首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 70 毫秒
1.
The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon prediction in Southeast and East Asian regions. The field experiment carried out in May-August 1998 was fully successful, with a large amount of meteorological and oceanographic data acquired that have been used in four dimensional data assimilations by several countries, in order to improve their numerical simulations and prediction. These datasets are also widely used in the follow-up SCS and East Asian monsoon study. The present paper has summarized the main research results obtained by Chinese meteorologists which cover six aspects: (1) onset processes and mechanism of the SCS summer monsoon; (2) development of convection and mesoscale convective systems (MCSs) during the onset phase and their interaction with large-scale circulation; (3) low-frequency oscillation and teleconnection effect; (4) measurements of surface fluxes over the SCS and their relationship with the monsoon activity; (5) oceanic thermodynamic structures, circulation, and mesoscale eddies in the SCS during the summer monsoon and their relationship with ENSO events; and (6) numerical simulations of the SCS and East Asian monsoon.  相似文献   

2.
Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over ther Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea,and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon.  相似文献   

3.
Impacts of Coastal SST Variability on the East Asian Summer Monsoon   总被引:4,自引:0,他引:4  
The impacts of the seasonal and interannual SST variability in the East Asia coastal regions (EACRSST) on the East Asian summer monsoon (EASM) have been examined using a regional climate model (PδRCM9) in this paper. The simulation results show that the correlation between the EACRSST and the EASM is strengthened after the mid-1970s and also the variability of the EACRSST forcing becomes much more important to the EASM interannual variability after the mid-1970s. The impacts of the EACRSST on the summer precipitation over each sub-region in the EASM region become weak gradually from south to north, and the temporal evolution features of the summer precipitation differences over North and Northeast China agree well with those of the index of EASM (IEASM) differences.
The mechanism analyses show that different EACRSST forcings result in the differences of sensible and latent heat flux exchanges at the air-sea interface, which alter the heating rate of the atmosphere. The heating rate differences induce low level air temperature differences over East Asia, resulting in the differences of the land-sea thermal contrast (LSTC) which lead to 850 hPa geopotential height changes. When the 850 hPa geopotential height increases over the East Asian continent and decreases over the coast of East China and the adjacent oceans during the weakening period of weakens consequently. On the contrary, the EASM enhances during the strengthening period of the LSTC.  相似文献   

4.
The Webster and Yang monsoon index (WYI)-the zonal wind shear between 850 and 200 hPa was calculated and modified on the basis of NCEP/NCAR reanalysis data. After analyzing the circulation and divergence fields of 150-100 and 200 hPa, however, we found that the 200-hPa level could not reflect the real change of the upper-tropospheric circulation of Asian summer monsoon, especially the characteristics and variation of the tropical easterly jet which is the most important feature of the upper-tropospheric circulation. The zonal wind shear U850-U(150 100) is much larger than U850-U200, and thus it can reflect the strength of monsoon more appropriately. In addition, divergence is the largest at 150 hPa rather than 200 hPa, so 150 hPa in the upper-troposphere can reflect the coupling of the monsoon system. Therefore, WYI is redefined as DHI, i.e., IDH=U850* - U(150 100)*, which is able to characterize the variability of not only the intensity of the center of zonal wind shear in Asia, but also the monsoon system in the upper and lower troposphere. DHI is superior to WYI in featuring the long-term variation of Asian summer monsoon as it indicates there is obvious interdecadal variation in the Asian summer monsoon and the climate abrupt change occurred in 1980. The Asian summer monsoon was stronger before 1980 and it weakened after then due to the weakening of the easterly in the layer of 150-100 hPa, while easterly at 200 hPa did not weaken significantly. After the climate jump year in general, easterly in the upper troposphere weakened in Asia, indicating the weakening of summer monsoon; the land-sea pressure difference and thermal difference reduced, resulting in the weakening of monsoon; the corresponding upper divergence as well as the water vapor transport decreased in Indian Peninsula, central Indo-China Peninsula, North China, and Northeast China, indicating the weakening of summer monsoon as well. The difference between NCEP/NCAR and ERA-40 reanalysis data in studying the intensity and long-term variation of Asian summer monsoon is also compared in the end for reference.  相似文献   

5.
The East Asian Monsoon Simulation with IAP AGCMs-A Composite StudyWangHuijunandBiXunqiang(InstituteofAtmosphericPhysics(IAP),...  相似文献   

6.
Simulation of East Asian Summer Monsoon with IAP CGCM   总被引:1,自引:0,他引:1  
SimulationofEastAsianSummerMonsoonwithIAPCGCMChenQiying(陈起英),①YuYongqiang(俞永强)andGuoYufu(郭裕福)InstituteofAtmosphericPhysics,Ch...  相似文献   

7.
The variability of the East Asian winter monsoon (EAWM) can be divided into an ENSO-related part (EAWMEN) and an ENSO-unrelated part (EAWMres).The influence of EAWMres on the ENSO-East Asian summer monsoon (EASM) relationship in the decaying stages of ENSO is investigated in the present study.To achieve this,ENSO is divided into four groups based on the EAWMres:(1) weak EAWMres-E1Ni(n)o (WEAWMres-EN); (2) strong EAWMres-E1Ni(n)o (SEAWMresEN); (3) weak EAWMres-La Ni(n)a (WEAWMres-LN); (4) strong EAWMres-La Ni(n)a (SEAWMres-LN).Composite results demonstrate that the EAWMres may enhance the atmospheric responses over East Asia to ENSO for WEAWMres-EN and SEAWMres-LN.The corresponding low-level anticyclonic (cyclonic) anomalies over the western North Pacific (WNP) associated with El Ni(n)o (La Ni(n)a) tend to be strong.Importantly,this feature may persist into the following summer,causing abundant rainfall in northern China for WEAWMres-EN cases and in southwestern China for SEAWMres-LN cases.In contrast,for the SEAWMres-EN and WEAWMres-LN groups,the EAWMres tends to weaken the atmospheric circulation anomalies associated with E1 Ni(n)o or La Ni(n)a.In these cases,the anomalous WNP anticyclone or cyclone tend to be reduced and confined to lower latitudes,which results in deficient summer rainfall in northern China for SEAWMres-EN and in southwestern China for WEAWMres-LN.Further study suggests that anomalous EAWMres may have an effect on the extra-tropical sea surface temperature anomaly,which persists into the ensuing summer and may interfere with the influences of ENSO.  相似文献   

8.
TheInfluenceofTibetanPlateauontheInterannualVariabilityofAsianMonsoon①WuAiming(吴爱明)andNiYunqi(倪允琪)DepartmentofAtmosphericScie...  相似文献   

9.
Defining the intensity of the East Asian winter monsoon (EAWM) with a simple index has been a difficult task. This paper elaborates on the meanings of 18 existing EAWM strength indices and classifies them into four categories: low level wind indices, upper zonal wind shear indices, east-west pressure contrast indices, and East Asian trough indices. The temporal/spatial performance and prediction potential of these indices are then analyzed for the 1957--2001 period. It reveals that on the decadal timescale, most indices except the east--west pressure contrast indices can well capture the continuous weakening of the EAWM around 1986. On the interannual timescale, the low level wind indices and East Asian trough indices have the best predictability based on knowledge of the El Nino-Southern Oscillation and Arctic Oscillation, respectively. All the 18 existing indices can well describe the EAWM-related circulation, precipitation, and lower tropospheric air temperature anomalies. However, the variations of surface air temperature over large areas of central China cannot be well captured by most indices, which is possibly related to topographic effects. The results of this study may provide a possible reference for future studies of the EAWM.  相似文献   

10.
ClimatologyandInterannualVariabilityoftheSoutheastAsianSummerMonsoonK.-M.LauLaboratoryforAtmospheres,Code913,NASA-GoddardSpac...  相似文献   

11.
In this paper, a 5-level spectral AGCM is used to examine the sensitivity of simulated East Asian summer monsoon circulation and rainfall to cumulus parameterization schemes. From the simulated results of East Asian monsoon circulations and rainfalls during the summers of 1987 and 1995, it is shown that the Kuo’s convective parameterization scheme is more suitable for the numerical simulation of East Asian summer monsoon rainfall and circulation. This may be due to that the cumulus in the rainfall system is not strong in the East Asian monsoon region. This paper is supported by the National Key Progranmme “96-908”.  相似文献   

12.
Simulation of East Asian Summer Monsoon by Using an Improved AGCM   总被引:9,自引:3,他引:9  
The IAP 2-L AGCM is modified by introducing a set of climatological surface albedo data into the model for substituting the model’s original surface albedo parameterization. The comparison between the observations and the simulation results by the modified model shows that the general features of the East Asian summer monsoon can be well reproduced by the modified IAP 2-L AGCM. Especially for the simulation of monsoon precipitation, the modi-fied model can well reproduce not only the monthly mean features of the summer monsoon rainfall over East Asia, but also the stepwise advance and retreat of the East Asian summer monsoon rainbelt. Analysis results demonstrate that the good simulation of the monsoon rainfall is closely related to the reasonable simulation of the large scale gen-eral circulation over East Asian region, such as the western Pacific subtropical high, Asian monsoon low and the low level flows. The good performance of the modified model in the rainfall simulation shows its great potential to serve as a useful tool for the prediction of summer drought / flood events over East Asia.  相似文献   

13.
1.IntroductionSouthAsiaandEastAsiaareahugemonsoonsystem,inwhichtheEastAsianmonsoonisitssubmonsoonsystem.BecausetheEastAsiansu...  相似文献   

14.
Using the output data of 20 coupled climate models used in IPCC AR4 and observational data from NCEP, the capability of the models to simulate the boreal winter climatology of the East Asian sea level pressure, 850-hPa wind, and surface air temperature; the decadal variations of the East Asian winter monsoon (EAWM) intensity and EAWM-related circulation, and the interdecadal variations of EAWM-related circulation are systematically evaluated. The results indicate that 16 models can weakly simulate the declining trend of the EAWM in the 1980s. More than half of the models produce relatively reasonable decadal variations of the EAWM-related circulation and the interdecadal differences of EAWM-related circulation between the boreal winters of 1960-1985 and 1986-1998, including the weakened Siberian high, Aleutian low, and East Asian trough, the enhanced Arctic oscillation and North Pacific oscillation, and a deepened polar vortex. It is found that the performance of the multi-selected-model ensemble in reproducing the spatial distribution of the variations is encouraging, although the variational amplitudes are generally smaller than the observations. In addition, it is found that BCCR-BCM2.0, CGCM3.1-T63, CNRM-CM3, CSIRO-MK3.0, GISS-ER, INM-CM3.0, and MRI-CGCM2.3.2 perform well in every aspect.  相似文献   

15.
东亚夏季风环流对气溶胶分布的影响   总被引:1,自引:1,他引:1  
安礼政  江静  周洋 《气象科学》2015,35(1):26-32
用2001—2012年逐月的MODIS-TERRA卫星观测气溶胶光学厚度(AOD)资料和NCEP/NCAR风场资料,分析了5—8月东亚地区AOD的时-空分布特征,研究东亚夏季风环流对气溶胶时-空分布的影响。主要结论如下:5—8月的中国东部及邻近海洋上AOD有着显著的季节演变特征,尤其是32.5 °N附近的AOD高值区,其强度和范围在5—8月逐渐增强然后又减弱。东亚夏季风通过环流输送作用对各地的AOD产生了不同程度的影响,使中国南部AOD减少,而华北和东北地区AOD增加。在强、弱季风年背景下,7月观测的AOD差异与环流输送作用差异的分布特征有着一定的相似性,体现出东亚夏季风年际变化对气溶胶分布的影响。在东亚夏季风演变的不同阶段,季风环流对气溶胶输送大部分情况下,可解释局地气溶胶变化10%~20%的方差。  相似文献   

16.
The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960's until it reached a lower stage after 1980's. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade--wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical Indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period.  相似文献   

17.
东亚冬夏季风关系在1970s末的年代际转变   总被引:1,自引:0,他引:1  
李明聪  李栋梁 《气象科学》2017,37(3):329-338
利用NCEP/NCAR和Hadley中心的大气与海洋再分析资料,选取具有代表性的东亚冬、夏季风指数,采用滑动相关和线性回归等方法,主要讨论了受ENSO影响的东亚冬季风分量和后期夏季风之间关系的年代际变化,并分析了二者关系发生变化的原因。结果表明:在1965—1979年,受ENSO影响的冬季风与后期夏季风强度的对应关系并不明显。在1980—2004年,受ENSO影响的冬季风强,对应后期的夏季风偏弱,弱冬季风对应的后期夏季风偏强。当受ENSO影响的冬季风较强时,冬季在对流层低层西北太平洋出现了异常气旋并可以维持到次年夏季,低纬地区位势高度偏低,削弱了西太平洋副热带高压,异常气旋西部的偏北气流阻碍了西南风的北进,导致夏季风偏弱。海表温度异常在1980年前后春、夏季不同的分布型可以解释环流在不同时段内的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号