首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 854 毫秒
1.
Cassini VIMS has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. A very close fly-by of Dione provided key information for solving the riddle of the origin of the dark material in the Saturn system. The Dione VIMS data show a pattern of bombardment of fine, sub-0.5-μm diameter particles impacting the satellite from the trailing side direction. Multiple lines of evidence point to an external origin for the dark material on Dione, including the global spatial pattern of dark material, local patterns including crater and cliff walls shielding implantation on slopes facing away from the trailing side, exposing clean ice, and slopes facing the trailing direction which show higher abundances of dark material. Multiple spectral features of the dark material match those seen on Phoebe, Iapetus, Hyperion, Epimetheus and the F-ring, implying the material has a common composition throughout the Saturn system. However, the exact composition of the dark material remains a mystery, except that bound water and, tentatively, ammonia are detected, and there is evidence both for and against cyanide compounds. Exact identification of composition requires additional laboratory work. A blue scattering peak with a strong UV-visible absorption is observed in spectra of all satellites which contain dark material, and the cause is Rayleigh scattering, again pointing to a common origin. The Rayleigh scattering effect is confirmed with laboratory experiments using ice and 0.2-μm diameter carbon grains when the carbon abundance is less than about 2% by weight. Rayleigh scattering in solids is also confirmed in naturally occurring terrestrial rocks, and in previously published reflectance studies. The spatial pattern, Rayleigh scattering effect, and spectral properties argue that the dark material is only a thin coating on Dione's surface, and by extension is only a thin coating on Phoebe, Hyperion, and Iapetus, although the dark material abundance appears higher on Iapetus, and may be locally thick. As previously concluded for Phoebe, the dark material appears to be external to the Saturn system and may be cometary in origin. We also report a possible detection of material around Dione which may indicate Dione is active and contributes material to the E-ring, but this observation must be confirmed.  相似文献   

2.
Saturn's icy satellites are among the main scientific objectives of the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment. This paper contains a first systematic and comparative analysis of the full-disk spectral properties of Dione, Enceladus, Epimetheus, Hyperion, Iapetus, Mimas, Phoebe, Rhea and Tethys as observed by VIMS from July 2004 to June 2005. The disk integrated properties (350-5100 nm reflectance spectra and phase curves at 550-2232 nm) and images of satellites are reported and discussed in detail together with the observed geometry. In general, the spectra in the visible spectral range are almost featureless and can be classified according to the spectral slopes: from the bluish Enceladus and Phoebe to the redder Iapetus, Hyperion and Epimetheus. In the 1000-1300 nm range the spectra of Enceladus, Tethys, Mimas and Rhea are characterized by a negative slope, consistent with a surface largely dominated by water ice, while the spectra of Iapetus, Hyperion and Phoebe show a considerable reddening pointing out the relevant role played by darkening materials present on the surface. In between these two classes are Dione and Epimetheus, which have a flat spectrum in this range. The main absorption bands identified in the infrared are the 1520, 2020, 3000 nm H2O/OH bands (for all satellites), although Iapetus dark terrains show mostly a deep 3000 nm band while the 1520 and 2020 nm bands are very faint. In this spectral range, the Iapetus spectrum is characterized by a strong reddening. The CO2 band at 4260 nm and the Fresnel ice peak around 3100 nm are evident only on Hyperion, Phoebe and Iapetus. The phase curves at 550 and at 2232 nm are reported for all the available observations in the 0°-144° range; Rhea shows an opposition surge at visible wavelengths in the 0.5°-1.17° interval. The improvement on the retrieval of the full-disk reflectance spectra can be appreciated by a direct comparison with ground-based telescopic data available from literature. Finally, data processing strategies and recent upgrades introduced in the VIMS-V calibration pipeline (flat-field and destriping-despiking algorithm) are discussed in appendices.  相似文献   

3.
Narrowband reflectance spectra (0.53-1.0 μm) of Iapetus' leading and trailing sides were obtained in 2000 to test the presence of an absorption feature located near 0.67 μm seen in reflectance spectra of Iapetus' dark material and Hyperion's surface material. No feature was observed. The difference in reflectance across the UV/VIS/NIR spectral region, and the dependence of the presence or absence of this absorption feature on angular separation from the apex of Iapetus in its orbit, phase angle, and heliocentric distance (affecting temperature), were examined. A trend of increased reddening, and the presence of the absorption feature, correlate with an angular separation from the apex of ? approximately 10°. Spectral information is lost when the contribution of the bright water ice signal to the reflectance spectrum increases sufficiently. In order to optimize compositional studies of Iapetus, we encourage future ground-based and space-based spectral observations to maximize the concentration of dark material in the instrumental field of view.  相似文献   

4.
Cassini 2.2-cm radar and radiometric observations of seven of Saturn's icy satellites yield properties that apparently are dominated by subsurface volume scattering and are similar to those of the icy Galilean satellites. Average radar albedos decrease in the order Enceladus/Tethys, Hyperion, Rhea, Dione, Iapetus, and Phoebe. This sequence most likely corresponds to increasing contamination of near-surface water ice, which is intrinsically very transparent at radio wavelengths. Plausible candidates for contaminants include ammonia, silicates, metallic oxides, and polar organics (ranging from nitriles like HCN to complex tholins). There is correlation of our targets' radar and optical albedos, probably due to variations in the concentration of optically dark contaminants in near-surface water ice and the resulting variable attenuation of the high-order multiple scattering responsible for high radar albedos. Our highest radar albedos, for Enceladus and Tethys, probably require that at least the uppermost one to several decimeters of the surface be extremely clean water ice regolith that is structurally complex (i.e., mature) enough for there to be high-order multiple scattering within it. At the other extreme, Phoebe has an asteroidal radar reflectivity that may be due to a combination of single and volume scattering. Iapetus' 2.2-cm radar albedo is dramatically higher on the optically bright trailing side than the optically dark leading side, whereas 13-cm results reported by Black et al. [Black, G.J., Campbell, D.B., Carter, L.M., Ostro, S.J., 2004. Science 304, 553] show hardly any hemispheric asymmetry and give a mean radar reflectivity several times lower than the reflectivity measured at 2.2 cm. These Iapetus results are understandable if ammonia is much less abundant on both sides within the upper one to several decimeters than at greater depths, and if the leading side's optically dark contaminant is present to depths of at least one to several decimeters. As argued by Lanzerotti et al. [Lanzerotti, L.J., Brown, W.L., Marcantonio, K.J., Johnson, R.E., 1984. Nature 312, 139-140], a combination of ion erosion and micrometeoroid gardening may have depleted ammonia from the surfaces of Saturn's icy satellites. Given the hypersensitivity of water ice's absorption length to ammonia concentration, an increase in ammonia with depth could allow efficient 2.2-cm scattering from within the top one to several decimeters while attenuating 13-cm echoes, which would require a six-fold thicker scattering layer. If so, we would expect each of the icy satellites' average radar albedos to be higher at 2.2 cm than at 13 cm, as is the case so far with Rhea [Black, G., Campbell, D., 2004. Bull. Am. Astron. Soc. 36, 1123] as well as Iapetus.  相似文献   

5.
New high-resolution spectra in the 0.33 to 0.92 μm range of Iapetus, Hyperion, Phoebe, Dione, Rhea, and three D-type asteroids were obtained on the Palomar 200-inch telescope and the double spectrograph. The spectra of Hyperion and the low-albedo hemisphere of Iapetus can both be closely matched by a simple model that is the linear admixture of the spectrum of a medium-sized, high-albedo icy saturnian satellite and D-type material. Our results support an exogenous origin to the dark material on Iapetus; furthermore, this material may share a common origin and a similar means of transport with material on the surface of Hyperion. The recently discovered retrograde satellites of Saturn (Gladman et al., Nature412, 163-166) may be the source of this material. The leading sides of Callisto and the Uranian satellites may be subjected to a similar alteration mechanism as that of Iapetus: accretion of low-albedo dust originating from outer retrograde satellites. Phoebe does not appear to be related to either Iapetus or Hyperion. Separate spectra of the two hemispheres of Phoebe show no identifiable global compositional differences.  相似文献   

6.
David J. Tholen  B. Zellner 《Icarus》1983,53(2):341-347
Eight-color spectrophotometry was obtained of Phoebe, Hyperion, and the dark side of Iapetus. Our observed V magnitudes and Voyager-derived diameters yield geometric albedos of 0.07 for Iapetus (with some bright-side contamination), 0.06 for Phoebe, and limits of 0.19 to 0.25 for Hyperion (using the satellite's maximum and minimum dimensions, respectively). Hyperion and Iapetus have quite reddish spectra similar to each other and the spectra of D-type asteroids. Hyperion, however, has a much higher albedo than the dark side of Iapetus or any D-type asteroid measured to date. The mean spectrum of Phoebe is much flatter, with a broad absorption feature near 1 μm. Therefore the surface materials of Phoebe and the dark side of Iapetus are optically quite different, a result that constraints the possible modes of interaction between Phoebe and the other two satellites.  相似文献   

7.
We report the detailed analysis of the spectrophotometric properties of Saturn’s icy satellites as derived by full-disk observations obtained by visual and infrared mapping spectrometer (VIMS) experiment aboard Cassini. In this paper, we have extended the coverage until the end of the Cassini’s nominal mission (June 1st 2008), while a previous paper (Filacchione, G., and 28 colleagues [2007]. Icarus 186, 259-290, hereby referred to as Paper I) reported the preliminary results of this study.During the four years of nominal mission, VIMS has observed the entire population of Saturn’s icy satellites allowing us to make a comparative analysis of the VIS-NIR spectral properties of the major satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus) and irregular moons (Atlas, Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso, Phoebe). The results we discuss here are derived from the entire dataset available at June 2008 which consists of 1417 full-disk observations acquired from a variety of distances and inclinations from the equatorial plane, with different phase angles and hemispheric coverage. The most important spectrophotometric indicators (as defined in Paper I: I/F continua at 0.55 μm, 1.822 μm and 3.547 μm, visible spectral slopes, water and carbon dioxide bands depths and positions) are calculated for each observation in order to investigate the disk-integrated composition of the satellites, the distribution of water ice respect to “contaminants” abundances and typical regolith grain properties. These quantities vary from the almost pure water ice surfaces of Enceladus and Calypso to the organic and carbon dioxide rich Hyperion, Iapetus and Phoebe. Janus visible colors are intermediate between these two classes having a slightly positive spectral slope. These results could help to decipher the origins and evolutionary history of the minor moons of the Saturn’s system. We introduce a polar representation of the spectrophotometric parameters as function of the solar phase angle (along radial distance) and of the effective longitude interval illuminated by the Sun and covered by VIMS during the observation (in azimuth) to better investigate the spatial distribution of the spectrophotometric quantities across the regular satellites hemispheres. Finally, we report the observed spectral positions of the 4.26 μm band of the carbon dioxide present in the surface material of three outermost moons Hyperion, Iapetus and Phoebe.  相似文献   

8.
Carbon dioxide has been detected associated with Iapetus' dark material by the Cassini spacecraft. This CO2 may be primordial and/or resulting from ongoing production by photolysis of water-ice in the presence of carbonaceous material [Allamandola, L.J., Sandford, S.A., Valero, G.J., 1988. Icarus 76, 225-252]. Although any primordial CO2 would likely be complexed with the dark material and thus stable against thermal transport to Iapetus' poles [Buratti, B.J., and 28 colleagues, 2005. Astrophys. J. 622, L149-L152], active production of CO2 would result in some fraction of the CO2 being mobile enough to allow the accumulation of CO2 at Iapetus' poles. We develop a computer model to simulate ballistic transport of CO2 ice on Iapetus, accounting for Iapetus' gravitational binding energy and polar cold traps. We find that the residence time of CO2 ice outside the polar regions is very short; a sheet of CO2 ice near the equator of Iapetus decreases in thickness at a rate of 50 mm year−1. The sublimated CO2 will ballistically move around Iapetus until it reaches the polar cold traps where it can be sequestered for up to 15 years. If the total surface inventory of CO2 exceeds 3×107 kg, the polar ice cap will be permanent. While CO2 is moving around the surface, a small percentage will eventually reach escape velocity and be lost from the system. As such, a seasonal polar cap is lost at rate of 12% every solar orbit as the CO2 moves between the two polar cold traps.  相似文献   

9.
This paper presents new photometric and spectrophotometric observations of the dark (leading) hemisphere of Saturn's satellite Iapetus. Spectrophotometry from 0.3–1.0 um (May 1979) shows the dark hemisphere to be very red, similar to a few asteroids and the Moon, but with no spectral features attributable to olivine or pyroxene. Near-infrared spectrophometry in the regions 1.4–2.5 um (May 1981) and 3.0–3.8 um (February 1981) reveals water ice absorption bands, probably resulting from the polar caps intruding onto the dark hemisphere. The reflectance of Iapetus is unlike that of carbonaceous chondrites or C-type asteroids and most closely resembles the reflectance (and low albedo) of carbonaceous (organic) residue from the Murchison C2 carbonaceous chondrite. The Murchison material has the same red slope and a probable spectral feature near 0.6 um seen in Iapetus data. Three hypotheses for the formation of the dark hemisphere are discussed in light of the observational data. The favored hypothesis is that debris from Phoebe or other unknown outer satellites of Saturn impacts the dark hemisphere of Iapetus as Poynting-Robertson drag causes the debris to spiral toward Saturn. The high-velocity impacts preferentially remove ice from the satellite's surface, causing enrichment of included carbonaceous material intrinsic to Iapetus. The reflectance of Phoebe itself is significantly different from that of Iapetus, suggesting that relatively little Phoebe debris lies on the dark hemisphere. There remains the possibility that the impacting debris originates from another body of composition similar to the Murchison residue and that this material is exposed on the surface of Iapetus.  相似文献   

10.
We have conducted a search for emissivity features in the thermal infrared spectrum of the icy satellites of Saturn, Phoebe, Iapetus, Enceladus, Tethys, and Hyperion, observed by the Composite Infrared Spectrometer (CIRS) on board the Cassini spacecraft. Despite the heterogeneity of the composition of these bodies depicted by Earth-based and Cassini/VIMS observations, the CIRS spectra of all satellites are undistinguishable from black-body spectra, with no detectable emissivity feature. However, several materials, which have been detected on the surface of the same bodies, present emissivity features in the analyzed spectral range. In particular, water ice presents features with sufficient contrast to be detected by CIRS. Here we study the physical causes of the absence of features by simulating the effects of intimate mixtures using models of directional emissivity for optically thick surfaces for different particle sizes and abundances, and porosities. The simulations include a set of materials detected on the Phoebe's surface, like water ice, hydrated silicates, and organics. We find that featureless spectra can be produced in three scenarios: (1) ice particles with large sizes, (2) mixtures of ices dominated by dark contaminants, and (3) small particles with large porosity. Constraints imposed by the NIR spectra of the satellites favors the latter scenario as the more likely explanation to the absence of emissivity features on the icy satellites of Saturn.  相似文献   

11.
The leading face of Saturn’s moon Iapetus, Cassini Regio, has an albedo only one tenth that on its trailing side. The origin of this enigmatic dichotomy has been debated for over 40 years, but with new data, a clearer picture is emerging. Motivated by Cassini radar and imaging observations, we investigate Soter’s model of dark exogenous dust striking an originally brighter Iapetus by modeling the dynamics of the dark dust from the ring of the exterior retrograde satellite Phoebe under the relevant perturbations. In particular, we study the particles’ probabilities of striking Iapetus, as well as their expected spatial distribution on the Iapetian surface. We find that, of the long-lived particles (?5 μm), most particle sizes (?10 μm) are virtually certain to strike Iapetus, and their calculated distribution on the surface matches up well with Cassini Regio’s extent in its longitudinal span. The satellite’s polar regions are observed to be bright, presumably because ice is deposited there. Thus, in the latitudinal direction we estimate polar dust deposition rates to help constrain models of thermal migration invoked to explain the bright poles (Spencer, J.R., Denk, T. [2010]. Science 327, 432-435). We also analyze dust originating from other irregular outer moons, determining that a significant fraction of that material will eventually coat Iapetus—perhaps explaining why the spectrum of Iapetus’ dark material differs somewhat from that of Phoebe. Finally we track the dust particles that do not strike Iapetus, and find that most land on Titan, with a smaller fraction hitting Hyperion. As has been previously conjectured, such exogenous dust, coupled with Hyperion’s chaotic rotation, could produce Hyperion’s roughly isotropic, moderate-albedo surface.  相似文献   

12.
The nominal tour of the Cassini mission enabled the first spectra and solar phase curves of the small inner satellites of Saturn. We present spectra from the Visual Infrared Mapping Spectrometer (VIMS) and the Imaging Science Subsystem (ISS) that span the 0.25-5.1 μm spectral range. The composition of Atlas, Pandora, Janus, Epimetheus, Calypso, and Telesto is primarily water ice, with a small amount (∼5%) of contaminant, which most likely consists of hydrocarbons. The optical properties of the “shepherd” satellites and the coorbitals are tied to the A-ring, while those of the Tethys Lagrangians are tied to the E-ring of Saturn. The color of the satellites becomes progressively bluer with distance from Saturn, presumably from the increased influence of the E-ring; Telesto is as blue as Enceladus. Janus and Epimetheus have very similar spectra, although the latter appears to have a thicker coating of ring material. For at least four of the satellites, we find evidence for the spectral line at 0.68 μm that Vilas et al. [Vilas, F., Larsen, S.M., Stockstill, K.R., Gaffley, M.J., 1996. Icarus 124, 262-267] attributed to hydrated iron minerals on Iapetus and Hyperion. However, it is difficult to produce a spectral mixing model that includes this component. We find no evidence for CO2 on any of the small satellites. There was a sufficient excursion in solar phase angle to create solar phase curves for Janus and Telesto. They bear a close similarity to the solar phase curves of the medium-sized inner icy satellites. Preliminary spectral modeling suggests that the contaminant on these bodies is not the same as the exogenously placed low-albedo material on Iapetus, but is rather a native material. The lack of CO2 on the small inner satellites also suggests that their low-albedo material is distinct from that on Iapetus, Phoebe, and Hyperion.  相似文献   

13.
B.J. Buratti  M.D. Hicks  A. Davies 《Icarus》2005,175(2):490-495
We have obtained broadband spectrophotometric observations of four of the recently discovered small satellites of Saturn (Gladman et al., 2001, Nature 412, 163-166). The new data enable an understanding of the provenance, composition, and interrelationships among these satellites and the other satellites of Saturn, particularly Iapetus, Phoebe, and Hyperion. Temporal coverage of one satellite (S21 Tarvos) was sufficient to determine a partial rotational lightcurve. Our major findings include: (1) the satellites are red and similar in color, comparable to D-type asteroids, some KBOs, Iapetus, and Hyperion; (2) none of the satellites, including those from the “Phoebe Group” has any spectrophotometric relationship to Phoebe; and (3) S21 Tarvos exhibits a rotational lightcurve, although the data are not well-constrained and more observations are required to fit a definitive period. Dust created by meteoritic impacts and ejected from these satellites and additional undiscovered ones may be the source of the exogenous material deposited on the low-albedo side of Iapetus. Recent work which states that the small irregular satellites of Saturn have impacted Phoebe at least 6-7 times in the age of the Solar System (Nesvorny et al., 2003, Astron. J. 126, 398-429), suggests that such collisions may have propelled additional material from both Phoebe and the small irregular satellites toward Iapetus. The accretion of material from outer retrograde satellites may be a process that also occurs on Callisto and the uranian satellites.  相似文献   

14.
Observations of Saturn's distant moon Phoebe were made at far-ultraviolet (FUV) (1100-1900 Å) and extreme-ultraviolet (EUV) (600-1100 Å) wavelengths by the Cassini Ultraviolet Imaging Spectrograph (UVIS) during the Cassini spacecraft flyby on June 11, 2004. These are the first UV spectra of Phoebe and the first detection of water ice on a Solar System surface using FUV wavelengths. The characteristics of water ice in the FUV are presented, and Hapke models are used to interpret the spectra in terms of composition and grain size; the use of both areal and intimate mixing models is explored. Non-ice species used in these models include carbon, ice tholin, Triton tholin, poly-HCN and kerogen. Satisfactory disk-integrated fits are obtained for intimate mixtures of ∼10% H2O plus a non-ice species. Spatially resolved regions of higher (∼20%) and lower (∼5%) H2O ice concentrations are also detected. Phoebe does not display any evidence of volatile activity. Upper limits on atomic oxygen and carbon are 5×1011 and 2×1012 atoms/cm2, respectively, for solar photon scattering. The UVIS detection of water ice on Phoebe, and the ice amounts detected, are consistent with IR measurements and contribute to the evidence for a Phoebe origin in the outer Solar System rather than in the main asteroid belt.  相似文献   

15.
Three weeks prior to the commencement of Cassini's 4 year tour of the saturnian system, the spacecraft executed a close flyby of the outer satellite Phoebe. The infrared channel of the Visual Infrared Mapping Spectrometer (VIMS) obtained images of reflected light over the 0.83-5.1 μm spectral range with an average spectral resolution of 16.5 nm, spatial resolution up to 2 km, and over a range of solar phase angles not observed before. These images have been analyzed to derive fundamental photometric parameters including the phase curve and phase integral, spectral geometric albedo, bolometric Bond albedo, and the single scattering albedo. Physical properties of the surface, including macroscopic roughness and the single particle phase function, have also been characterized. Maps of normal reflectance show the existence of two major albedo regimes in the infrared, with gradations between the two regimes and much terrain with substantially higher albedos. The phase integral of Phoebe is 0.29±0.03, with no significant wavelength dependence. The bolometric Bond albedo is 0.023±007. We find that the surface of Phoebe is rough, with a mean slope angle of 33°. The satellite's surface has a substantial forward scattering component, suggesting that its surface is dusty, perhaps from a history of outgassing. The spectrum of Phoebe is best matched by a composition including water ice, amorphous carbon, iron-bearing minerals, carbon dioxide, and Triton tholin. The characteristics of Phoebe suggest that it originated outside the saturnian system, perhaps in the Kuiper Belt, and was captured on its journey inward, as suggested by Johnson and Lunine (2005).  相似文献   

16.
Dale P. Cruikshank 《Icarus》1980,41(2):246-258
New JHK photometry and spectrometry (1.4–2.6 μm) are presented for Enceladus, Hyperion, Phoebe, Umbriel, Titania, and Oberon. From spectral signatures, mainly in the 2-μm region, water ice is verified on Enceladus and identified on Hyperion and the three Uranian satellites. The JHK photometry shows that Phoebe is different from all other satellites and asteroids observed thus far. The new photometry corroborates the earlier conclusion by Cruikshank et al. (1977) Astrophys. J217, 1006–1010] that the Uranian satellites, as a class, have overall surface reflectances different from other water-ice-covered satellites, and the reason for the difference remains unclear. The diameters and the masses of the Uranian satellites are reviewed in light of the probable high albedo representative of ice-covered surfaces and the new dynamical studies by Greenberg, 1975, Greenberg, 1976, Greenberg, 1978.  相似文献   

17.
In springtime on HiRISE images of the Southern polar terrain of Mars flow-like or rheologic features were observed. Their dark color is interpreted as partly defrosted surface where the temperature is too high for CO2 but low enough for H2O ice to be present there. These branching streaks grow in size and can move by an average velocity of up to about 1 m/day and could terminate in pond-like accumulation features. The phenomenon may be the result of interfacial water driven rheologic processes. Liquid interfacial water can in the presence of water ice exist well below the melting point of bulk water, by melting in course of interfacial attractive pressure by intermolecular forces (van der Waals forces e.g.), curvature of water film surfaces, and e.g. by macroscopic weight, acting upon ice. This melting phenomenon can be described in terms of “premelting of ice”. It is a challenging consequence, that liquid interfacial water unavoidably must in form of nanometric layers be present in water ice containing soil in the subsurface of Mars. It is the aim of this paper to study possible rheologic consequences in relation to observations, which seem to happen at sites of dark polar dunes on Mars at present. The model in this work assumes that interfacial water accumulates at the bottom of a translucent water-ice layer above a dark and insolated ground. This is warmed up towards the melting point of water. The evolving layer of liquid interfacial water between the covering ice sheet and the heated ground is assumed to drive downward directed flow-like features on slopes, and it can, at least partially, infiltrate (seep) into a porous ground. There, in at least temporarily cooler subsurface layers, the infiltrated liquid water refreezes and forms ice. The related stress built-up is shown to be sufficient to cause destructive erosive processes. The above-mentioned processes may cause change in the structure and thickness of the covering ice and/or may cause the movement of dune grains. All these processes may explain the observed springtime growing and downward extension of the slope streaks analyzed here.  相似文献   

18.
Saturn’s satellite Dione is becoming an increasingly important object in the outer Solar System, as evidence for its current activity accumulates. Infrared observations of the surface can provide clues to the history of the body and currently active processes. Using data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS), we perform three sets of analyses that are sensitive to the ice state, temperature, thermal history, grain size and composition of surface ice. These are calculation of a “crystallinity factor”, spectral ratios and water ice band depths. In our analysis, we focus on the dichotomy between the wispy and dark terrain on Dione’s trailing hemisphere, to better understand the source of the different materials and their current properties. Our results suggest two different scenarios: (1) the ice from the wispy region has a higher crystallinity and water ice content than the dark region or (2) the wispy region contains larger grains. Both of these models imply recent geologic activity on Dione.  相似文献   

19.
We have used Cassini stereo images to study the topography of Iapetus' leading side. A terrain model derived at resolutions of 4-8 km reveals that Iapetus has substantial topography with heights in the range of −10 km to +13 km, much more than observed on the other middle-sized satellites of Saturn so far. Most of the topography is older than 4 Ga [Neukum, G., Wagner, R., Denk, T., Porco, C.C., 2005. Lunar Planet. Sci. XXXVI. Abstract 2034] which implies that Iapetus must have had a thick lithosphere early in its history to support this topography. Models of lithospheric deflection by topographic loads provide an estimate of the required elastic thickness in the range of 50-100 km. Iapetus' prominent equatorial ridge [Porco, C.C., and 34 colleagues, 2005. Science 307, 1237-1242] reaches widths of 70 km and heights of up to 13 km from their base within the modeled area. The morphology of the ridge suggests an endogenous origin rather than a formation by collisional accretion of a ring remnant [Ip, W.-H., 2006. Geophys. Res. Lett. 33, doi:10.1029/2005GL025386. L16203]. The transition from simple to complex central peak craters on Iapetus occurs at diameters of 11±3 km. The central peaks have pronounced conical shapes with flanking slopes of typically 11° and heights that can rise above the surrounding plains. Crater depths seem to be systematically lower on Iapetus than on similarly sized Rhea, which if true, may be related to more pronounced crater-wall slumping (which widens the craters) on Iapetus than on Rhea. There are seven large impact basins with complex morphologies including central peak massifs and terraced walls, the largest one reaches 800 km in diameter and has rim topography of up to 10 km. Generally, no rings are observed with the basins consistent with a thick lithosphere but still thin enough to allow for viscous relaxation of the basin floors, which is inferred from crater depth-to-diameter measurements. In particular, a 400-km basin shows up-domed floor topography which is suggestive of viscous relaxation. A model of complex crater formation with a viscoplastic (Bingham) rheology [Melosh, H.J., 1989. Impact Cratering. Oxford Univ. Press, New York] of the impact-shocked icy material provides an estimate of the effective cohesion/viscosity at . The local distribution of bright and dark material on the surface of Iapetus is largely controlled by topography and consistent with the dark material being a sublimation lag deposit originating from a bright icy substrate mixed with the dark components, but frost deposits are possible as well.  相似文献   

20.
P. Thomas  J. Veverka 《Icarus》1985,64(3):414-424
A total of 82 images of Hyperion was returned by the Voyager spacecraft; the most detailed views have a nominal resolution of 8.7 km/line pair. Hyperion had a rotation period of about 13 days and a spin vector lying close to its orbital plane at the time of the Voyager 2 encounter in 1981. The satellite's shape is very irregular, and cannot be approximated suitably by an ellipsoid. The largest cross section (A × C) is about 370 × 225 km; the B × C cross section is approximately 280 × 225 km. Most prominent among the surface features is a 120-km-diameter crater with an estimated depth of 10 km, and a series of arcuate scarps 300 km long that have relief in excess of 5 km. The density of large craters of Hyperion is smaller than that on other small Saturnian satellites and suggests the possibility that the last significant fragmentation of Hyperion occurred near the end of or after initial heavy bombardment. Voyager photometry yields an average normal reflectance of the surface material of 0.21 in the clear filter (0.47 μm) and evidence of slight albedo mottling over the surface. The disk-integrated phase coefficient between phase angles of 22° and 82° is 0.018 mag/de; there is little indication of a strong opposition effect in Voyager data down to phase angles of 3°. Hyperion's average color is definitely redder than that of Phobe, but matches that of the dark material on the leading hemisphere of Iapetus quite well. The satellite's albedo and color are consistent with those of contaminated water ice but since no mass determinations of Hyperion exist we do not know whether the bulk composition is icy or rocky.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号