首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Madden–Julian oscillation (MJO) is simulated using an AGCM with three different cumulus parameterization schemes: a moist convective adjustment (MCA) scheme, the Zhang–McFarlane (ZM) mass-flux scheme, and the Tiedtke scheme. Results show that the simulated MJO is highly dependent on the cumulus parameterization used. Among the three cumulus parameterizations, only the MCA scheme produces MJO features similar to observations, including the reasonable spatial distribution, intraseasonal time scales and eastward propagation. Meanwhile, the amplitude is too large and the eastward propagation speed too fast than observations and the relationship between precipitation and low-level wind anomaly is unrealistic with enhanced convection occurring within easterly anomalies instead of westerly anomalies as in observations. The over-dependence of precipitation on boundary convergence produced by the MCA scheme is presumably responsible for this unrealistic phase relation in the simulation. The other two schemes produce very poor simulations of the MJO: spectral power of westward propagation is larger than that of eastward propagation in zonal wind and precipitation, indicating a westward propagation of the intraseasonal variability.The mean state and vertical profile of diabatic heating are perhaps responsible for the differences in these simulations. The MCA scheme produces relatively realistic climate background. When either ZM or Tiedtke scheme is used, the observed extension of westerly winds from the western Pacific to the dateline is missing and precipitation over the equatorial region and SPCZ is dramatically underestimated. In addition, diabatic heating produced by both ZM and Tiedtke schemes are very weak and nearly uniform with height. The heating profile produced by the MCA scheme has a middle-heavy structure with much larger magnitude than those produced by the other two schemes. In addition, a very unrealistic boundary layer heating maximum produced by the MCA scheme induces too strong surface convergence, which perhaps contributes to the too strong intraseasonal variability in the simulation.  相似文献   

2.
The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscilla tion)to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)-SAMIL(Spectral Atmospheric Model of IAP LASG).Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme(MCA)and the Zhang-McFarlane(ZM)scheme.MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme.MJO produced by the ZM scheme is too weak and shows little propagation characteristics.Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation.These two cumulus schemes produced different vertical structures of the heating profile.The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA,which maybe contributes greatly to the failure of simulating a reasonable MJO.Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in.The diabatic heating profile plays an important role in the performance of the GCM.Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere(UH), middle troposphere(MH),and lower troposphere(LH).Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale,while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward.It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels,especially in the middle levels,while westward propagating disturbances axe more prone to be produced when the maximum heating appears very high.  相似文献   

3.
The impact of numerical modeling of moisture transport on the simulation of the seasonal mean pattern of precipitation in the tropics is studied. The NCAR CCM2 with spectral and semi-Lagrangian moisture transport has been used for this purpose. The differences in the numerical modeling of moisture transport are found to have a significant impact on the simulation of the seasonal mean patterns. The major differences while using the spectral method (vis-a-vis the semi-Lagrangian method) are (1) a decrease in rainfall over the Indian monsoon region, (2) a decrease in rainfall over the west Pacific region and (3) an increase in rainfall over the central and east Pacific regions. There are substantial differences in the amount of precipitable water vapor simulated by the two moisture transport techniques. It is shown that the difference in precipitable water vapor between the two simulations is associated with changes in the vertical moist static stability (VMS) of the atmosphere, and differences in the simulated precipitation patterns. Received: 7 August 1998 / Accepted: 15 October 1999  相似文献   

4.
The Madden-Julian oscillation (MJO) skeleton model is a low-order model for intraseasonal oscillations that, in an extended form, includes off-equatorial and antisymmetric components. Previous studies of this extended model have used an idealized background state and forcing terms. In the current study, observation-based estimates of these forcing terms and background state are used. Linear solutions to the extended model with this observation-based forcing consist of both equatorially-symmetric convective events and events with a meridional tilt reminiscent of composites of the boreal summer intraseasonal oscillation (BSISO) in observational studies. Solutions to a nonlinear stochastic form of the model exhibit realistic precipitation mean and variance and intraseasonal variability throughout much of the tropics. These solutions contain several types of events, including meridionally-tilted convective activity that moves both northward and eastward. Solutions to both forms of the model also indicate that this BSISO-like convective activity is coupled to activity over the eastern Pacific. A discussion of these features and their agreement with previous observational studies of the BSISO is given.  相似文献   

5.
The NCEP Climate Forecast System (CFS) with the relaxed Arakawa Schubert (RAS, hereafter referred to as CTRL) convection scheme of Moorthi and Suarez exhibits better performance in representing boreal summer tropical intraseasonal variability as compared with a simulation using simplified Arakawa–Schubert scheme. The intraseasonal moist static energy (MSE) budget is analyzed in this version of the CFS model (CTRL), which produces realistic eastward and northward propagation characteristics. The moist and thermodynamic processes involved in the maintenance and propagation of the poleward moving intraseasonal oscillation (ISO) disturbances are examined here. Budget diagnostics show that horizontal MSE advection is the principal component of the budget, contributing to the poleward movement of the convection. The injection of MSE moistens the atmosphere north of the convective area causing the poleward movement of convection by destabilization of the atmosphere. The moistening process is mainly contributed by the climatological wind acting on the anomalous moisture gradient as confirmed from the examination of moisture advection equation. While surface enthalpy fluxes (consisting of radiative and surface turbulent heat fluxes) maintain the ISO anomalies, they oppose the MSE tendency due to horizontal advection thus regulating the poleward propagation characteristics. In addition, the model results show that wind–evaporation feedback dominates over cloud–radiation feedback for ISO propagation; this is in contrast to our estimates using the newly available European Centre for Medium Range Weather Forecasts Interim reanalysis. Sensitivity experiments suggest that intraseasonal variability in the CFS model with the RAS scheme is highly sensitive to the parameterization of both the shallow convection and the convective rain evaporation and downdrafts. Removal of these components adversely affects the propagation characteristics and greatly reduces the amplitude of intraseasonal variability. Our results support the primary importance of the moisture preconditioning ahead of the ISO and the physical relationship between moisture and precipitation. For realistic ISO simulations, models need to represent these features appropriately.  相似文献   

6.
The Grid-point Atmospheric Model of IAP LASG version 1.0 (GAMIL1.0) is used to investigate the impacts of different convective schemes on the radiative energy budget.The two convective schemes are Zhang and McFarlance (1995)/Hack (1994) (ZM) and Tiedtke (1989)/Nordeng (1994) (TN).Two simulations are performed:one with the ZM scheme (EX_ZM) and the other with the TN scheme (EX_TN).The results indicate that during the convective process,more water vapor consumption and temperature increment are found in the EX_ZM,especially in the lower model layer,its environment is therefore very dry.In contrast,there is a moister atmosphere in the EX_TN,which favors low cloud formation and large-scale condensation,and hence more low cloud fraction,higher cloud water mixing ratio,and deeper cloud extinction optical depth are simulated,reflecting more solar radiative flux in the EX_TN.This explains why the TN scheme underestimates the net shortwave radiative flux at the top of the atmosphere and at surface.In addition,convection influences longwave radiation,surface sensible and latent heat fluxes through changes in cloud emissivity and precipitation.  相似文献   

7.
Cloud and precipitation parameterization schemes are evaluated, and their sensitivity to the method and/or parameters used to determine cloud physical processes is examined using a singlecolumn version of the Unified Model (SCUM). In the experiment for TWP-ICE, cloud fraction is overestimated (underestimated) in the upper (lower) troposphere due to the wet (dry) bias. The precipitation rate is well simulated during the active monsoon period, but overestimated during the suppressed monsoon and clear skies periods. In the moist convection scheme, trigger condition and entrainment process affect the lower tropospheric humidity through the impact on convective occurrence frequency and intensity, respectively. Strengthening the trigger condition and using the adaptive entrainment method alleviate the low-level dry bias. In the microphysics scheme, more large-scale precipitation is produced with prognostic rain, due to rain sedimentation considering vertical velocity of rain drop, than with diagnostic rain. Less ice/snow deposition with the prognostic two-ice category results in lower ice water content and upper-level cloud fraction than with the diagnostic splitting method for the twoice category. In the cloud macrophysics scheme, the prognostic cloud fraction and cloud/ice water content scheme produces a larger cloud fraction and more cloud/ice water content than the diagnostic scheme, mainly due to detrainment from moist convection (cloud source) that surpasses the effect of convective heating and drying (cloud sink). This affects temperature by influencing the radiative, convective, and microphysical processes. The experiment with combined modifications in cloud and precipitation schemes shows that interaction between modified moist convection and cloud macrophysics schemes results in more alleviation of the cold bias not only at the lower levels but also at the upper levels.  相似文献   

8.
The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)--SAMIL (Spectral Atmospheric Model of IAP LASG). Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme (MCA) and the Zhang-McFarlane (ZM) scheme. MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme. MJO produced by the ZM scheme is too weak and shows little propagation characteristics. Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation. These two cumulus schemes produced different vertical structures of the heating profile. The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA, which maybe contributes greatly to the failure of simulating a reasonable MJO. Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in. The diabatic heating profile plays an important role in the performance of the GCM. Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere (UH), middle troposphere (MH), and lower troposphere (LH). Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale, while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward. It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels, especially in the middle levels, while westward propagating disturbances  相似文献   

9.
Tongwen Wu 《Climate Dynamics》2012,38(3-4):725-744
A simple mass-flux cumulus parameterization scheme suitable for large-scale atmospheric models is presented. The scheme is based on a bulk-cloud approach and has the following properties: (1) Deep convection is launched at the level of maximum moist static energy above the top of the boundary layer. It is triggered if there is positive convective available potential energy (CAPE) and relative humidity of the air at the lifting level of convection cloud is greater than 75%; (2) Convective updrafts for mass, dry static energy, moisture, cloud liquid water and momentum are parameterized by a one-dimensional entrainment/detrainment bulk-cloud model. The lateral entrainment of the environmental air into the unstable ascending parcel before it rises to the lifting condensation level is considered. The entrainment/detrainment amount for the updraft cloud parcel is separately determined according to the increase/decrease of updraft parcel mass with altitude, and the mass change for the adiabatic ascent cloud parcel with altitude is derived from a total energy conservation equation of the whole adiabatic system in which involves the updraft cloud parcel and the environment; (3) The convective downdraft is assumed saturated and originated from the level of minimum environmental saturated equivalent potential temperature within the updraft cloud; (4) The mass flux at the base of convective cloud is determined by a closure scheme suggested by Zhang (J Geophys Res 107(D14), doi:10.1029/2001JD001005, 2002) in which the increase/decrease of CAPE due to changes of the thermodynamic states in the free troposphere resulting from convection approximately balances the decrease/increase resulting from large-scale processes. Evaluation of the proposed convection scheme is performed by using a single column model (SCM) forced by the Atmospheric Radiation Measurement Program’s (ARM) summer 1995 and 1997 Intensive Observing Period (IOP) observations, and field observations from the Global Atmospheric Research Program’s Atlantic Tropical Experiment (GATE) and the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The SCM can generally capture the convective events and produce a realistic timing of most events of intense precipitation although there are some biases in the strength of simulated precipitation.  相似文献   

10.
采用中尺度数值模式WRFv3.5对2014年超强台风“威马逊”进行数值模拟。利用雷达、卫星、自动站逐时降水资料,对比单参数WSM6云方案和双参数WDM6云方案在模拟台风路径、强度、降水分布及水成物含量上的差异,分析雨滴粒子的谱型特征及微物理源、汇项对云中雨水含量的影响。与上海台风研究所的最佳路径数据对比显示,两方案均较好地模拟出了台风“威马逊”的移动路径,WDM6方案的整体路径误差更小;模拟的强度差异则较为显著,WDM6方案的海平面最低气压值偏高,强度偏弱。两方案模拟的累积降雨分布虽与自动站实测资料基本一致,但WDM6方案模拟的强降水概率偏高,弱降水概率偏低。两方案模拟的对流区雪、霰、雨水含量均大于TRMM卫星反演结果,且WDM6方案的对流云较多,总体雨水含量偏高;两方案均模拟出了雷达回波分布的整体特征,但眼区尺度偏大,WDM6方案在融化层以下缺少眼墙之外的弱回波区且大于39 dBz的强回波区偏多,同样显示了雨水含量(或尺度)偏大。由于WDM6方案为暖雨(云、雨水)双参数模式,对云滴活化、云雨转换及云、雨谱型有一定的改进,其能较合理地模拟出雨滴谱随台风发展的演变特征;模拟显示,云、雨滴的收集碰并及固态粒子的融化是雨水的主要源项,WDM6方案增加了云雨水自动转化率及雨水碰并云水率,导致该方案的空中雨水含量偏高,且随高度的降低快速减小;此外,由于WDM6方案使用简单的寇拉公式进行云滴活化,初始云凝结核数的变化即可造成雪、霰、云雨水含量的改变,故建议在具体大气气溶胶条件下,对方案中的云滴生成参数化过程做相应的调整。  相似文献   

11.
Summary ?This paper describes a numerical study of the major spiral rainband in typhoon Flo (1990) using the Meteorological Research Institute Mesoscale Nonhydrostatic Model (MRI-NHM). The effects of precipitation schemes and horizontal resolution on the representation of the simulated rainband are discussed. Dynamic and thermodynamic structures of the simulated major rainband to the north of the storm center are well represented in the model with a 5 km horizontal resolution. The structures are consistent with observational results reported for other tropical cyclones. Among the realistic features are: a cold pool and convergence on the inner side of the band; convergence above low-level inflow layers; and the outward slope of the updraft with height. The band is caused by the motion of the storm through its surroundings where horizontal wind has vertical shear. The simulation of the structure and precipitation pattern associated with the major rainband depends on the precipitation scheme rather than the horizontal resolution. The band appears more realistic when using explicit cloud microphysics as a precipitation scheme, rather than moist convective adjustment. This result is attributable to the difference in scheme triggering. In the simulation with moist convective adjustment, the elimination of vertical instability in low-level atmosphere is excessive, suppressing band formation. The overall structure of the band is also more realistic in the simulation using explicit cloud microphysics, because a cold pool exists in the lower layers and the vertical axis of upward flow tilts outward. This result suggests that prediction will partly depend on variables associated with cloud microphysics, such as the mixing ratio of cloud water. The horizontal grid distance, which varied between 5 and 20 km, quantitatively influenced the rainfall amount, although the large-scale band structure remained unchanged. The rainfall amount increased as the grid interval was reduced from 20 to 10-km but decreased as the interval was further reduced from 10 to 5 km. Received March 20, 2001; revised August 20, 2001  相似文献   

12.
Summary A set of mesoscale numerical simulations using the Emanuel and Kain-Fritsch deep convection schemes has been performed in order to determine the sensitivity of the forecast-especially, the rainfall-to the scheme used. The study is carried out for two cases of heavy precipitation in the coastal zone of the Western Mediterranean, where the topographic forcing is of primary influence. The first one, characterized by an almost stationary synoptic situation, is dominated by warm, moist advection at low levels; the second one, of frontal type, presents a much stronger dynamic forcing at upper levels. Although the comparison attempt is conditioned by the limited number of considered cases, the numerical results provide at least some preliminary conclusions. The inclusion of a convective scheme improves the forecast precipitation, through two actions: directly, producing more realistic rainfall patterns in areas of convection; indirectly, avoiding excessive precipitation in areas with orographic or dynamical upward forcing by drying and stabilizing the atmosphere upstream. In particular, the Kain-Fritsch scheme seems to be more sensitive to the orographic forcing, in agreement with observations.With 21 Figures  相似文献   

13.
Gross moist stability, an effective static stability, in the tropics is examined in observations and model simulations. Under convective quasi-equilibrium closure, gross moist stability, a vertical integration of the vertical moist static energy gradient weighted by pressure velocity, is derived based on an approximately moist adiabatic process associated with deep convection. In climatology, gross moist stability is generally similar to the spatial distribution of mean precipitation. In global warming simulations, gross moist stability tends to increase in the tropics. It implies a more stable atmosphere, which is consistent with the weakening of tropical circulation found in climate models. Main effects, which induce the changes in gross moist stability, include the low-level moisture effect, the maximum level of convection (MLC) effect, i.e., the depth of deep convection, and the dry static energy effect associated with stratification of temperature, with the first two also found in climatology. Because of the strong cancellation between the effects of low-level moisture and dry static energy due to the moist adiabatic process of deep convection, the effect of MLC, which has been overlooked in measuring atmospheric stability, is crucial in determining the sign of changes in gross moist stability. Gross moist stability is a better index to represent changes in atmospheric stability in the tropics under global warming, compared to both dry and moist static stability.  相似文献   

14.
两种对流参数化方案对辐射能量收支的影响研究   总被引:1,自引:0,他引:1  
李立娟  王斌 《气象学报》2009,67(6):1080-1088
利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室的格点大气环流模式(GAMIL)1.0版设计了两组数值模拟实验来研究两种不同的对流参数化方案对辐射能量收支的影响.这两种对流参数化方案分别是:Zhang and McFarlance/Hack方案(简称ZM)和Tiedtke/Nordeng方案(简称 TN).对应的数值模拟实验分别取名为EX-ZM和EX-TN.通过对实验结果的分析表明:在对流过程中,EX-ZM允许深对流和浅对流同时发生,因此两种对流同时在模式低层消耗了更多的水汽,释放了更多的潜热,引起了更大的增温;EX_TN每次只允许一种对流发生,也就避免了不同类型的对流在同一层同时消耗水汽的现象.因此对流过后,EX-ZM的环境空气相对湿度较小,而EX-TN周围空气的相对湿度较大,有利于低云云量的生成和大尺度的凝结,因此EX-TN模拟的低云云量偏多,低层的云水含量偏高,模式低层的云光学厚度偏大,这就使得EX_TN中更多的太阳短波辐射通量被云反射掉,严重低估了模式对短波波段的辐射通量的模拟.此外,不同的对流参数化方案通过改变云的长波发射率和降水,进而影响了模式对长波波段的辐射通量、感热和潜热通量的模拟.  相似文献   

15.
The present study investigates the sensitivity of the frequency distribution of precipitation rates to the closure employed in the penetrative mass flux cumulus parameterization of Zhang and McFarlane in the Canadian regional climate model (CRCM) and in the Canadian Centre for Climate Modelling and Analysis third generation global atmospheric general circulation model (AGCM3). The effects of an alternative prognostic closure for mass flux cumulus parameterization in place of the original diagnostic closure are investigated. A set of experiments is performed in which changes in the frequency distribution of precipitation rates and cloud base mass-flux are examined as a function of the parameters that define each closure scheme. The relationship between the frequency distribution of precipitation and cloud base mass flux is examined and a self-consistent relation is found when the depth of convection is taken into account. Experiments performed with the prognostic closure favor relatively strong cloud base mass-flux and deep penetrative convection with relatively more intense convective precipitation. The mean of the frequency distribution of convective precipitation is larger and the heavier events become more intense. Also, experiments performed with the prognostic closure favor less frequent convective activity. However these changes in the distribution of convective component of precipitation are generally offset by opposite changes in the distribution of the resolved large-scale component of precipitation, resulting in relatively smaller changes in total precipitation. The altered partition of precipitation between convective and large-scale components is found to alter the energy balance and the thermodynamic equilibrium structure of the troposphere. The robustness found in the CRCM results regarding the sensitivity of the frequency distribution of precipitation to changes in the closure of the deep convection parameterization is investigated by performing a similar analysis of AGCM3 simulations. A remarkable similarity of AGCM3 and CRCM results is found suggesting that the closure sensitivity identified in this study is robust.  相似文献   

16.
This paper describes the effects of convective adjustment time scale (τ) on the simulation of tropical climate. The NCAR-Community Atmosphere Model version 3 (CAM3) has been used for this study. In the default configuration of the model, the prescribed value of τ, a characteristic time scale with which convective available potential energy (CAPE) is removed at an exponential rate by convection, is assumed to be 1?h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to investigate the dependence of tropical climate simulation to this time scale, we conducted two simulations, one with a time scale of 1?h (CTRL) and another with 8?h (EXPT), and examined the differences in simulated climate. For this, we analyzed both the mean as well as transient features, viz., seasonal mean quantities, equatorial waves, and meridional migration of convective disturbances. The spatial distributions of seasonal mean precipitation are found to be better in EXPT. The spatial correlation coefficients of CTRL and EXPT with the observations are 0.79 and 0.83, respectively, for northern hemisphere winter. Similarly, for northern hemisphere summer, the values are 0.67 and 0.79, respectively. In addition, there is also an improvement in the simulation of equatorial waves, specifically, the Kelvin waves, Madden–Julian oscillation, and n?=?1 equatorial Rossby waves become more realistic in EXPT. The characteristics of meridional migration of convective activity over tropics also become more reasonable in EXPT. Thus, it is found that there is a clear improvement in some of the key aspects of the simulated tropical climate with the revised convective adjustment time scale.  相似文献   

17.
The treatment of turbulence closure in atmospheric models is examined in the context of the dry convective boundary layer (CBL) and the eddy-diffusivity/mass-flux (EDMF) approach. The EDMF approach is implemented into a model called TAPM to use a coupled two-equation prognostic turbulence closure and the mass-flux approach to represent turbulence in the CBL. This work also extends the range of turbulence variables that can be derived from the mass-flux component of the model and uses these along with their values from the prognostic scheme to provide total turbulence fields that can be used to compare to data and/or to feed into other components of TAPM, including those needed to drive Eulerian and Lagrangian air pollution dispersion modules. Model results are presented for the afternoon of a simulated summer day and are compared to both laboratory and field observations in a mixed-layer scaled framework. The results show that the EDMF approach works well within TAPM and can provide good predictions of mean and turbulence fields, including in the upper levels of the CBL. The EDMF approach has several attractive features, including the potential to be one approach to unify the treatment of turbulence and dry and moist convection in atmospheric models.  相似文献   

18.
The South American low level jet (SALLJ) of the Eastern Andes is investigated with Regional Climate Model version 3 (RegCM3) simulations during the 2002–2003 austral summer using two convective parameterizations (Grell and Emanuel). The simulated SALLJ is compared with the special observations of SALLJEX (SALLJ Experiment). Both the Grell and Emanuel schemes adequately simulate the low level flow over South America. However, there are some intensity differences. Due to the larger (smaller) convective activity, the Emanuel (Grell) scheme simulates more intense (weaker) low level wind than analysis in the tropics and subtropics. The objectives criteria of Sugahara (SJ) and Bonner (BJ) were used for LLJ identification. When applied to the observations, both criteria suggest a larger frequency of the SALLJ in Santa Cruz, followed by Mariscal, Trinidad and Asunción. In Mariscal and Asunción, the diurnal cycle indicates that SJ occurs mainly at 12 UTCs (morning), while the BJ criterion presents the SALLJ as more homogenously distributed. The concentration into two of the four-times-a-day observations does not allow conclusions about the diurnal cycle in Santa Cruz and Trinidad. The simulated wind profiles result in a lower than observed frequency of SALLJ using both the SJ and BJ criteria, with fewer events obtained with the BJ. Due to the stronger simulated winds, the Emanuel scheme produces an equal or greater relative frequency of SALLJ than the Grell scheme. However, the Grell scheme using the SJ criterion simulates the SALLJ diurnal cycle closer to the observed one. Although some discrepancies between observed and simulated mean vertical profiles of the horizontal wind are noted, there is large agreement between the composites of the vertical structure of the SALLJ, especially when the SJ criterion is used with the Grell scheme. On an intraseasonal scale, a larger southward displacement of SALLJ in February and December when compared with January has been noted. The Grell and Emanuel schemes simulated this observed oscillation in the low-level flow. However, the spatial pattern and intensity of rainfall and circulation anomalies simulated by the Grell scheme are closer to the analyses than those obtained with the Emanuel scheme.  相似文献   

19.
Tropical intraseasonal rainfall variability in the CFSR   总被引:1,自引:1,他引:1  
While large-scale circulation fields from atmospheric reanalyses have been widely used to study the tropical intraseasonal variability, rainfall variations from the reanalyses are less focused. Because of the sparseness of in situ observations available in the tropics and strong coupling between convection and large-scale circulation, the accuracy of tropical rainfall from the reanalyses not only measures the quality of reanalysis rainfall but is also to some extent indicative of the accuracy of the circulations fields. This study analyzes tropical intraseasonal rainfall variability in the recently completed NCEP Climate Forecast System Reanalysis (CFSR) and its comparison with the widely used NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2). The R1 produces too weak rainfall variability while the R2 generates too strong westward propagation. Compared with the R1 and R2, the CFSR produces greatly improved tropical intraseasonal rainfall variability with the dominance of eastward propagation and more realistic amplitude. An analysis of the relationship between rainfall and large-scale fields using composites based on Madden-Julian Oscillation (MJO) events shows that, in all three NCEP reanalyses, the moisture convergence leading the rainfall maximum is near the surface in the western Pacific but is above 925?hPa in the eastern Indian Ocean. However, the CFSR produces the strongest large-scale convergence and the rainfall from CFSR lags the column integrated precipitable water by 1 or 2?days while R1 and R2 rainfall tends to lead the respective precipitable water. Diabatic heating related to the MJO variability in the CFSR is analyzed and compared with that derived from large-scale fields. It is found that the amplitude of CFSR-produced total heating anomalies is smaller than that of the derived. Rainfall variability from the other two recently produced reanalyses, the ECMWF Re-Analysis Interim (ERAI), and the Modern Era Retrospective-analysis for Research and Applications (MERRA), is also analyzed. It is shown that both the ERAI and MERRA generate stronger rainfall spectra than the R1 and more realistic dominance of eastward propagating variance than R2. The intraseasonal variability in the MERRA is stronger than that in the ERAI but weaker than that in the CFSR and CMORPH.  相似文献   

20.
Regional climate simulations have been performed over the greater European area for 3 years using three convective parameterizations: (a) the Grell scheme with Arakawa-Schubert (AS) closure assumption, (b) the Grell scheme with Fritsch-Chappell (FC) closure assumption and (c) the MIT scheme. The comparison of the model results of near-surface temperature with near-surface temperature observations indicates a cold bias with both Grell scheme configurations. This bias is significantly reduced when the MIT convective scheme is introduced, even during months of low convective activity. The temperature differences between the Grell (with either AS or FC closure schemes) and the MIT scheme are largest in the lower troposphere, extending up to 700 hPa. In terms of total precipitation, no systematical differences between Grell and MIT schemes are observed throughout the year for the European domain but the convective portion of total precipitation is greater in the MIT scheme simulations. For the central Eastern Europe region, MIT scheme simulations generally produce more precipitation during the warm season than Grell simulations, while for the southern Eastern Europe region, the MIT precipitation enhancement is small and not systematically positive. It is evident that the cause of the differences between the convective schemes is the more intense convection in the MIT scheme configuration, which in turn imposes a more effective drying of the atmosphere, less low-level clouds, more short-wave solar radiation absorbed from the ground and hence warmer low level temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号