首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microlensing events towards the Large Magellanic Cloud imply that a sizeable fraction of dark matter is in the form of MACHOs (Massive Astrophysical Compact Halo Objects), presumably located in the halo of the Galaxy. Within the present uncertainties, brown dwarfs are viable candidates for MACHOs. Various considerations strongly suggest that a large number of MACHOs should actually consist of binary brown dwarfs. Yet this circumstance appears to be in flat contradiction with the fact that MACHOs have been detected as unresolved objects so far. We show that such an apparent paradox does not exist within a model in which MACHOs are clumped into dark clusters along with cold molecular clouds, since dynamical friction on these clouds makes binary brown dwarfs very close. Moreover, we argue that future microlensing experiments with more accurate photometric observations can resolve binary brown dwarfs.  相似文献   

2.
The understanding of the gravitational properties of the quantum vacuum might be the next scientific revolution. It was recently proposed that the quantum vacuum contains the virtual gravitational dipoles; we argue that this hypothesis might be tested within the Solar System. The key point is that the quantum vacuum (“enriched” with the gravitational dipoles) induces a retrograde precession of the perihelion. It is obvious that this phenomenon might eventually be revealed by more accurate studies of orbits of planets and orbits of the artificial Earth satellites. However, we suggest that potentially the best “laboratory” for the study of the gravitational properties of the quantum vacuum is the recently discovered dwarf planet Eris with its satellite named Dysnomia; the distance of nearly 100 AU from the Sun makes it the unique system in which the precession of the perihelion of Dysnomia (around Eris) is strongly dominated by the quantum vacuum.  相似文献   

3.
The compositions of the numerous bodies in the Solar System are determined from remote sensing observations, most often spectroscopic, and in some cases direct sampling. Laboratory studies of materials and processes are an essential component of the analysis and interpretation of all compositional data. Planetary atmospheres are composed of gases and aerosols, while the surfaces of the terrestrial planets, asteroids, comets, and planetary satellites are composed of minerals, ices, and organic solids. The principal spectroscopic characteristics of each of these materials are reviewed here. The tables present a synopsis of our current knowledge of the compositions of the principal bodies in the Solar System. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In our present understanding of the Solar System, small bodies (asteroids, Jupiter Trojans, comets and TNOs) are the most direct remnants of the original building blocks that formed the planets. Jupiter Trojan and Hilda asteroids are small primitive bodies located beyond the ‘snow line’, around respectively the L4 and L5 Lagrange points of Jupiter at ~5.2?AU (Trojans) and in the 2:3 mean-motion resonance with Jupiter near 3.9?AU (Hildas). They are at the crux of several outstanding and still conflicting issues regarding the formation and evolution of the Solar System. They hold the potential to unlock the answers to fundamental questions about planetary migration, the late heavy bombardment, the formation of the Jovian system, the origin and evolution of trans-neptunian objects, and the delivery of water and organics to the inner planets. The proposed Trojans’ Odyssey mission is envisioned as a reconnaissance, multiple flyby mission aimed at visiting several objects, typically five Trojans and one Hilda. It will attempt exploring both large and small objects and sampling those with any known differences in photometric properties. The orbital strategy consists in a direct trajectory to one of the Trojan swarms. By carefully choosing the aphelion of the orbit (typically 5.3?AU), the trajectory will offer a long arc in the swarm thus maximizing the number of flybys. Initial gravity assists from Venus and Earth will help reducing the cruise time as well as the ΔV needed for injection thus offering enough capacity to navigate among Trojans. This solution further opens the unique possibility to flyby a Hilda asteroid when leaving the Trojan swarm. During the cruise phase, a Main Belt Asteroid could be targeted if requiring a modest ΔV. The specific science objectives of the mission will be best achieved with a payload that will perform high-resolution panchromatic and multispectral imaging, thermal-infrared imaging/ radiometry, near- and mid-infrared spectroscopy, and radio science/mass determination. The total mass of the payload amounts to 50?kg (including margins). The spacecraft is in the class of Mars-Express or a down-scaled version of Jupiter Ganymede Orbiter. It will have a dry mass of 1200?kg, a total mass at launch of 3070?kg and a ΔV capability of 700?m/s (after having reached the first Trojan) and can be launched by a Soyuz rocket. The mission operations concept (ground segment) and science operations are typical of a planetary mission as successfully implemented by ESA during, for instance, the recent flybys of Main Belt asteroids Steins and Lutetia.  相似文献   

5.
Kris Davidson 《Icarus》1975,26(1):99-101
It is possible that one or more bodies with masses in the range 0.001 to 0.01M⊙ may be loosely bound to the Solar System, at distances of several thousand astronomical units. Such objects would be extremely difficult to detect at visual wavelengths, but they might be discoverable at infrared wavelengths.  相似文献   

6.
Possible precursor signatures in the quasi-periodic variations of solar photospheric fields were investigated in the build-up to one of the deepest solar minima experienced in the past 100 years. This unusual and deep solar minimum occurred between Solar Cycles 23 and 24. We used both wavelet and Fourier analysis to study the changes in the quasi-periodic variations of solar photospheric fields. Photospheric fields were derived using ground-based synoptic magnetograms spanning the period 1975.14 to 2009.86 and covering Solar Cycles 21, 22, and 23. A hemispheric asymmetry in the periodicities of the photospheric fields was seen only at latitudes above ±?45° when the data were divided into two parts based on a wavelet analysis: one prior to 1996 and the other after 1996. Furthermore, the hemispheric asymmetry was observed to be confined to the latitude range of 45° to 60°. This can be attributed to the variations in polar surges that primarily depend on both the emergence of surface magnetic flux and varying solar-surface flows. The observed asymmetry along with the fact that both solar fields above ±?45° and micro-turbulence levels in the inner-heliosphere have been decreasing since the early- to mid-nineties (Janardhan et al. in Geophys. Res. Lett. 382, 20108, 2011) suggest that around this time active changes occurred in the solar dynamo that governs the underlying basic processes in the Sun. These changes in turn probably initiated the build-up to the very deep solar minimum at the end of Cycle 23. The decline in fields above ±?45°, for well over a solar cycle, would imply that weak polar fields have been generated in the past two successive solar cycles, viz. Cycles 22 and 23. A continuation of this declining trend beyond 22 years, if it occurs, will have serious implications for our current understanding of the solar dynamo.  相似文献   

7.
O. White  G. Kopp  M. Snow  K. Tapping 《Solar physics》2011,274(1-2):159-162
Given the numerous ground-based and space-based experiments producing the database for the Cycle 23??C?24 Minimum epoch from September 2008 to May 2009, we have an extraordinary opportunity to understand its effects throughout the heliosphere. We use solar radiative output in this period to obtain minimum values for three measures of the Sun??s radiative output: the total solar irradiance, the Mg ii index, and the 10.7 cm solar radio flux. The derived values are included in the research summaries as a means to exchange ideas and data for this long minimum in solar activity.  相似文献   

8.
Flux ropes are twisted magnetic structures that can be detected by in-situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope populations. As such, are there different populations of flux ropes? The answer is positive and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in-situ data for the four lists were fitted with the same cylindrical force-free field model, which provides an estimate of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a broad dynamic range, we went beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations across the radius range. By doing so, we found that small flux ropes with radius R<0.1 AU have a steep power-law distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distribution. Next, from four CME catalogs, we estimated the expected flux-rope frequency per year at 1 AU. We found that the predicted numbers are similar to the frequencies of MCs observed in-situ. However, we also found that small flux ropes are at least ten times too abundant to correspond to CMEs, even to narrow ones. Investigating the different possible scenarios for the origin of these small flux ropes, we conclude that these twisted structures can be formed by blowout jets in the low corona or in coronal streamers.  相似文献   

9.
In this work, the evolution of the relationship between Solar Cycle Length of solar cycle n (SCL n ) and Solar Cycle Amplitude of the solar cycle n+1 (SCA n+1) is studied by using the R Z and R G sunspot numbers. We conclude that this relationship is only strongly significant in a statistical sense during the first half of the historical record of R Z sunspot number whereas it is considerably less significant for the R G sunspot number. In this sense we assert that these simple lagged relationships should be avoided as a valid method to predict the following solar activity amplitude.  相似文献   

10.
Earth, Moon, and Planets - One meter class telescopes could bring important contributions in the acquisition of lightcurves of near earth asteroids (NEAs), based on which rotations and other...  相似文献   

11.
Mackay  D.H.  Galsgaard  K.  Priest  E.R.  Foley  C.R. 《Solar physics》2000,193(1-2):93-116
In recent papers by Priest et al., the nature of the coronal heating mechanism in the large-scale solar corona was considered. The authors compared observations of the temperature profile along large coronal loops with simple theoretical models and found that uniform heating along the loop gave the best fit to the observed data. This then led them to speculate that turbulent reconnection is a likely method to heat the large-scale solar corona. Here we reconsider their data and their suggestion about the nature of the coronal heating mechanism. Two distinct models are compared with the observations of temperature profiles. This is done to determine the most likely form of heating under different theoretical constraints. From this, more accurate judgments on the nature of the coronal heating mechanism are made. It is found that, due to the size of the error estimates in the observed temperatures, it is extremely difficult to distinguish between some of the different heat forms. In the initial comparison the limited range of observed temperatures (T>1.5 MK) in the data sets suggests that heat deposited in the upper portions of the loop, fits the data more accurately than heat deposited in the lower portions. However if a fuller model temperature range (T<1.0 MK) is used results in contridiction to this are found. In light of this several improvements are required from the observations in order to produce theoretically meaningful results. This gives serious bounds on the accuracy of the observations of the large-scale solar corona in future satellite missions such a Solar-B or Stereo.  相似文献   

12.
13.
Saturn’s satellite Phoebe is the best-characterized representative of large outer Solar System planetesimals, thanks to the close flyby by the Cassini spacecraft in June 2004. We explore the information contained in Phoebe’s physical properties, density and shape, which are significantly different from those of other icy objects in its size range. Phoebe’s higher density has been interpreted as evidence that it was captured, probably from the proto-Kuiper-Belt. First, we demonstrate that Phoebe’s shape is globally relaxed and consistent with a spheroid in hydrostatic equilibrium with its rotation period. This distinguishes the satellite from ‘rubble-piles’ that are thought to result from the disruption of larger proto-satellites. We numerically model the geophysical evolution of Phoebe, accounting for the feedback between porosity and thermal state. We compare thermal evolution models for different assumptions on the formation of Phoebe, in particular the state of its water, amorphous or crystalline. We track the evolution of porosity and thermal conductivity as well as the destabilization of amorphous ice or clathrate hydrates. While rubble-piles may never reach temperatures suitable for porous ice to creep and relax, we argue that Phoebe’s shape could have relaxed due to heat from the decay of 26Al, provided that this object formed less than 3 Myr after the production of the calcium–aluminum inclusions. This is consistent with the idea that Phoebe could be an exemplar of planetesimals that formed in the transneptunian region and later accreted onto outer planet satellites, either during the satellite’s formation stage, or still later, during the late heavy bombardment.  相似文献   

14.
15.
The unified model for Seyfert 2s postulates that these galaxies are in fact normal Seyfert ls whose innermost regions are hidden from a direct view by an opaque torus. Galaxies seen from a line-of-sight within the opening angle of this torus have the central continuum source and the Broad Line Region unobstructed, and are classified as Seyfert 1/QSO. In Seyfert 2s, on the other hand, periscopic views of the hidden nucleus may be obtained through scattering of the nuclear light in the extranuclear regions. If this model is correct, the Blue and Featureless Continuum observed in many Seyfert 2s is simply a mirror image of the obscured nucleus. In this case, the light from the Broad Line Region must also be reflected towards the observer. Seyfert 2s should therefore exhibit broad lines in their spectrum, which, by definition, they do not! In this contribution we examine this issue and the complications it brings to the basic unification picture of Seyfert galaxies. We fail to find a consistent explanation for this question in the framework of the unified model. An alternative modified-unified model for Seyfert 2s is proposed.  相似文献   

16.
In this paper we study the dynamics of a massless particle around the L 1,2 libration points of the Earth–Moon system in a full Solar System gravitational model. The study is based on the analysis of the quasi-periodic solutions around the two collinear equilibrium points. For the analysis and computation of the quasi-periodic orbits, a new iterative algorithm is introduced which is a combination of a multiple shooting method with a refined Fourier analysis of the orbits computed with the multiple shooting. Using as initial seeds for the algorithm the libration point orbits of Circular Restricted Three Body Problem, determined by Lindstedt-Poincaré methods, the procedure is able to refine them in the Solar System force-field model for large time-spans, that cover most of the relevant Sun–Earth–Moon periods.  相似文献   

17.
The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E≈ 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang–Sheeley–Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.  相似文献   

18.
In this work, we present a new model for the heat conductivity of porous dust layers in vacuum, based on an existing solution of the heat transfer equation of single spheres in contact. This model is capable of distinguishing between two different types of dust layers: dust layers composed of single particles (simple model) and dust layers consisting of individual aggregates (complex model). Additionally, we describe laboratory experiments, which were used to measure the heat conductivity of porous dust layers, in order to test the model. We found that the model predictions are in an excellent agreement with the experimental results, if we include radiative heat transport in the model. This implies that radiation plays an important role for the heat transport in porous materials. Furthermore, the influence of this new model on the Hertz factor are demonstrated and the implications of this new model on the modeling of cometary activity are discussed. Finally, the limitations of this new model are critically reviewed.  相似文献   

19.
Solar rotation rate has been measured using the sunspot positions recorded by W.C. Bond during the period 1847 – 1849 at the Harvard College Observatory. From the drawings carried out by Bond we have selected the sunspots and groups of sunspots with more reliable positions presented in three or more drawings on successive days. We have calculated from the positions of the selected sunspots (41 in total) a synodic rotation rate of ω=[(12.92±0.08)−(1.5±1.0)sin 2 φ] degrees/day, where φ is the heliographic latitude. This rate, although slightly lower, is similar to the actual solar rotation rate, confirming no important changes in the solar rotation during the last 160 years.  相似文献   

20.
Some 8000 images obtained with the Solar Eclipse Coronal Imaging System (SECIS) fast-frame CCD camera instrument located at Lusaka, Zambia, during the total eclipse of 21 June 2001 have been analysed to search for short-period oscillations in intensity that could be a signature of solar coronal heating mechanisms by MHD wave dissipation. Images were taken in white-light and Fe xiv green-line (5303 ?) channels over 205 seconds (frame rate 39 s−1), approximately the length of eclipse totality at this location, with a pixel size of four arcseconds square. The data are of considerably better quality than those that we obtained during the 11 August 1999 total eclipse (Rudawy et al.: Astron. Astrophys. 416, 1179, 2004), in that the images are much better exposed and enhancements in the drive system of the heliostat used gave a much improved image stability. Classical Fourier and wavelet techniques have been used to analyse the emission at 29 518 locations, of which 10 714 had emission at reasonably high levels, searching for periodic fluctuations with periods in the range 0.1 – 17 seconds (frequencies 0.06 – 10 Hz). While a number of possible periodicities were apparent in the wavelet analysis, none of the spatially and time-limited periodicities in the local brightness curves was found to be physically important. This implies that the pervasive Alfvén wave-like phenomena (Tomczyk et al.: Science 317, 1192, 2007) using polarimetric observations with the Coronal Multi-Channel Polarimeter (CoMP) instrument do not give rise to significant oscillatory intensity fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号