首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five sediment cores were collected in July 2008 from Buckingham Canal, Ennore, India, a water body that is influenced by domestic and industrial effluents. Downcore variations in trace metal concentrations—Ni, Pb, Mn and Zn at every 2.5 cm increment was determined through acid extraction (hydro fluoric acid, nitric acid and sulphuric acid) and analysed by atomic emission spectrophotometer. The sandy clay environment is composed mostly of medium sized grains. Among the four trace metals studied in five cores, Mn and Ni are the highest and the least occurring metals respectively. Quantitative indices such as geoaccumalation index, anthropogenic factor, enrichment factor, contamination factor and degree and pollution load indices were computed. All these analyses classify Ennore as uncontaminated or moderately contaminated. Zn has the highest anthropogenic factor (2.29) indicating the increasing concentration of Zn in the recent times. Zn enrichment is observed only at surface sediments (top 7.5 cm) C4.  相似文献   

2.
Trace metal concentrations were investigated in a recent sediment core collected from the Rehri Creek area of the Karachi coast,Sindh-Pakistan.The core was sliced horizontally at 2.5-cm intervals to determine grain size,sediment composition,pH,organic matter,and acid-leachable trace metals:cadmium,chromium,copper,lead,and zinc.The trace metals were analyzed by ICP.To separate anthropogenic from geogenic input,several approaches were made,including comparison with sediment quality guidelines—ecotoxicological sense of heavy metal contamination and classification by quantitative indexes.Grain-size analysis and sediment composition of core sample show a sandy nature with neutral pH.Elemental sequence(ES)of the trace metals is in the order of Zn(19.2-109.56 ppm)>Si(66.46-101.71 ppm)>Ba(12.05-26.86 ppm)>As(8.18-17.36 ppm)>Ni(4.2-14.69 ppm)>Cr(3.02-9.62 ppm)>Pb(2.79-6.83 ppm)>Cu(2.2-5.29 ppm)>Co(0.9-2.05 ppm).Thus it is likely that the area may face a serious threat of metal pollution with the present deposition rates unless stringent pollution control norms are adopted.The Sediment Geo-accumulation Index shows that there is no Cr,Cu,Ni,Pb,Zn,or Fe pollution;however,the former index and the Pollution Load Index indicate arsenic pollution in the sediments.  相似文献   

3.
Five sediment cores from the fresh water region of the Vembanad wetland system were studied for the trace element contents The average concentration of iron, manganese, nickel, copper, zinc, cadmium, lead, mercury and chromium were determined. The core samples were collected using gravity type corer, digested with a mixture of nitric acid and perchloric acid and analyzed by atomic absorption spectrophotometry. Heavy metals such as iron, copper, nickel and zinc reported enrichment towards the surface of the core sediment sample collected from the centre of the lake. Lead, cadmium and mercury showed uniform distribution through out the core. Quality of the sediments were evaluated based on sediment quality guidelines, pollution load index, sum of toxic units and with effect range low/effect range median and threshold effect level/probable effect level values of Environmental Protection Agency guidelines. The degree of contamination for each station was determined. The concentration of different heavy metals has been compared with the world average concentration of shale values. Results of the analysis showed that Vembanad lake is facing serious metal pollution with increased rate of deposition.  相似文献   

4.
The impact of increasing urbanization on the quality of a river system has been investigated by examining the current concentration of trace metals in the Chattahoochee River south of Atlanta, GA, and comparing these to previously published historical sediment data from reservoirs along the river. The lack of historical data for dissolved metal concentrations prior to 1980 requires an approach using these historic metal data from sediment cores. Core data are combined with current suspended load and dissolved metal data to “backcast” dissolved metal concentrations in the metro-Atlanta portion of the Chattahoochee River. The data suggest that the per capita input of dissolved trace metals have actually decreased since the 1920s, but anthropogenic inputs of metal are still a substantial water quality issue.  相似文献   

5.
Water and sediment samples were collected from 20 location of the Buriganga river of Bangladesh during Summer and Winter 2009 to determine the spatial distribution, seasonal and temporal variation of different heavy metal contents. Sequential extraction procedure was employed in sediment samples for the geochemical partitioning of the metals. Total trace metal content in water and sediment samples were analyzed and compared with different standard and reference values. Concentration of total chromium, lead, cadmium, zinc, copper, nickel, cobalt and arsenic in water samples were greatly exceeded the toxicity reference values in both season. Concentration of chromium, lead, copper and nickel in sediment samples were mostly higher than that of severe effect level values, at which the sediment is considered heavily polluted. On average 72 % chromium, 92 % lead, 88 % zinc, 73 % copper, 63 % nickel and 68 % of total cobalt were associated with the first three labile sequential extraction phases, which portion is readily bioavailable and might be associated with frequent negative biological effects. Enrichment factor values demonstrated that the lead, cadmium, zinc, chromium and copper in most of the sediment samples were enriched sever to very severely. The pollution load index value for the total area was as high as 21.1 in Summer and 24.6 in Winter season; while values above one indicates progressive deterioration of the sites and estuarine quality. The extent of heavy metals pollution in the Buriganga river system implies that the condition is much frightening and may severely affect the aquatic ecology of the river.  相似文献   

6.
Vertical profiles of trace metal (Cd, Pb, Zn, Cu, Ni) concentrations, organic matter content, carbonate content and granulometric composition were determined in two sediment cores from the submarine pit Dragon Ear (Middle Adriatic). Concentrations of the analyzed metals (Cd: 0.06–0.12 mg kg−1, Pb: 28.5–67.3 mg kg−1, Zn: 17.0-65.4 mg kg−1, Cu: 21.1–51.9 mg kg−1, Ni: 27.8–40.2 mg kg−1) were in usual range for Adriatic carbonate marine sediments. Nevertheless, concentrations of Cu, Zn, and especially Pb in the upper layer of sediments (top 12 cm) were higher than in bottom layer, while Cd and Ni concentration profiles were uniform. Regression analysis and principal component analysis were used to interpret distribution of trace metals, organic matter and carbonate content in sediment cores. Results of both analysis showed that concentrations of all trace metals in the core below the entrance to the pit were significantly positively correlated with organic matter and negatively correlated with carbonate, while in the core more distant from the entrance only Pb showed significant positive correlation with organic matter. Obtained results indicated that, except for lead which was enriched in surface sediment, in the time of sampling (before the building of the nautical marina) investigated area belonged to unpolluted areas.  相似文献   

7.
Distribution of seven major and trace elements (aluminum, iron, calcium, cobalt, copper, vanadium and manganese) and total organic matter were assessed for sediment cores, collected from the southwest of Caspian Sea sediment in September 2008. Sedimentation rate of 0.9?cm/year was obtained based on 210 Pb and 137 Cs activity study of sediment cores. The major and trace metal distributions over whole lengths of core lengths (14?C168?cm) were found to be uniform (except for Al, Fe and Ca). Such uniform distribution of elements over whole lengths of the cores of the study area indicates similarity among the lithogenous material delivered into the Caspian Sea by rivers running into the southern coast. Enrichment factor (EF) and modified Muller??s formula of geoaccumulation index I poll (intensity of pollution) evaluated the degree of sediment contamination. The results of pollution indices are indicative of non-pollution status in the area of study. From the first to third transect, Al, Fe and Mn concentrations increase. Heavy metal concentrations show relatively lower elemental concentrations in the third transect, possibly due to distance from anthropogenic sources. Cluster analysis shows Cu and Co grouped in different clusters, while Mn, V and Fe display closer similarity coefficients and similar sources. The results of partition studies reveal the percentile of loose ions portion of the metals as: $$ {\text{Cu}}\, (25.4\%) > {\text{Co}}\,(15.1\%)> {\text{Mn}}\,( {7.5\% }) > {\text{V}}\, (5.8\%) > {\text{Fe}}\,(0.2\%) $$ It shows that Cu and Co are the most mobile metals that can be easily released into water under changing environmental conditions. There seems to be a slight increasing trend in the pollution level of the sediments of the study area for copper and cobalt over the last 60?years.  相似文献   

8.
Utilizing the sequential extraction procedure (acid soluble, reducible, oxidizable, and residual) proposed by The European Community Bureau of Reference (BCR), the trace metals present in the sediments of the Ergene River, Turkey, were determined. The sediment samples were collected from 10 sampling sites and analyzed to identify the concentrations of cadmium, cobalt, chromium, copper, manganese, nickel, lead and zinc. The flame atomic absorption spectrometer was used for metal determination. The validation of the results was checked by the analysis of the BCR-701 standard reference material. The relationship existing between the sediment characteristics and metal fractions was identified using the correlation analysis. Hierarchical cluster analysis was performed to find out the grouping of the sampling sites based on the similarities of the heavy metals in the bioavailable fraction. When the extractable amounts of heavy metals are considered, the quantity of the mobile fractions (viz., acid soluble, reducible, and oxidizable) of the heavy metals is observed to be higher when compared with that of the immobile fraction (residual). This might be caused by the anthropogenic sources. Besides, it was statistically discovered that the organic matter, pH and clay contents could influence the bonding of the analyte metals in various forms. The cluster analysis revealed three clusters of the sampling stations, with group I (S5-8) and group II (S3, S4 and S9) showing higher environmental risks. The risk assessment code indicated that the highly mobile soluble fractions of Mn, Zn, Cd and Co created a high environmental risk which could result in negative impacts on the aquatic biota.  相似文献   

9.
Surficial and core samples collected from the sedimentary microenvironments of Lakshadweep Archipelago were analysed for their trace metal contents. The synoptical relations in spatial distributions with respect to environmental conditions such as pH, organic carbon and sediment texture were inter-correlated. Some of the metals exhibited good correlations with Fe/Mn, which reflect their similarity in distribution rather than anthropogenic enrichment. Inter-relating the variations in metal—pH relationships with metal—organic carbon, in general, those which exhibited positive correlations with pH, displayed negative interactions with organic carbon content and vice versa. Comparatively, higher values of Fe in the mangrove area of one of the islands highlight the possibility of precipitation of Fe as iron sulphides, which are common in mangrove ecosystem. Based on the contamination factors for Pb, Zn and Cd, as well as the geo-accumulation index of Cd, it can be generalised that some of the islands remain polluted with respect to these elements. An evaluation based on pollution load index shows that none of the islands surveyed for this study posed a serious threat in trace metal pollution. Bray Curtis similarity index was computed to find out the similarity among metals/islands, using non-transformed data of metal concentrations. Group linkage clustering technique was used for drawing dendrograms to show the similarity among them.  相似文献   

10.
Geochemical, mineralogical and textural analyses were carried out in core sediments off Adyar estuary, Bay of Bengal, India to record the contamination trend from urban and industrial activities during the historical past. Quartz, feldspar, kaolinite, chlorite and illite were the main lithogenic and clay minerals; carbonate was the predominant biogenic mineral. Trace metals (Fe, Al, Cu, Cr, Ni, Pb and Zn) indicate more enrichment in the surface sediment layers due to recent anthropogenic activities. The mean anthropogenic factor (AF) values for trace metals in core sediments decreased in the following order: Cr > Ni > Zn > Cu > Pb. The pollution load index (PLI) values in Adyar core sediments ranged from 1 to 1.25 with an average of 1.07. Based on AF, PLI, and sediment quality guidelines values for trace metals, significant metal enrichment and ecological risk were obtained in upper-most sediment layer. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were carried out to find the relationships among the texture size, metals and minerals. The pollution of Adyar estuarine sediments was started in the 1960s, responding to the rapid economic development in Chennai coastal and Adyar estuarine region in the last five decades. Despite these high concentrations in the upper layer, development and expansion of industries are still continuing. The stricter regulations for the discharge and remediation of sediments are urgent for the conservation of environments and human health.  相似文献   

11.
A study was conducted to investigate the trace metal pollution of water and sediments of downstream of Tsurumi River, Yokohama, Japan. Twenty samples of water and sediments were collected from the river starting from Tokyo bay side up to the junction point of the Yagami River. Results show that the mean concentrations of chromium, cupper and nickel in water greatly exceed (>100 times) the surface water standard. The concentration of molybdenum and lead was also higher than standard values while iron and manganese was lower than that of surface water standard. The mean concentration of zinc, cupper, cadmium, lead, chromium, vanadium, bromine and iodine was 381.1, 133.0, 1.0, 40.8, 102.9, 162.0, 71.5 and 10.6 μg/g sediments, respectively and was greatly exceed the average worldwide shale concentrations and average Japanese river sediment values. However, mean concentration of arsenic, nickel and strontium was 11.0, 36.6 and 164.6 μg/g sediments, respectively which was lower than the average shale value. Other analyzed trace metals, including barium, zirconium, rubidium, yttrium, tin, antimony, cesium, lanthanum, cerium, praseodymium and neodymium were detected in river sediments; the concentration of which was close to the Japan’s river sediment average values. Pollution load index values of the sites of the studied area ranged from 1.24 to 7.65 which testify that the river sediments are polluted. The PLI value of the area was, however, high (6.53) as the concentration of trace metals like zinc, cupper, cadmium, lead and chromium were very high and were the major pollutants.  相似文献   

12.
In the present study sediment and water samples collected from Kowsar Dam reservoir in Kohkiluye and Boyerahmad Province, southwest of Iran, are subjected to bulk digestion and chemical partitioning. The concentrations of nickel, lead, zinc, copper, cobalt, cadmium, manganese and iron in water and bed sediment were determined by atomic absorption spectrometry. The concentrations of metals bounded to five sedimentary phases were estimated. On this basis, the proportions of natural and anthropogenic elements were calculated.The anthropogenic portion of elements are as follows: zinc (96 %)> cobalt (88 %)> iron (78 %)> magnesium (78 %)> nickel (78 %)> copper (66 %)> lead (63 %)> cadmium (59 %). The results show sediment contamination by nickel, cadmium and lead, according to the world aquatic sediments and mean earth crust values. Manganese and copper have strong association with organic matter and are of high portion of sulfide bounded ions. Finally, The degree of sediment contamination was evaluated using enrichment factor, geo-accumulation index (Igeo) and pollution index (IPoll). The sediments were identified to be of high cadmium and lead pollution index. The pattern of pollution intensity according to enrichment factor is as follows; manganese (1.25) < copper (1.63) < zinc (1.93) < cobalt (2.35) < nickel (3.83) < lead (12.63) < cadmium (78.32). Cluster analysis was performed in order to assess heavy metal interactions between water and sediment. Accordingly, nickel, cadmium and copper are earth originated. Zinc, copper and manganese are dominated by pH. All the elemental concentrations in water and sediment are correlated except for sedimental copper.  相似文献   

13.
The speciation and mobility of some selected trace metals (As, Cu, Mn, Pb and Zn) in sediments with depth was investigated in the Cam River-mouth (Vietnam) by collecting sediment cores and analysing porewater and sediment composition, complemented with single (ammonium-EDTA) and sequential (BCR 3-step) extractions and mineralogical analysis (XRD). All trace metals show overall decreasing trends with depth in porewater as a result of anthropogenic input in upper sediment layers. High porewater concentrations of As, Mn and Pb in oxic and suboxic sediment layers may result in groundwater pollution. Sediment-bound Pb and Mn dominate in the reducible and the acid-soluble fraction, respectively, while Cu and Zn distribute rather evenly between four extracted fractions. The porewater metal speciation, as predicted by a geochemical model Visual MINTEQ version 3.0, indicates that the toxicity of Cu, Mn, Pb and Zn (presented by the proportions of free metal ions) decreases with depth, while the toxicity of As increases when As(III) becomes more abundant. The dissolved concentrations of trace metals are not only controlled by the precipitation/dissolution of discrete hydroxide/oxide, carbonate and phosphate minerals, but also by sorption processes on major sorbents (i.e. As on goethite, and Mn and Zn on calcite and dolomite). Sulphide minerals do not show any control even in the anoxic zone most likely because of the low concentration of sulphur.  相似文献   

14.
Globally, aquatic ecosystems are highly polluted with heavy metals arising from anthropogenic and terrigenous sources. The objective of this study was to investigate the pollution of stream sediments and possible sources of pollutants in Nakivubo Channel Kampala, Uganda. Stream sediments were collected and analysed for heavy metal concentration using flame atomic absorption spectrophotometer. The degree of pollution in Nakivubo channelized stream sediments for lead, cadmium, copper, zinc, manganese and iron was assessed using enrichment factor, geo-accumulation index and pollution load index. The results indicated that (1) the sediments have been polluted with lead, cadmium and zinc and have high anthropogenic influences; (2) the calculation of geo-accumulation index suggest that Nakivubo stream sediments have background concentration for copper, manganese and Fe (I geo ≤ 0); (3) factor analysis results reveal three sources of pollutants as explained by three factors (75.0 %); (i) mixed origin or retention phenomena of industrial and vehicular emissions; (ii) terrigenous and (iii) dual origin of zinc (vehicular and industrial). In conclusion, the co-precipitation (inclusion, occlusion and adsorption) of lead, cadmium and zinc with manganese and iron hydroxides, scavenging ability of other metals, very low dissolved oxygen and slightly acidic to slightly alkaline pH in stream water could account for the active accumulation of heavy metals in Nakivubo stream sediments. These phenomena may pose a risk of secondary water pollution under sediment disturbance and/or changes in the geo-chemistry of sediments.  相似文献   

15.
The purpose of the present study is to ascertain the extent of the effect that phosphate fertilizer industrial waste has on the surface and bottom sediments of the Ghannouch-Gabes coast, off the Tunisian Mediterranean Sea. To achieve this, 44 surface sediments and 3 core sediments were studied for mineralogy, trace metals (Cd, Cu, Pb, and Zn), F, CaO, and SO3. For all the analyzed elements, the spatial distribution in surface sediments showed that the area located between the commercial and the fishing port of Gabes is the most polluted zone. The ranking of metal contents was found to be Zn > Cd > Cu > Pb. The vertical distribution of trace metals indicated that the highest levels were found in the uppermost segment of the sediment cores compared to the lower depth subsurface due to a continuous input of phosphogypsum (PG) release and confirmed that the area between the two harbors suffered from several types of pollutants compared to reference core C1, collected from other non-industrialized areas. This spatial and vertical distribution is probably due to the harbor piers which acted as barriers and limited the dispersion of PG discharge. The contamination factor, the geoaccumulation index, and the pollution load index were determined. The results obtained confirm the anthropogenic impact on the levels of metal, on the fluorine, calcium, and sulfate concentrations in the area, located between the commercial harbor of Ghannouch and the fishing harbor of Gabes, whereas the concentrations of elements analyzed tends to decrease on both sides of this sector. Statistical analyses (principal component analysis) showed trace metals, fluoride, sulfate, and a large amount of calcium resulting from the same anthropogenic source.  相似文献   

16.
Three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe. The speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques. The concentrations of dissolved major and trace elements (anions, cations, sulfides, dissolved organic C, Cd, Co, Fe, Mn, Ni, Pb and Zn) were used to calculate the thermodynamic equilibrium speciation in pore waters and to evaluate the saturation of minerals (Visual Minteq software). A sequential extraction procedure was applied on anoxic sediment particles in order to assess the main host phases of trace elements. Manganese was the most labile metal in pore waters and was mainly associated with carbonates in particles. In contrast, a weak affinity of Cd, Co, Ni, Pb and Zn with carbonates was established because: (1) a systematic under-saturation was noticed in pore waters and (2) less than 10% of these elements were extracted in the exchangeable and carbonate sedimentary fraction. In the studied anoxic sediments, the mobility and the lability of trace metals, apart from Mn, seemed to be controlled through the competition between sulfidic and organic ligands. In particular, the necessity of taking into account organic matter in the modelling of thermodynamic equilibrium was demonstrated for Cd, Ni, Zn and Pb, the latter element exhibiting the strongest affinity with humic substances. Consequently, dissolved organic matter could favour the stabilization of trace metals in the liquid phase. Conversely, sulfide minerals played a key role in the scavenging of trace metals in sediment particles. Finally, similar trace metal lability rankings were obtained for the liquid and solid phases.  相似文献   

17.
Four sediment cores representing adjacent mudflat and mangrove sub-environments of middle estuary (Shastri) were analyzed for sand, silt, clay, and organic carbon. Total metal concentration of iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn), chromium (Cr), copper (Cu), cobalt (Co), and lead (Pb) and chemical speciation of Fe, Mn, and Co on selected samples was also carried out on mudflat cores. The sediments in the upper middle estuary were found to be deposited under highly varying hydrodynamic energy conditions; whereas lower middle estuary experienced relatively stable hydrodynamic energy conditions with time. The tributary joining the river near the upper middle estuary is found to be responsible for the addition of enhanced organic carbon and metal concentrations. Speciation study indicated Fe and Co are from natural lithogenic origin while Mn is derived from anthropogenic sources. Higher Mn and Co than apparent effects threshold can pose a high risk of toxicity to organisms associated with these sediments.  相似文献   

18.
研究测定了百朗地下河大石围天坑段沉积柱芯中金属元素和沉积有机质(SOM)浓度,结合210Pb定年和历史事件记载,恢复了1932-2007年间百朗地下河流域的污染历史。研究结果表明,地下河沉积柱中主要有毒重金属Cd、Hg分别超过广西土壤背景值3.4和0.6倍,超过中国土壤背景值11.2和2.7倍;1932年至2007年间;总体上沉积柱中各重金属元素的垂直分布趋势相似,呈现不同程度的上升趋势;并推演了历史上农民运动、抗日战争、大跃进、改革开放初期和经济快速发展期等事件是造成百朗地下河流域金属元素变化的主要原因;尤其是沉积柱中钙与镁的垂直变化显示了1983年以来流域岩溶石山地区进入一个新的建设高潮。相关性分析和聚类分析表明,Cr、Pb主要来源于自然环境;Fe、Cu、Ni、Zn、As、MgO来源为自然和人为混合源;Cd、Hg、Mn、CaO和SOM主要来源于人为污染源;与多环芳烃相关性分析显示Zn、Cd和As部分来源为人为的燃煤污染。因此沉积柱较好地记录了百朗地下河流域重金属污染历史。   相似文献   

19.
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.  相似文献   

20.
In the present study, the geochemistry of 49 surficial-bed and 101 core sediment samples is investigated to clarify the origin of trace metals in the Cua Luc Estuary and Ha Long Bay, which is a famous World Natural Heritage Site in Vietnam. Moreover, the potential mobility of trace metals is also assessed and their relationship with reference elements (Al, Fe, and Ca) and organic matter is established in order to make recommendations for sediment management and monitor future pollution. Generally, trace metals display higher concentrations in Ha Long Bay compared to the Cua Luc Estuary. However, this is controlled by the distribution of the fine (clay?+?silt) fraction, and hence the concentrations of Al, Fe, Ca, and organic matter (OM). The comparison of concentrations of trace metals (normalized towards Al) between the surficial sediments and the subsurface core sediments based on 137Cs datings indicates that almost all surficial-sediment data fall inside or deviate slightly from the 95 % prediction interval of a background regression line. In addition, as determined by a Community Bureau of Reference three-step extraction, trace metals mainly dominate in the residual fraction (assumed to relate to crystal lattice of primary and secondary minerals), and this fraction does not change much in recent sediment layers. Therefore, trace metals are supposed to be derived from natural bio/geochemical processes and are characterized by a low potential mobility. Consequently, the established linear regression relationships of trace metal vs. Al or multiple regression relationships of trace metal vs. multi-elements (Al, Fe, Ca, and OM) are useful for the prediction of background levels of trace metals in sediments in future pollution monitoring and assessment programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号