首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
闫滨  高真伟 《岩土力学》2006,27(Z2):548-552
将粒子群算法(PSO)引入大坝监测领域,提出一种基于粒子群神经网络(PSONN)的大坝监控预报模型。该模型充分发挥PSO的全局寻优能力和BP神经网络局部细致搜索优势,给BP神经网络提供了良好的初始权值。对逐一粒子群(SPSONN)、整体粒子群(WPSONN)、逐一BP(SBPNN)及整体BP(WBPNN)4种预报模型的对比分析表明:逐一预报模型(SPSONN和SBPNN)的预报精度明显高于对应的整体预报模型(WPSONN和WBPNN)的预报精度;与BP神经网络模型相比,PSONN模型不仅收敛速度明显加快,而且预报精度也有较大提高,尤其是SPSONN模型,其高精度和短历时性完全满足实时预报的需要,可以准确、有效地应用于大坝监测量的实时预报。  相似文献   

2.
Drought is one of the most important natural hazards in Iran. It is especially more prevalent in arid and hyper arid regions where there are serious limitations in regard to providing sufficient water resources. On the other hand, drought modeling and particularly its prediction can play important role in water resources management under conditions of lack of sufficient water resources. Therefore, in this study, drought prediction in a hyper arid location of Iran (Ardakan region) has been surveyed based on the abilities of artificial neural. Standardized Precipitation Index (SPI) in different time scales (3, 6, 9, 12, and 24 monthly time series) computed based on the data gathered from four rain gauge stations. After evaluation and testing of different artificial neural networks (ANN) structures, gradient descent back propagation (traingd) network showed higher abilities than others. Then, the predictions of SPI time series with different monthly lag times (1:12 months) were tested. Generally, drought prediction by ANNs in the Ardakan region has shown considerable results with the correlation coefficient (R) more than 0.79 and in the most cases and it rises more than 0.90, which indicates the ANN’s ability of drought prediction.  相似文献   

3.
基于粒子迁徙的粒群优化算法及其在岩土工程中的应用   总被引:2,自引:1,他引:2  
常晓林  喻胜春  马刚  周伟 《岩土力学》2011,32(4):1077-1082
受自然界物种迁徙的启发,提出了一种新的改进的粒群优化算法(MPSO)。算法初始化时,将粒子随机地划分为若干个子粒群,每个子粒群按照给定的策略独立演化,在演化中的指定时段进行粒子的随机迁徙和自适应变异,以保持整个种群的多样性,避免早熟收敛。基准测试函数的计算结果表明,MPSO算法的性能优于其他几种改进算法。堆石体幂函数流变模型,参数较多,具有很强的非线性,将MPSO算法应用到堆石体幂函数流变模型的参数反演中。计算结果表明,利用反演的流变模型参数计算的坝体流变变形与实测变形在发展规律和数值上均比较吻合,证明MPSO算法在多参数、强非线性的复杂模型参数反演中的优越性。  相似文献   

4.
A feedforward neural network with one hidden layer and five neurons was trained to recognize the distance to kuroko mineral deposits. Average amounts per hole of pyrite, sericite, and gypsum plus anhydrite as measured by X-rays in 69 drillholes were used to train the net. Drillholes near and between the Fukazawa, Furutobe, and Shakanai mines were used. The training data were selected carefully to represent well-explored areas where some confidence of the distance to ore was assured. A logarithmic transform was applied to remove the skewness of distance and each variable was scaled and centered by subtracting the median and dividing by the interquartile range. The learning algorithm of annealing plus conjugate gradients was used to minimize the mean squared error of the scaled distance to ore. The trained network then was applied to all of the 152 drillholes that had measured gypsum, sericite, and pyrite. A contour plot of the neural net predicted distance to ore shows fairly wide areas of 1 km or less to ore; each of the known deposit groups is within the 1 km contour. The high and low distances on the margins of the contoured distance plot are in part the result of boundary effects of the contouring algorithm. For example, the short distances to ore predicted west of the Shakanai (Hanaoka) deposits are in basement. However, the short distances to ore predicted northeast of Furotobe, just off the figure, coincide with the location of the Nurukawa kuroko deposit and the Omaki deposit, south of the Shakanai-Hanaoka deposits, seems to be on an extension of short distance to ore contour, but is beyond the 3 km limit from drillholes. Also of interest are some areas only a few kilometers from the Fukazawa and Shakanai groups of deposits that are estimated to be many kilometers from ore, apparently reflecting the network's recognition of the extreme local variability of the geology near some deposits.  相似文献   

5.
基于粒子群优化的BP神经网络模型参考自适应控制系统   总被引:1,自引:0,他引:1  
将粒子群优化的BP神经网络作为模型,参考自适应控制系统的控制器,把参考模型输出与系统实际输出的均方误差作为PSO-BP神经网络的适应函数,通过PSO算法强大的搜索性能使自适应控制系统的均方误差最小化。仿真实例结果表明,基于粒子群优化算法的BP神经网络自适应控制系统收敛快、精度高,有较好的网络的泛化和适应能力,能够很好地控制系统的输出跟随参考模型的输出。  相似文献   

6.
为避免粒子群算法(PSO)早熟的缺点,设计了一种双种群进化粒子群算法(DE-PSO)。DE-PSO是基于PSO,引入选择、交叉及差分变异操作,并结合合理有效的粒子评价方法及越界处理方法之后形成的。将DE-PSO应用于两个地下水管理模型算例,第一个算例DE-PSO解的总抽水量分别比遗传算法(GA)、模拟退火算法(SA)和PSO减少了64、256、207 m3/d,第二个算例DE-PSO解的总治理成本分别比GA、SA和PSO减少了57.74、151.93、76.59万元。两个算例中DE-PSO都表现出稳定的进化趋势,寻优效率好于GA、SA和PSO,可以有效求解地下水管理模型问题。  相似文献   

7.
8.
There is no gainsaying that determining the optimal number, type, and location of hydrocarbon reservoir wells is a very important aspect of field development planning. The reason behind this fact is not farfetched—the objective of any field development exercise is to maximize the total hydrocarbon recovery, which for all intents and purposes, can be measured by an economic criterion such as the net present value of the reservoir during its estimated operational life-cycle. Since the cost of drilling and completion of wells can be significantly high (millions of dollars), there is need for some form of operational and economic justification of potential well configuration, so that the ultimate purpose of maximizing production and asset value is not defeated in the long run. The problem, however, is that well optimization problems are by no means trivial. Inherent drawbacks include the associated computational cost of evaluating the objective function, the high dimensionality of the search space, and the effects of a continuous range of geological uncertainty. In this paper, the differential evolution (DE) and the particle swarm optimization (PSO) algorithms are applied to well placement problems. The results emanating from both algorithms are compared with results obtained by applying a third algorithm called hybrid particle swarm differential evolution (HPSDE)—a product of the hybridization of DE and PSO algorithms. Three cases involving the placement of vertical wells in 2-D and 3-D reservoir models are considered. In two of the three cases, a max-mean objective robust optimization was performed to address geological uncertainty arising from the mismatch between real physical reservoir and the reservoir model. We demonstrate that the performance of DE and PSO algorithms is dependent on the total number of function evaluations performed; importantly, we show that in all cases, HPSDE algorithm outperforms both DE and PSO algorithms. Based on the evidence of these findings, we hold the view that hybridized metaheuristic optimization algorithms (such as HPSDE) are applicable in this problem domain and could be potentially useful in other reservoir engineering problems.  相似文献   

9.
位移反分析的粒子群优化-高斯过程协同优化方法   总被引:2,自引:0,他引:2  
针对采用随机全局优化技术进行岩土工程位移反分析存在数值计算量大、效率低的问题,将粒子群优化算法与高斯过程机器学习技术相结合,提出了位移反分析的粒子群优化-高斯过程协同优化方法。该方法利用全局寻优性能优异的粒子群优化算法进行寻优的基础上,采用高斯过程机器学习模型不断地总结历史经验,预测包含全局最优解的最有前景区域,通过提高粒子群搜索效率并降低适应度评价次数,进而有效地降低位移反分析过程中的数值计算工作量。多种测试函数的数学验证和工程算例的研究结果表明该方法是可行的,与传统方法相比较,可显著地降低位移反分析的计算耗时。  相似文献   

10.
Gao  Zemin  Ding  Mingtao 《Natural Hazards》2022,113(2):833-858
Natural Hazards - Landslides in mountain settlements are among the most widespread and dangerous geohazards. In this study, we aimed to assess landslide susceptibility using Wenchuan, southwest...  相似文献   

11.
Metal-complex dyes are widely used in textile industry, but harmful to the environment and human health due to aromatic structure and heavy metal ions. The objective of this work was to evaluate the adsorption potential of bamboo biochar for the removal of metal-complex dye acid black 172 from solutions. Freundlich model was more suitable for the adsorption process of bamboo biochar than Langmuir isotherm, indicating multilayer adsorption of acid black 172 on a heterogeneous bamboo biochar surface. Adsorption kinetics analysis of pseudo-second-order and Weber–Morris models revealed that intraparticle transport was not the only rate-limiting step. The bamboo biochar exhibited a good adsorption performance even at high ionic strength. Analysis based on the artificial neural network indicated that the temperature with a relative importance of 29 % appeared to be the most influential parameter in the adsorption process for dye removal, followed by time, ionic strength, pH and dye concentration.  相似文献   

12.
Ghani  Sufyan  Kumari  Sunita 《Natural Hazards》2022,111(3):2995-3029
Natural Hazards - The present research aims to co-relate the plasticity and liquefaction response of soil as well as its significance in defining liquefaction probability. To accomplish this,...  相似文献   

13.
14.
基于PSO-PP的围岩稳定性评价   总被引:1,自引:0,他引:1  
徐飞  徐卫亚  温森  刘造保  赵延喜 《岩土力学》2010,31(11):3651-3655
围岩的稳定性评价是一个复杂的不确定系统问题。结合投影寻踪方法、粒子群算法和逻辑斯谛曲线函数,建立了围岩稳定性评价的粒子群优化投影寻踪(projection pursuit based on particle swarm optimization,PSO-PP)模型。该模型一方面采用粒子群算法优化投影指标函数及逻辑斯谛曲线函数参数,确保了模型的准确性;另一方面利用逻辑斯谛曲线函数建立投影值与经验等级之间的非线性关系。模型的测试结果显示了良好的精度,实例分析结果与实际状态完全一致,表明该模型在围岩稳定性评价中的可行性和有效性。  相似文献   

15.
基于微粒群算法的大坝材料参数反分析研究   总被引:1,自引:0,他引:1  
宋志宇  李俊杰 《岩土力学》2007,28(5):991-994
将微粒群算法应用于大坝参数反分析,同时分析了群体规模对算法的搜索效率和搜索质量的影响以及微粒群反分析算法的数值稳定性。对算例的分析结果表明,基于微粒群算法的大坝参数反分析方法简便易行,收敛精度高,且具有很好的抗噪音能力,是一种新的有效、可靠的参数反分析方法。  相似文献   

16.
本文讨论了利用粒子追踪方法模拟岩体三维裂隙网络中溶质迁移的问题.在本研究中裂隙为圆盘形,具有一定的张开宽度;其中流体的流动为面状流,发生在整个裂隙圆盘范围内.粒子追踪时考虑了对流、纵向弥散和横向弥散.利用提出的方法模拟了一个野外实际钻孔示踪试验.对模拟得到的示踪剂恢复曲线与实测的回收曲线进行了对比,二者的结果基本一致.  相似文献   

17.
非饱和土中溶质地表径流迁移模型及解析模拟   总被引:3,自引:2,他引:3       下载免费PDF全文
针对非饱和农田在降雨引起肥料溶质地表径流迁移流失的实际问题,建立了二层结构溶质地表径流迁移模型,根据溶质质量守恒定律和水量平衡原理,求得模型的解析解,并采用室内非饱和土壤实验验证解析模型的合理性。通过敏感性分析,探讨了模型参数和土壤物理参数对溶质地表径流迁移流失过程的影响。研究结果表明:非饱和土的吸附性增大将增强土壤溶质迁移流失到地表径流水的能力;土壤干容重增大将减少土壤溶质的地表径流迁移;土壤的初始体积含水率越高,土壤溶质的地表径流运移作用越强。  相似文献   

18.
Determining the optimum type and location of new wells is an essential component in the efficient development of oil and gas fields. The optimization problem is, however, demanding due to the potentially high dimension of the search space and the computational requirements associated with function evaluations, which, in this case, entail full reservoir simulations. In this paper, the particle swarm optimization (PSO) algorithm is applied for the determination of optimal well type and location. The PSO algorithm is a stochastic procedure that uses a population of solutions, called particles, which move in the search space. Particle positions are updated iteratively according to particle fitness (objective function value) and position relative to other particles. The general PSO procedure is first discussed, and then the particular variant implemented for well optimization is described. Four example cases are considered. These involve vertical, deviated, and dual-lateral wells and optimization over single and multiple reservoir realizations. For each case, both the PSO algorithm and the widely used genetic algorithm (GA) are applied to maximize net present value. Multiple runs of both algorithms are performed and the results are averaged in order to achieve meaningful comparisons. It is shown that, on average, PSO outperforms GA in all cases considered, though the relative advantages of PSO vary from case to case. Taken in total, these findings are very promising and demonstrate the applicability of PSO for this challenging problem.  相似文献   

19.
大坝安全诊断的混沌优化神经网络模型   总被引:2,自引:0,他引:2  
曹茂森  邱秀梅  夏宁 《岩土力学》2006,27(8):1344-1348
为了提高大坝变形的预测精度,采用小波变换和分形理论对大坝位移观测数据的非线性动力学特性进行了分析,揭示了其具有低维混沌动力特性,这为大坝变形预测模型的建立提供了理论依据和先验知识。基于低维混沌动力特性,设计了能捕获大坝位移观测数据全局动力特性,兼具神经网络模型结构优化和动力机制时新的混沌优化神经网络大坝变形预测模型。在工程实例中,由多个度量指标组成量化评价体系,对模型预测性能进行综合评价,结果表明,所建模型比传统BP神经网络和ARMA模型具有更高的预测精度。  相似文献   

20.
Use of artificial neural network for spatial rainfall analysis   总被引:1,自引:0,他引:1  
In the present study, the precipitation data measured at 23 rain gauge stations over the Achaia County, Greece, were used to estimate the spatial distribution of the mean annual precipitation values over a specific catchment area. The objective of this work was achieved by programming an Artificial Neural Network (ANN) that uses the feed-forward back-propagation algorithm as an alternative interpolating technique. A Geographic Information System (GIS) was utilized to process the data derived by the ANN and to create a continuous surface that represented the spatial mean annual precipitation distribution. The ANN introduced an optimization procedure that was implemented during training, adjusting the hidden number of neurons and the convergence of the ANN in order to select the best network architecture. The performance of the ANN was evaluated using three standard statistical evaluation criteria applied to the study area and showed good performance. The outcomes were also compared with the results obtained from a previous study in the area of research which used a linear regression analysis for the estimation of the mean annual precipitation values giving more accurate results. The information and knowledge gained from the present study could improve the accuracy of analysis concerning hydrology and hydrogeological models, ground water studies, flood related applications and climate analysis studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号