首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In recent years, traces of acetaminophen, a widely used analgesic and anti-inflammatory and known to be an over-the-counter drug, have been detected unaltered in effluents of conventional wastewater treatment facilities. About 58–68% released through excretion during patient’s therapeutic treatment, and only about 80–86% were removed by the wastewater treatment facility. This study investigated the improved performance of photocatalysis in degrading or removing acetaminophen. The visible light active potassium peroxodisulfate-doped titanium dioxide photocatalysts synthesized via sol–gel method was used to eliminate acetaminophen from aqueous solutions through photocatalytic oxidation. The effects of the amount of dopant, calcination temperature and calcination time on the properties and visible light photocatalytic activity of potassium peroxodisulfate-doped titanium dioxide were also investigated. Increasing the amount of the dopant and calcination temperature up to a certain extent increases removal efficiency while further decreased the removal rate. Potassium peroxodisulfate-doped titanium dioxide photocatalysts were characterized by X-ray diffraction, ultraviolet–visible light diffuse reflectance spectroscopy, Brunauer–Emmett–Teller method and X-ray photoelectron spectroscopy. Potassium peroxodisulfate-doped titanium dioxide with 0.5%w dopant and calcined at 300 °C for 3 h degrades about 100% acetaminophen in aqueous solution within 540 min. The reaction of acetaminophen with the photocatalyst has an apparent rate constant of 8.39 × 10?3 min?1.  相似文献   

2.
Titanium dioxide (TiO2) is an efficient photocatalyst for removing organics in photocatalytic wastewater treatment, but its low photoactivity limits its practical applications in a visible-light-driven chemical reaction. Many efforts have been made in the activation of the visible light absorption property on TiO2 photocatalyst. In this paper, a thorough review of current non-metal doping methods of TiO2 to improve photocatalyst activation under visible light is presented. The focus of this study is on doping non-metals onto TiO2 by several methods to enhance its visible light photoactivity. Besides, the resultant characteristics of the chemical structure, physical structure, and optical properties of the doped photocatalysts are discussed. This review enables a better understanding of current advantages and disadvantages that can arise during the production of non-metal-doped TiO2 and its applications. The annealing and hydrothermal methods are found to be more efficient in preparing doped photocatalysts with respect to time and costs. When choosing between these two approaches, the hydrothermal method can be applied using a variety of precursors, whereas the annealing methods are restricted only to solid form precursors. Thus, the hydrothermal method is a more favorable method of non-metal doping of TiO2. However, studies should focus on the effects of different factors involved in each synthesis/preparation method to determine optimal preparation conditions.  相似文献   

3.
The adsorption of PAA on TiO2 from aqueous solution has been studied at 25°C as a function of pH. It was found that polymer adsorption decreases with increasing pH up to pH 3, and can be described by a Langmuir-type isotherm. The mechanism of polymer bonding is discussed in terms of H-bonding and electrostatic interaction. The ionic charge on the polymer molecules was investigated by means of viscosity measurements, and the surface charge on TiO2 by determining the point of zero charge (pzc). A tentative equation for optimum polymer concentration for flocculation is derived with reference to La Mer-Healy's flocculation theory.  相似文献   

4.
为了实现纳米TiO2的固定化负载,提高材料对污染物的光催化效率,采用静电自组装方法制备了天然斜发沸石负载纳米TiO2光催化材料。采用硅烷偶联剂(OCH3)3Si(CH2)3SH干法改性斜发沸石,采用30%H2O2/HOAc氧化剂将偶联剂巯基基团(—SH)氧化为易电离的磺酸基基团(—SO3H),带负电荷的沸石与钛聚合阳离子在静电引力的作用下自发地组装在一起,经一定温度的焙烧得到斜发沸石负载纳米TiO2光催化材料。采用XRD和SEM对材料进行分析和表征,采用甲基橙染料评价材料的吸附和光催化性能,结果表明:沸石负载纳米TiO2对甲基橙染料具有吸附与光催化的协同作用,静电自组装方法制备的材料的光催化性能较传统方法有所提高。  相似文献   

5.
Pure titanate nanotubes and titanate nanotubes doped with iron (III) and chromium (III) were fabricated by the hydrothermal treatment in methanol and sodium hydroxide mixture. The fabricated nano tubes have high surface area, high aspect ratio, consisted of very good surface morphology and high metals dispersion. The morphology, crysralline phase, composition were characterized by powdered X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Barrett-Joyner-Halenda methods and X-ray photoelectron spectroscopy. The results showed that nanotubes possess anatase phase and are composed up of 8–12 nm in diameter and 360–400 nm in length. The band gap of the titanium dioxide nanotubes was determined using transformed diffuse reflectance spectroscopy according to the Kubelka-Munk theory, showed pronounced band gap decrease on doped titanium dioxide nanotubes. The photocatalytic activity of doped nanotubes were evaluated in terms of degradation of phenol and photoreduction of carbon dioxide into methanol and ethanol under Ultra violet and Infra red irradiation. It was found that with iron (III) and chromium (III) doped titanium dioxide nanotubes exhibited much higher photocatalytic activity than undoped titanate nanotubes.  相似文献   

6.
The use of suspensions of nanoparticles of titanium dioxide in photocatalytic degradation of dye solution has disadvantages of inconvenient separation of fine particles for reuse and limited penetration of light for effective degradation. These problems can be minimized by supporting titanium dioxide on various inert supports. The present study involves the preparation of immobilized titanium dioxide films by three different techniques and characterization of the prepared films. The immobilized films of nanocrystals of titanium dioxide were prepared using sol?Cgel technique, polyvinyl alcohol?Cformaldehyde binder and acrylic emulsion. The photocatalytic performance of the prepared films for degradation of amaranth dye has also been evaluated and compared. Combination of photodegradation and adsorption processes induces strong beneficial effects on removal of dyes. Addition of high adsorption capacity activated carbon to photoactive titanium dioxide in photodegradation of dyes improves the efficiency of dye mineralization. The activated carbon has also been immobilized along with titanium dioxide in the present work to examine the dual effect of photodegradation and adsorption in the removal of amaranth. The films formed with the help of polyvinyl alcohol?Cformaldehyde binder showed better dye degradation capabilities.  相似文献   

7.
邱国华 《铀矿地质》2010,26(3):178-186
在放射性核素走向分析和环境现状调查的基础上,对某氯化法钛白粉生产项目的放射性环境影响进行了分析、预测与评价。放射性环境现状调查表明,评价因子总体在区域环境本底范围内,经分析确定了放射性敏感点。经放射性环境影响预测,工作人员和公众所受的附加剂量分别为0.59mSv/a和9.28×10-4mSv/a,均低于年有效剂量管理限值。在落实辐射防护和环境保护措施并加强放射性环境监测后,该项目的放射性环境影响符合国家有关法规和标准限值要求。  相似文献   

8.
A thin film of marcasite, FeS2, was synthesized under vacuum and its structure and reactivity under oxidizing conditions was investigated by means of diffraction and surface analytical techniques, respectively. Synthesis of the film was carried out by codepositing Fe and S2 onto a Ta support. The thickness of the film could be varied from approximately 10 Å to 1 μm. High-resolution S 2p synchrotron-based photoemission showed S22−, with undetectable amounts of S2− impurity that is typically present on natural sample surfaces. X-ray diffraction of the micron-thick films showed that the film crystallized in the marcasite phase of FeS2. Atomic force microscopy indicated that the thin film had a nanometer-scale roughness suggesting the film contained defects such as steps and kinks. X-ray photoelectron spectroscopy studies found the thin marcasite film to be more reactive than natural pyrite (the most ubiquitous FeS2 dimorph) after exposure to a gaseous O2/H2O environment on the basis of the amount of sulfate formation. Likely the oxidation of marcasite was dominated by its short-range order (e.g., presence of steps), because the density of nonstoichiometric defect sites (e.g., S2−) was low as assessed by photoelectron spectroscopy.  相似文献   

9.
This review focuses on the various types of supports used for immobilization of titanium dioxide nanomaterial catalyst for degradation of organic pollutants in wastewater. Several supports suitable to particular immobilization technique used for the degradation of pollutants in wastewater streams are explained. In general, a coating of catalyst on supports is carried out either by physical (e.g., thermal treatment) or by chemical (e.g., sol–gel). Among a range of the supports used, some of the prominent ones include glass, silica, activated carbon, stainless steel, cellulose, clay. Also, characterization methods in use such as X-ray diffraction, transmission electron microscope, scanning electron microscope, and UV-spectroscopy are discussed. The operating parameters such as temperature for the selected immobilization techniques are also explained.  相似文献   

10.
Door County, Wisconsin, is a region of karst topography underlain by Silurian dolomite bedrock. Numerous sinkholes intercept much of the surface runoff and act as sites for direct groundwater recharge. The clay-rich and impermeable Upper Ordovician Maquoketa formation separates the dolomite aquifer from the deeper aquifers and appears to be a factor in groundwater circulation and karst formation Thin glacial drift and Quaternary materials overlie the dolomite and are hydrologically connected with it The interactions of surface and groundwater, and the role of solution features in water interchange were studied in a small drainage basin. This basin contains several large sinkholes and a nearby spring complex Mapping identified many additional sinks and swallets in surface drainage routes Water flowing into two sinks was traced and found to have a residence time of several hours. Water flowing into sinkholes and from the spring was sampled to identify the quality and seasonal trends in composition of the shallow groundwater Water quality parameters monitored include magnesium, sodium, potassium, chloride, phosphorous, nitrate and ammonia, nitrogen, alkalinity, pH, turbidity, and specific conductance. Nitrate levels were found to increase 5 to 6 times during periods when there was zero input through sinkhole recharge sites. Nitrate levels approached the 10 mg/l NO3 -N limit set by the U.S. Public Health Service for drinking water In this basin sandy soils are most susceptible to sink development, whereas clay-rich soils have a lesser number of sinks. It appears, however, that a network of bedrock solution features exists under all soils The loss of soil into sinkholes has impacted groundwater quality and reduced agricultural productivity through a reduction in tillable acreage and water retention capacity.  相似文献   

11.
钛的地球化学性质与成矿   总被引:2,自引:1,他引:2  
钛由于其高强度和抗腐蚀性特征,在航空航天、医药、手机等领域得到越来越广泛的应用,是二十世纪的战略金属元素。在自然界中,钛铁矿、钛磁铁矿和金红石是最具经济价值的含钛矿物。钛最初被认为是变质过程中最不活泼的金属元素之一,随着越来越多的证据显示钛可以在特定条件下进入变质热液流体中发生活动迁移。高压变质脉体中金红石和磷灰石作为共生矿物存在,这可能为富F溶液对钛迁移富集的影响,当氟磷灰石从富F流体中结晶沉淀时K_2TiF_6络合物分解,钛在其中的溶解度降低进而结晶沉淀出金红石,而这一富集迁移沉淀机制很可能是变质型金红石矿床变质富集的机制。在岩浆矿床中,钛常作为伴生元素赋存于磁铁矿床中。一般认为部分熔融程度、挥发分含量和成矿岩浆温度等决定了含钛矿或高钛岩体的形成,本文认为富金红石的再循环洋壳或者富钛沉积矿床重熔是岩浆型钛矿床的重要成矿物质来源。沉积型钛矿床的形成与区域地质、地理和水动力学有关,它们常在被动大陆边缘,以高风化、高品位钛源岩为后盾通过风化、剥蚀和海侵等主要形成在沿海岸带特别是南北纬30°低纬度地区。总之富钛源区、起源深度、部分熔融温度和程度、陆壳混染程度、挥发分、流体成分、风化剥蚀能力等决定了钛矿化成功与否。  相似文献   

12.
赵娜 《安徽地质》2022,32(1):80-83
本方法(ICP-AES)试样经盐酸、硝酸、氢氟酸、高氯酸冷溶过夜,次日加热分解并溶解盐类后,转移至50mL容量瓶中定容。采用电感耦合等离子体发射光谱仪测量试样溶液中铬(铬267.716﹛126﹜nm光谱线)和钛(钛323.452﹛104﹜nm光谱线)的特征光谱强度,由仪器自动校正基体的影响,计算试样中三氧化二铬和二氧化...  相似文献   

13.
本文采集了我国19个产地的天然闪锌矿进行矿物学和光催化性能研究。样品皆为立方Zn S结构,化学成分变化较大,其中Fe对闪锌矿中Zn的替代范围为0.235%~14.826%(质量分数,下同),Cd对闪锌矿中Zn的替代范围为0.133%~1.576%。闪锌矿中Fe含量由低到高,导致颜色由浅变深直至呈黑色,半导体禁带宽度由大变小,估算获得天然闪锌矿的禁带宽度范围为3.18~2.28 e V,明显低于纯Zn S禁带宽度3.68 e V,光催化响应均在可见光范围。验证光催化实验结果表明含Fe较低、含Cd较高的天然闪锌矿可见光催化还原降解甲基橙的效果较佳,如可见光下1 g/L闪锌矿样品(含铁4.262%,含镉1.576%)对30 mg/L甲基橙催化反应4 h后的脱色降解率达到82.11%。天然闪锌矿中Fe含量影响着禁带宽度和光响应范围,Cd含量影响着光催化性能,为高附加值开发利用贱金属资源天然闪锌矿提供了科学依据。  相似文献   

14.
15.
New methods were developed to synthesize nanosized phases for experimental study of the migration behavior of elements in natural conditions. The colloidal forms of palladium, platinum, and gold were obtained by microwave hydrothermal synthesis and stabilized by natural organic matters; their behavior at the contact with components of geochemical barriers is studied in model experiments. New approaches were proposed for designing sorption materials on the basis of nanosized magnetite. Polyfunctional sorbents with “core–multilayer shell” structure are synthesized by covalent and/or non-covalent immobilization of reagents on the surface of magnetic carrier under microwave heating. These sorbents are suitable for simultaneous or independent preconcentration the analytes of different nature under the analysis of aqueous media. The composition, structure, and sorption properties of new materials are investigated. The trace amounts of phenol derivatives and heavy metals were determined in waters to demonstrate the applicability of obtained sorbents for ecological studies.  相似文献   

16.
In this study, the boric acid extraction from colemanite ore in aqueous media saturated by CO2 and SO2 gases was studied and the effects of relevant parameters, namely; reaction temperature, solid-to-liquid ratio, mean particle size, stirring speed and reaction time have been investigated on the boric acid extraction from colemanite ore by using the fractional factorial design and central composite design methods. The chosen experimental parameter levels were as follows: reaction temperature, 11.4–58.6 °C; solid-to-liquid ratio, 0.0685–0.1315 g/mL; mean particle size, 0.2835–3 mm; stirring speed, 107–893 rpm; reaction time, 7.125–22.875 min. A model has been developed between the boric acid extraction efficiency from colemanite ore and relevant parameters by means of variance analysis by using the matlab computer software and the obtained model was used to determine optimum conditions. The optimum conditions were found to be as follows: reaction temperature, 41 °C; solid-to-liquid ratio, 0.0685 g/mL; mean particle size, 0.2835 mm; stirring speed, 266 rpm; reaction time, 7 min. The calculated boric acid extraction efficiency from colemanite ore was approximately 99.9% under the optimum conditions.  相似文献   

17.
The most suitable candidates for subsurface storage of CO2 are depleted gas fields. Their ability to retain CO2 can however be influenced by the effect which impurities in the CO2 stream (e.g. H2S and SO2) have on the mineralogy of reservoir and seal. In order to investigate the effects of SO2 we carried out laboratory experiments on reservoir and cap rock core samples from gas fields in the northeast of the Netherlands. The rock samples were contained in reactor vessels for 30 days in contact with CO2 and 100 ppm SO2 under in-situ conditions (300 bar, 100 °C). The vessels also contained brine with the same composition as in the actual reservoir. Furthermore equilibrium modeling was carried out using PHREEQC software in order to model the experiments on caprock samples.After the experiments the permeability of the reservoir samples had increased by a factor of 1.2–2.2 as a result of dissolution of primary reservoir minerals. Analysis of the associated brine samples before and after the experiments showed that concentrations of K, Si and Al had increased, indicative of silicate mineral dissolution.In the caprock samples, composed of carbonate and anhydrite minerals, permeability changed by a factor of 0.79–23. The increase in permeability is proportional to the amount of carbonate in the caprock. With higher carbonate content in comparison with anhydrite the permeability increase is higher due to the additional carbonate dissolution. This dependency of permeability variations was verified by the modeling study. Hence, caprock with a higher anhydrite content in comparison with carbonate minerals has a lower risk of leakage after co-injection of 100 ppmv SO2 with CO2.  相似文献   

18.
CO2地质储存是缓解温室效应的有效手段之一.在CO2地质储存工程实施过程中可能引起断裂、地震、淡水含水层污染等地质灾害问题,对人类和生态环境造成危害.本文系统阐述CO2地质储存过程中造成的环境地质问题及其成因机制,并从风险评价、监测预警、应急补救等角度提出了具体防治措施,对CO2地质储存技术的安全性评估及工程实施项目管理具有重要的实际意义.  相似文献   

19.
CdS/rectorite nanocomposite was synthesized via a cation-exchange reaction followed by a sulfurization process. The obtained samples were characterized by using X-ray diffraction (XRD), fourier transform infrared spectra (FTIR), transmission electron microscope (TEM), UV-Vis diffuse reflectance spectra (DRS), and thermal analysis. The measured results indicate that CdS species in the composites exist in the form of pillars and nanoparticles, the crystallized CdS particles are in the hexagonal symmetry. The photocatalytic activities of the pillared nanocomposite were enhanced significantly comparing with the bare rectorite and the pure CdS. Moreover, the photostabilities of the obtained nanocomposites are also better than that of the pure CdS due to the hosts retard the photocorrosion of the CdS.  相似文献   

20.
Ti-spessartite, Ti-andradite and its indium homolog, Ca3In2(Si, Ti)3O12, have been synthesized and investigated by infrared (ir) spectroscopy. The use of isotopic species (46Ti-50Ti) gives the unequivocal proof that some of the additional bands observed in the 800–600 cm?1 region are due to TiO4 tetrahedra. For Si-Ti replacements up to 10 mol%, the localization of Ti on the available tetrahedral sites depends on the nature of the cations. For the In garnet all (or nearly all) Ti is located on tetrahedral sites; in Ti-andradite Ti is distributed over tetrahedral and octahedral sites, tetrahedral sites being thus occupied, in part by Ti (ir band near 700 cm?1) and in part by Fe (ir band near 650 cm?1); and Ti-spessartite the presence of Ti on tetrahedral sites is doubtful, these sites being essentially occupied by Al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号