified parameterization of clouds and condensation, and increased the horizontal resolution in the ocean block. The program implementation of the model was also updated. We consider the simulation of the current climate using the new version of the model. Attention is focused on reducing systematic errors as compared to the previous version, reproducing phenomena that could not be simulated correctly in the previous version, and modeling the problems that remain unresolved.  相似文献   

10.
This paper examines the vulnerability to flooding and erosion of four open beach study sites in Europe. A framework for the quantitative estimation of present and future coastal flood and erosion risks is established using methods, data and tools from across a range of disciplines, including topographic and bathymetric data, climate data from observation, hindcast and model projections, statistical modelling of current and future climates and integrated risk analysis tools. Uncertainties in the estimation of future coastal system dynamics are considered, as are the consequences for the inland systems. Different implementations of the framework are applied to the study sites which have different wave, tidal and surge climate conditions. These sites are: Santander, Spain—the Atlantic Ocean; Bellocchio, Italy—the Adriatic Sea; Varna, Bulgaria—the Black Sea; and the Teign Estuary, UK—the northern Atlantic Ocean. The complexity of each system is first simplified by sub-division into coastal “impact units” defined by homogeneity in the local key forcing parameters: wave, wind, tide, river discharge, run-off, etc. This reduces the simulation to that of a number of simpler linear problems which are treated by applying the first two components of the Source–Pathway–Receptor–Consequence (S–P–R–C) approach. The case studies reveal the flexibility of this approach, which is found useful for the rapid assessment of the risks of flooding and erosion for a range of scenarios and the likely effectiveness of flood defences.  相似文献   

11.
This paper addresses some fundamental methodological issues concerning the sensitivity analysis of chaotic geophysical systems. We show, using the Lorenz system as an example, that a naïve approach to variational ("adjoint") sensitivity analysis is of limited utility. Applied to trajectories which are long relative to the predictability time scales of the system, cumulative error growth means that adjoint results diverge exponentially from the "macroscopic climate sensitivity"(that is, the sensitivity of time‐averaged properties of the system to finite‐amplitude perturbations). This problem occurs even for time‐averaged quantities and given infinite computing resources. Alternatively, applied to very short trajectories, the adjoint provides an incorrect estimate of the sensitivity, even if averaged over large numbers of initial conditions, because a finite time scale is required for the model climate to respond fully to certain perturbations. In the Lorenz (1963) system, an intermediate time scale is found on which an ensemble of adjoint gradients can give a reasonably accurate (O(10%)) estimate of the macroscopic climate sensitivity. While this ensemble‐adjoint approach is unlikely to be reliable for more complex systems, it may provide useful guidance in identifying important parameter‐combinations to be explored further through direct finite‐amplitude perturbations.  相似文献   

12.
新生代主要全球气候事件研究进展   总被引:2,自引:0,他引:2  
地质历史时期发生的全球气候变化事件正在成为地球科学界的研究重点。新生代以来的许多全球气候变化事件都接近于现今的地球系统,对其研究有助于理解现今地球系统过程在气候快速变化时的响应。这些主要全球气候事件包括古新世—始新世最热事件(PETM)、渐新世初大冰期事件(EOGM)、中中新世冷事件、北极冰盖形成事件、中更新世气候周期转型事件(MPT)、Dansgaard/Oscheger事件、Heinrich事件、新仙女木事件和中全新世冷事件。CO2浓度在全球气候变化中起着重要的作用。  相似文献   

13.
The Mediterranean: vulnerability to coastal implications of climate change   总被引:1,自引:0,他引:1  
The Mediterranean is experiencing a number of immediate coastal problems which are triggering efforts to improve short-term coastal management. This paper shows that coastal management also needs to address long-term problems and, in particular, the likelihood of climate change. Regional scale studies suggest that the Mediterranean is particularly vulnerable to increased flooding by storm surges as sea levels rise—a 1-m rise in sea level would cause at least a six-fold increase in the number of people experiencing such flooding in a typical year, without considering population growth. Protection is quite feasible, however, this would place a greater burden on those Mediterranean countries in the south than those in the north. All coastal wetlands appear threatened. Case studies of coastal cities (Venice and Alexandria), deltas (Nile, Po, Rhone and Ebro), and islands (Cyprus) support the need to consider climate change in coastal planning. However, the critical issues vary from site to site and from setting to setting. In deltaic areas and low-lying coastal plains climate change, particularly sea-level rise, is already considered as an important issue, but elsewhere this is not the case. Therefore, there is a need for coastal management plans to explicitly address long-term issues, including climate change, and integrate this planning with short-term issues. This is entirely consistent with existing guidelines.1 Given the large uncertainty concerning the future, planning for climate change will involve identifying and implementing low-cost proactive measures, such as appropriate land use planning or improved design standards incorporated within renewal cycles, as well as identifying sectors or activities which may be compromised by likely climate change. In the latter case, any necessary investment can be seen as a prudent ‘insurance policy’.  相似文献   

14.
R. Deepthi  M.C. Deo 《Ocean Engineering》2010,37(11-12):1061-1069
The impact of climate change on design wind speeds corresponding to different return periods at two selected offshore locations in India has been assessed. Extreme daily wind speeds corresponding to various return periods were derived based on the observations made by wave rider buoys during the period 1998–2005. Thereafter, the future climate over the next century was simulated at these locations using the input from the climate model: GCM-CGCM3 corresponding to the A2 scenario. The underlying downscaling model was developed with the help of artificial neural networks and using observed wind as output. The local wind speeds corresponding to these projected wind data were generated for the next century and return period wind speeds were extracted by the distribution fitting. Comparison of design wind speeds derived with and without consideration of future climate showed that the magnitude of the long term wind speed would certainly and significantly increases if the effect of global climate change is incorporated in the analysis. For the two locations considered, the increase in the 100-year wind was found to be varying from 44% to 74%.  相似文献   

15.
Radiative forcing, the global warming potential, and the recently proposed global temperature potential are widely used not only in scientific studies but also in a number of economic and political evaluations of the effects of an increase in the contents of greenhouse gases and aerosols and other factors that form climate and its changes. New indices have appeared, and, to calculate them, information is required on the quantitative characteristics of the climate system’s components—current and expected—within standard periods of 20, 100, and 500 years. The calculations of some of these indices and potentials require consideration for variations in the rate of energy exchange between the atmosphere and the underlying surface (ocean) within the indicated periods. This leads to a more general problem of analyzing the sensitivity of the climate system to external (radiative) forcing and its response to such a forcing for the conditions of both stationary (equilibrium) and nonstationary “greenhouse” climates. A brief review of the few existing studies of such a response is given.  相似文献   

16.
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years with the availability of climate model simulations contributed to the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared understanding of critical challenges for such applications are essential for developing robust projections of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for these applications, and identifies priority developments that could improve current projections. Understanding of the climate system and its representation within climate models has progressed to a point where many climate model outputs can now be used effectively to make LMR projections. However, uncertainty in climate model projections (particularly biases and inter-model spread at regional to local scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A variety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and dynamical downscaling can ameliorate some limitations, though the assumptions underlying these approaches and the sensitivity of results to their application must be assessed for each application. Developments in LMR science that could improve current projections of climate impacts on LMRs include improved understanding of the multi-scale mechanisms that link climate and LMRs and better representations of these mechanisms within more holistic LMR models. These developments require a strong baseline of field and laboratory observations including long time series and measurements over the broad range of spatial and temporal scales over which LMRs and climate interact. Priority developments for IPCC-class climate models include improved model accuracy (particularly at regional and local scales), inter-annual to decadal-scale predictions, and the continued development of earth system models capable of simulating the evolution of both the physical climate system and biosphere. Efforts to address these issues should occur in parallel and be informed by the continued application of existing climate and LMR models.  相似文献   

17.
The extreme values of wave climate data are of great interest in a number of different ocean engineering applications, including the design and operation of ships and offshore structures, marine energy generation, aquaculture and coastal installations. Typically, the return values of certain met-ocean parameters such as significant wave height are of particular importance. There exist many methods for estimating such return values, including the initial distribution approach, the block maxima approach and the peaks-over threshold approach. In a climate change perspective, projections of such return values to a future climate are of great importance for risk management and adaptation purposes. However, many approaches to extreme value modelling assume stationary conditions and it is not straightforward how to include non-stationarity of the extremes due to for example climate change. In this paper, various non-stationary GEV-models for significant wave height are developed that account for trends and shifts in the extreme wave climate due to climate change. These models are fitted to block maxima in a particular set of wave data obtained for a historical control period and two future projections for a future period corresponding to different emission scenarios. These models are used to investigate whether there are trends in the data within each period that influence the extreme value analysis and need to be taken into account. Moreover, it will be investigated whether there are significant inter-period shifts or trends in the extreme wave climate from the historical period to the future periods. The results from this study suggest that the intra-period trends are not statistically significant and that it might be reasonable to ignore these in extreme value analyses within each period. However, when it comes to comparing the different data sets, i.e. the historical period and the future projections, statistical significant inter-period changes are detected. Hence, the accumulated effect of a climatic trend may not be negligible over longer time periods. Interestingly enough, such statistically significant shifts are not detected if stationary extreme value models are fitted to each period separately. Therefore, the non-stationary extreme value models with inter-period shifts in the parameters are proposed as an alternative for extreme value modelling in a climate change perspective, in situations where historical data and future projections are available.  相似文献   

18.
Local jurisdictions play a critical role in climate change mitigation and adaptation. This study analyzes the theoretical framework of locally driven climate change actions and uses geographic information system (GIS) to map local jurisdictions’ climate change policy efforts in three Pacific states - California, Oregon, and Washington. The results of our study indicate statistically significant differences in geographic clusters and variations across jurisdictions. An Ordinary Least Squares (OLS) regression model was used to examine climate risk, emission stress, and socioeconomic context variables to detect influence on local climate change policy efforts. The explanatory results indicate that coastal proximity, population density, vehicles emission, and education variables significantly influence local jurisdictions’ climate change actions. The findings contribute to local organizational decision model research and can help local communities to develop more effective climate change policies.  相似文献   

19.
The Arctic Climate Impact Assessment (ACIA) is a project of the intergovernmental Arctic Council, intended to synthesize knowledge of the effects of climate change on the Arctic. This paper is based on the primary output of the ACIA project, a 1042 page book entitled Arctic Climate Impact Assessment. Our concern is with the effects of Arctic climate change on fisheries. To set the stage, however, we first discuss those chapters that logically precede the fisheries discussion, the chapters concerned with past and present climate change, climate modeling and marine systems. The conclusion notes that moderate climate warming will probably benefit most Arctic fisheries. The conclusion also considers the role of anthropogenic causation in climate change and its policy implications.  相似文献   

20.
气候是人们赖以生存的自然环境,不同气候因素在抑制人体健康、促进病患康复、增加人体免疫系统韧性等方面因人因病而异。本文回顾了温度、湿度、日照、气压、大气污染等气候环境要素与人体健康关系以及四季气候易发病症,介绍了滨海、高山、森林、丘陵与平原等优质气候资源的康养价值和气候康养特性,从趋利避害角度强调了气候康养所应注意问题。在综述有关气候与健康以及气候康养适宜性评估等相关研究基础上,结合我国养生养老产业及医养融合经济发展前景,指出了气候康养未来研究主要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号