首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mark A. Wieczorek 《Icarus》2008,196(2):506-517
The polar caps of Mars have long been acknowledged to be composed of unknown proportions of water ice, solid CO2 (dry ice), and dust. Gravity and topography data are here analyzed over the southern cap to place constraints on its density, and hence composition. Using a localized spectral analysis combined with a lithospheric flexure model of ice cap loading, the best fit density of the volatile-rich south polar layered deposits is found to be 1271 kg m−3 with 1-σ limits of 1166 and 1391 kg m−3. The best fit elastic thickness of this geologically young deposit is 140 km, though any value greater than 102 km can fit the observations. The best fit density implies that about 55% dry ice by volume could be sequestered in these deposits if they were completely dust free. Alternatively, if these deposits were completely free of solid CO2, the dust content would be constrained to lie between about 14 and 28% by volume. The bulk thermal conductivity of the polar cap is not significantly affected by these maximum allowable concentrations of dust. However, even if a moderate quantity of solid CO2 were present as horizontal layers, the bulk thermal conductivity of the polar cap would be significantly reduced. Reasonable estimates of the present day heat flow of Mars predict that dry ice beneath the thicker portions of the south polar cap would have melted. Depending on the quantity of solid CO2 in these deposits today, it is even possible that water ice could melt where the cap is thickest. If independent estimates for either the dust or CO2 content of the south polar cap could be obtained, and if radar sounding data could determine whether this polar cap is presently experiencing basal melting or not, it would be possible to use these observations to place tight constraints on the present day heat flow of Mars.  相似文献   

2.
In order to find an explanation for the origin of the martian crustal dichotomy, a number of recent papers have examined the effect of layered viscosity on the evolution of a degree-1 mantle convection, e.g. Roberts and Zhong [Roberts, J.H., Zhong, S., 2006. J. Geophys. Res. 111. E06013] and Yoshida and Kageyama [Yoshida, M., Kageyama, A., 2006. J. Geophys. Res. 111, doi:10.1029/2005JB003905. B03412]. It was found that a mid-mantle viscosity jump, combined with highly temperature- and depth-dependent rheology, are effective in developing a degree-1 convection within a short timescale. Such a layered viscosity profile could be justified by martian mineralogy. However, the effect of a degree-1 convective planform on the crustal thickness distribution has not yet been demonstrated. It is not obvious whether a thinner crust, due to sublithospheric erosion and crustal thinning, or a thicker crust, due to enhanced crustal production, would form above the hemisphere of mantle upwelling. Also, the general shape of the dichotomy, which is not strictly hemispherical, has not yet been fully investigated. Here we propose a model of the crustal patterns produced by numerical simulations of martian mantle convection, using the finite-volume multigrid code StagYY [Tackley, P.J., 2008. Phys. Earth Planet. Int. 107, 7-18, doi:10.1016/j.pepi.2008.08.005] A self-consistent treatment of melting, crustal formation and chemical differentiation has been added to models of three-dimensional thermal convection. This allows us to obtain global maps of the crustal thickness distribution as it evolves with time. The obtained results demonstrate that it is indeed possible to form a crustal dichotomy as a consequence of near degree-1 mantle convection early in Mars' history. We find that some of the observed patterns show intriguing first order similarities to the elliptical shape of the martian dichotomy. In all models, the region of thick crust is located over the region of mantle upwelling, which itself is a ridge-like structure spread over roughly one half of the planet, a planform we describe as “one-ridge convection.”  相似文献   

3.
M. Grott  D. Breuer 《Icarus》2008,193(2):503-515
Estimates of the martian elastic lithosphere thickness Te imply that Te increased from around 20 km in the Noachian to about 70 km in the Amazonian period. A phase of rapid lithospheric growth is observed during the Hesperian and we propose that this elastic thickness history is a consequence of the martian crustal rheology and its thermal evolution. A wet crustal rheology is found to generate a mechanically incompetent layer in the lower crust during the early evolution and the rapid growth of Te during the Hesperian results from the disappearance of this layer due to planetary cooling. The incompetent layer and the related rapid lithospheric growth are absent for a dry basaltic crustal rheology, which is therefore incompatible with the observations. Furthermore, we find that the observed elastic thickness evolution is best compatible with a wet mantle rheology, although a dry mantle cannot be ruled out. It therefore seems likely that rheologically significant amounts of water were retained in the Martian crust and mantle after planetary accretion.  相似文献   

4.
Internal layers in ice masses can be detected with ice-penetrating radar. In a flowing ice mass, each horizon represents a past surface that has been subsequently buried by accumulation, and strained by ice flow. These layers retain information about relative spatial patterns of accumulation and ablation (mass balance). Internal layers are necessary to accurately infer mass-balance patterns because the ice-surface shape only weakly reflects spatial variations in mass balance. Additional rate-controlling information, such as the layer age, the ice temperature, or the ice-grain sizes and ice-crystal fabric, can be used to infer the absolute rate of mass balance. To infer mass balance from the shapes of internal layers, we solve an inverse problem. The solution to the inverse problem is the best set or sets of unknown boundary conditions or initial conditions that, when used in our calculation of ice-surface elevation and internal-layer shape, generate appropriate predictions of observations that are available. We also show that internal layers can be used to infer martian paleo-surface topography from a past era of ice flow, even though the topography may have been largely altered by subsequent erosion. We have successfully inferred accumulation rates and surface topography from internal layers in Antarctica. Using synthetic data, we demonstrate the ability of this method to solve the corresponding inverse problem to infer accumulation and ablation rates, as well as the surface topography, for martian ice. If past ice flow has affected the shapes of martian internal layers, this method is necessary to infer the spatial pattern and rate of mass balance.  相似文献   

5.
H.M. Böttger  S.R. Lewis  F. Forget 《Icarus》2005,177(1):174-189
This paper describes General Circulation Model (GCM) simulations of the martian water cycle focusing on the effects of an adsorbing regolith. We describe the 10-layer regolith model used in this study which has been adapted from the 1-D model developed by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. Even with a 30-min timestep and taking into account the effect of surface water ice, our fully implicit scheme compares well with the results obtained by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. This means, however, that the regolith is not able to reproduce the diurnal variations in column water vapour abundance of up to a factor of 2-3 as seen in some observations, with only about 10% of the atmospheric water vapour column exchanging with the subsurface on a daily basis. In 3-D simulations we find that the regolith adsorbs water preferentially in high latitudes. This is especially true in the northern hemisphere, where perennial subsurface water ice builds up poleward of 60° N at depths which are comparable to the Odyssey observations. Much less ice forms in the southern high latitudes, which suggests that the water ice currently present in the martian subsurface is not stable under present conditions and is slowly subliming and being deposited in the northern hemisphere. When initialising the model with an Odyssey-like subsurface water ice distribution the model is capable of forcing the simulated water cycle from an arbitrary state close to the Mars Global Surveyor Thermal Emission Spectrometer observations. Without the actions of the adsorbing regolith the equilibrated water cycle is found to be a factor of 2-4 too wet. The process by which this occurs is by adsorption of water during northern hemisphere summer in northern mid and high latitudes where it remains locked in until northern spring when the seasonal CO2 ice cap retreats. At this time the water diffuses out of the regolith in response to increased temperature and is returned to the residual water ice cap by eddie transport.  相似文献   

6.
In order to investigate the formation of martian gullies and the stability of fluids on Mars, we examined about 120 gully images. Twelve HiRISE images contained a sufficient number of Transverse Aeolian Ridges (TARs) associated with the gullies to make the following measurements: overall gully length, length of the alcove, channel and apron, and we also measured the frequency of nearby TARs. Six of the 12 images examined showed a statistically significant negative correlation between overall gully length (alcove, channel and apron length) and TAR frequency. Previous experimental work from our group has shown that at temperatures below ∼200 K, evaporation rate increases by about an order of magnitude as wind speed increases from 0 to ∼15 m/s. Thus the negative correlations we observe between gully length and dune frequency can be explained by formation at temperatures below ∼200 K where wind speed/evaporation is a factor governing gully length. In these cases evaporation of the fluid carving the gully was a constraint on their dimensions. Cases where there is no correlation between gully length and TAR frequency, can be explained by formation at temperatures >200 K. The temperatures are consistent with Global Circulation Model and Thermal Emission Spectrometer (TES) data for these latitudes. The temperatures suggested by these trends are consistent with the fluid responsible for gully formation being a strong brine, such as Fe2(SO4)3 which has a eutectic temperature of ∼200 K. We also find that formation timescales for gullies are 105-106 years.  相似文献   

7.
The North Polar Layered Deposits (PLD) of Mars are climatologically significant because they represent the largest actively-exchanging reservoir of martian water. The kilometer-scale topography of the North PLD is dominated by troughs and scarps, which exhibit highly-correlated surface slopes and total depths. The most widespread theories of PLD evolution presume that the asymmetrical nature of North PLD troughs (characterized by equatorward-facing slopes that are generally steeper than poleward-facing slopes) is the result of preferential H2O sublimation from equatorward-facing trough walls. However, our orbitally-modulated simulations indicate that there is no long-term sublimation advantage of equatorward-facing trough walls, because of the effects of obliquity upon the slope dependence of sublimation rate. In contrast, we propose that viscous relaxation of subsurface water is consistent with the slope and depth distributions of North PLD troughs and scarps. The results of our finite element simulations suggest that a mere 2 K difference in the subsurface temperatures of opposing trough walls is sufficient to produce the observed slope disparity, due to the slower rate of uplift of colder poleward-facing trough walls. Both our sublimation and relaxation simulations indicate that present-day North PLD troughs have formed since 5 Ma and are not sites of long-term deposition; additionally, our results imply that glacial flow may govern the large-scale evolution of the North PLD, especially at high obliquity.  相似文献   

8.
Ralf Greve  Rupali A. Mahajan 《Icarus》2005,174(2):475-485
The evolution and dynamics of the north-polar cap (residual-ice-cap/layered-deposits complex) of Mars is simulated with a thermomechanical ice-sheet model. We consider a scenario with ice-free initial conditions at 5 Ma before present due to the large obliquities which prevailed prior to this time. The north-polar cap is then built up to its present shape, driven by a parameterized climate forcing (surface temperature, surface mass balance) based on the obliquity and eccentricity history. The effects of different ice rheologies and different dust contents are investigated. It is found that the build-up scenarios require an accumulation rate of approximately 0.15-0.2 mm a−1 at present. The topography evolution is essentially independent of the ice dynamics due to the slow ice flow. Owing to the uncertainties associated with the ice rheology and the dust content, flow velocities can only be predicted within a range of two orders of magnitude. Likely present values are of the order of 0.1-1 mm a−1, and a strong variation over the climatic cycles is found. For all cases, computed basal temperatures are far below pressure melting.  相似文献   

9.
Gwendolyn D. Bart 《Icarus》2007,187(2):417-421
Some lunar crater-wall landslides strongly resemble martian gullies, despite the lack of geologically active water on the Moon today or in the past. The lunar features indicate that alcove-channel-apron morphology, attributed on Mars to seepage of liquid water, can also form via a dry landslide mechanism. Therefore a more stringent test than just an alcove-channel-apron morphology is necessary to differentiate dry landslides from water carved gullies.  相似文献   

10.
A.V. Pathare  M.R. Balme  M.C. Towner 《Icarus》2010,209(2):851-853
Competing hypotheses for the diameter dependence of terrestrial and martian dust devil frequency are assessed using new field observations from two sites in the southwestern United States. We show that at diameters less than 12 m, our observed dust devil size-frequency distributions are better fit by an exponential function than by a power law formulation, and discuss the implications for larger dust devils on Earth and Mars.  相似文献   

11.
The origin of the ancient martian crustal dichotomy and the massive magmatic province of Tharsis remains an open problem. Here, we explore numerically a hypothesis for the origin of these two features involving both exogenic and endogenic processes. We propose a giant impact event during the late stage of planetary formation as the source of the southern highland crust. In a second stage, the extraction of excess heat by vigorous mantle convection on the impacted hemisphere leads to massive magmatism, forming a distinct Tharsis-like volcanic region. By coupling short-term and long-term numerical simulations, we are able to investigate both the early formation as well as the 4.5 Gyr evolution of the martian crust. We demonstrate numerically that this exogenic-endogenic hypothesis is in agreement with observational data from Mars.  相似文献   

12.
F. Nimmo  B.G. Bills 《Icarus》2010,208(2):896-904
The long-wavelength topography of Titan has an amplitude larger than that expected from tidal and rotational distortions at its current distance from Saturn. This topography is associated with small gravity anomalies, indicating a high degree of compensation. Both observations can be explained if Titan has a floating, isostatically-compensated ice shell with a spatially-varying thickness. The spatial variations arise because of laterally-variable tidal heating within the ice shell. Models incorporating shell thickness variations result in an improved fit to the observations and a degree-two tidal Love number h2t consistent with expectations, without requiring Titan to have moved away from Saturn. Our preferred models have a mean shell thickness of ≈100 km in agreement with the observed gravity anomalies, and a heat flux appropriate to a chondritic Titan. Shell thickness variations are eliminated by convection; we therefore conclude that Titan’s ice shell is not convecting at the present day.  相似文献   

13.
Without the shielding of a strong intrinsic magnetic field, the martian atmosphere directly interacts with the impacting solar wind. The neutral constituents of the atmospheric corona can be ionized, and then picked up and accelerated by the magnetic field and convection electric field in the solar wind. A significant fraction of pickup ions escape Mars’ gravitational pull and are lost to space. This non-thermal escape process of heavy species is an important mechanism responsible for atmospheric erosion. While there is a perception that the martian magnetic anomalies are significant for the ionospheric density distribution and the bow shock standoff location, little is known about the quantitative influence of the martian crustal magnetic field on the global distribution of escaping pickup ions. In this paper, we apply a newly developed Monte Carlo ion transport model to resolve the crustal field effect on the pickup oxygen ion distribution around Mars. The background magnetic and electric fields, in which test particles are followed, are calculated using an independent three-dimensional multispecies MHD model. The effects of the crustal magnetic field on particle escape are quantified by varying the crustal field orientation in the model setup and comparing the corresponding test particle simulation results. The comparison is made by turning on or off the crustal field or changing the local time of the strongest field from the dayside to the dawnside. It is found that without the protection of the crustal magnetic field, the total amount of atmospheric escape through the tail region would be enhanced by more than a factor of two. It is shown that the crustal magnetic field not only regionally deflects the solar wind around the martian atmosphere, but also has an important global effect on atmospheric erosion and thus on long-term atmospheric evolution.  相似文献   

14.
The Mars Global Surveyor Mars Orbiter Camera wide-angle cameras were used to obtain images of the north and south seasonal and residual polar caps between 1999 and 2003. Wide-angle red camera images were used in assembling mosaics of the north and south polar recessions and regression rates were measured and compared. There are small variations in the north polar recession between 2000 and 2002, especially between LS=7° and LS=50°, however there is no evidence for the plateau in the recession curves that has been observed in some prior years. The south polar recession changes very little from year to year, and the 2001 dust storm had little if any effect on the average cap recession that year. Albedo values of the geographic north pole were measured using wide-angle red and blue camera images, and the residual south polar cap configuration was compared between the three years observed by MOC. The albedo of the geographic north pole generally varies between 0.5 and 0.6 as measured from MOC wide-angle red camera images. There were only minor variations near the edges of the residual south polar cap between the three years examined.  相似文献   

15.
Recent observations suggest methane in the martian atmosphere is variable on short spatial and temporal scales. However, to explain the variability by loss reactions requires production rates much larger than expected. Here, we report results of laboratory studies of methane adsorption onto JSC-Mars-1, a martian soil simulant, and suggest that this process could explain the observations. Uptake coefficient (γ) values were measured as a function of temperature using a high-vacuum Knudsen cell able to simulate martian temperature and pressure conditions. Values of γ were measured from 115 to 135 K, and the data were extrapolated to higher temperatures with more relevance to Mars. Adsorptive uptake was found to increase at lower temperatures and larger methane partial pressures. Although only sub-monolayer methane surface coverage is likely to exist under martian conditions, a very large mineral surface area is available for adsorption as atmospheric methane can diffuse meters into the regolith. As a result, significant methane may be temporarily lost to the regolith on a seasonal time scale. As this weak adsorption is fully reversible, methane will be re-released into the atmosphere when surface and subsurface temperatures rise and so no net loss of methane occurs. Heterogeneous interaction of methane with martian soil grains is the only process proposed thus far which contains both rapid methane loss and rapid methane production mechanisms and is thus fully consistent with the reported variability of methane on Mars.  相似文献   

16.
The crustal dichotomy and the Tharsis rise are the most prominent topographic features on Mars. The dichotomy is largely an expression of different crustal thicknesses in the northern and southern hemispheres, while Tharsis is centered near the equator at the dichotomy boundary. However, the cause for the orientation of the dichotomy and the equatorial location of Tharsis remains poorly understood. Here we show that the crustal thickness variations associated with the dichotomy may have driven true polar wander, establishing the north-south orientation of the dichotomy very early in martian history. Such a reorientation that placed the dichotomy boundary near the equator would also have constrained the Tharsis region on the dichotomy boundary to have originated near the equator. We present a scenario for the early generation and subsequent reorientation of the hemispheric dichotomy, although the reorientation is independent of the formation mechanism. Our results also have implications for the sharply different remanent magnetizations between the two hemispheres.  相似文献   

17.
Maps of the vector components of the Mars crustal magnetic field are constructed at the mapping altitude (360 to 410 km) using a selected set of data obtained with the Mars Global Surveyor magnetometer during 2780 orbits of the planet in 1999. Forward modeling calculations are then applied to six relatively strong and isolated, dominantly dipolar, magnetic anomalies for the primary purpose of estimating bulk directions of magnetization. Assuming that the magnetizing field was a (dipolar) core dynamo field centered in the planet, paleomagnetic pole positions are calculated for the six primary source bodies together with that for a seventh anomaly analyzed earlier. In agreement with several previous studies, it is found that six of the seven pole positions are clustered in what is now the northern lowlands in a region centered northwest of Olympus Mons (mean pole position: 34°±10° N, 202°±58° E). Assuming that the dynamo dipole moment vector was approximately parallel to the rotation axis, the modeling results therefore suggest a major reorientation of Mars relative to its rotation axis after magnetization was acquired. Such a reorientation may have been stimulated by internal mass redistributions associated with the formation of the northern lowlands and Tharsis, for example. A comparison of the mean paleo (magnetic) equator to the global distribution of crustal fields shows that magnetic anomalies tend to occur at low paleolatitudes. The same appears to be true for the Noachian-aged valley networks, which exhibit a broad spatial correlation with the magnetic anomalies. A possible interpretation is that the formation of magnetic anomalies and the valley networks was favored in the tropics where melting of water ice and snow was a stronger source of both surface valley erosion and groundwater recharge during the earliest history of the planet. This would be consistent with models in which hydrothermal alteration of crustal rocks played a role in producing the unusually strong martian magnetic anomalies.  相似文献   

18.
We present measurements of ratios of elements of the scattering matrix of martian analogue palagonite particles for scattering angles ranging from 3° to 174° and a wavelength of 632.8 nm. To facilitate the use of these measurements in radiative transfer calculations we have devised a method that enables us to obtain, from these measurements, a normalized synthetic scattering matrix covering the complete scattering angle range from 0° to 180°. Our method is based on employing the coefficients of the expansions of scattering matrix elements into generalized spherical functions. The synthetic scattering matrix elements and/or the expansion coefficients obtained in this way, can be used to include multiple scattering by these irregularly shaped particles in (polarized) radiative transfer calculations, such as calculations of sunlight that is scattered in the dusty martian atmosphere.  相似文献   

19.
Gerlind Dreibus 《Icarus》2004,167(1):166-169
High phosphorus concentrations in the range of 0.5 wt% in rocks and soil have been measured on the martian surface, terrestrial P concentrations are far less uniform and generally lower. Reactions of terrestrial basalt and granite powders with phosphate solution result in an enrichment of phosphorus in both, with basalt having a far better reactivity than granite. The implications of these results for P on Mars are discussed.  相似文献   

20.
Tetsuya Tokano 《Icarus》2003,164(1):50-78
In an effort to test and to understand the global hydrogen distribution in the shallow subsurface of Mars retrieved by the Mars Odyssey gamma-ray spectrometer, the present state and movement of water are investigated by a coupled global subsurface-atmosphere water cycle model. It was found that the observed global subsurface hydrogen distribution is largely consistent with the modeled global water cycle, so a large fraction of hydrogen is likely to exist as water, at low and mid latitudes in the form of adsorbed water. Under the present climate the water content in the shallow subsurface becomes higher in the northern hemisphere than in the southern hemisphere as a result of global water cycle, regardless of the initial water distribution in the soil or adsorptive capacity. The higher annual maximum soil temperature in the south, stronger net northward transport of atmospheric water vapor, and the emission of vapor from the northern residual polar cap in northern summer contribute to this hemispheric asymmetry. The generally higher adsorptive capacity of clay minerals in the northern plains may further increase this bias. The longitudinal inhomogeneity is caused by several factors, such as thermal inertia, adsorptive capacity, and atmospheric surface pressure. The water abundance is locally high in low thermal inertia regions (e.g., Arabia Terra) and at deep places where the surface pressure is high (e.g., Hellas); it is low in soil with a low adsorptive capacity (e.g., Tharsis) and high thermal inertia regions (e.g., Solis Planum). Most of the soil humidity near the surface at low and mid latitudes may originate from the atmosphere. The model implies that the upper soil layer should be largely ice-free because otherwise an excessive sublimation and vapor emission into the atmosphere in warm seasons would violate the observational constraints. Moreover, the more uniform latitudinal variation of the observed hydrogen abundance near the surface compared to that of deeper layers is indicative of the presence of adsorbed water instead of ground ice because the adsorbed water content does not as steeply depend on latitude as the ground ice stability. Concerning the regolith mineralogy, montmorillonite can much better account for the observed water cycle than palagonite. While the presence of permanent ground ice appears likely in the polar region below a thin layer, large seasonal cycle of phase change between pore ice and adsorbed water may be possible. Regolith adsorption/desorption is neither negligible nor crucial for the seasonal atmospheric water cycle, but the surface-atmosphere coupling is a major prerequisite for the long-term evolution of subsurface water distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号