首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The height distributions, velocity distributions and flux measurements of underdense echoes determined from meteor radar observations are significantly affected by the attenuation associated with the initial radius of meteor trains. Dual-frequency radar observations of a very large set of sporadic radar meteors at 29 and 38 MHz yield estimates of the initial train radius and its dependence on height and meteoroid speed as determined by the time-delay method. We provide empirical formulae that can be used to correct meteoroid fluxes for the effect of initial train radius at other radio frequencies.  相似文献   

2.
The 33.2 MHz interferometric meteor radars located at Davis Station, Antarctica and Darwin, Australia typically detect around 15 000 specular underdense meteor echoes every day. While the angle of arrival of the scattered radio wave can be inferred using phase differences between receive antennae, the direction of individual meteors is not known beyond a plane of ambiguity perpendicular to the angle of arrival. Using the great circle mapping technique with a Jones & Jones type weighting function, 37 meteor shower systems were detected in data collected at both locations over 2006–2007, including nine undocumented showers. The orbital elements of the parent debris streams were then calculated for the 31 showers where sufficiently precise measurements were available.  相似文献   

3.
We have analysed the meteor records in the chronicles that describe the era of the Song dynasty ( ad 960–1279). The data are complementary to the record-vacant 10th century of the Koryo dynasty ( ad 918–1392). The annual activity of sporadic meteors analysed shows a generic sinusoidal behaviour as in modern observations. In addition, we have also found that there are two prominent meteor showers, one in August and the other in November, appearing on the fluctuating sporadic meteors. The date of occurrence of the August shower indicates it to be the Perseids. By comparing the date of occurrence of the November shower with those of the Leonid showers of the Koryo dynasty, recent visual observations and the world-wide historical meteor storms, we conclude that the November shower is the Leonids. The regression rate of the Leonids is obtained to be     days per century, which agrees with recent observations.  相似文献   

4.
First results are presented from a newly developed meteoroid orbit survey, called CAMS – Cameras for Allsky Meteor Surveillance, which combines meteor detection algorithms for low-light video observations with traditional video surveillance tools. Sixty video cameras at three stations monitor the sky above 31° elevation. Goal of CAMS is to verify meteor showers in search of their parent comets among newly discovered near-Earth objects.This paper outlines the concept of operations, the hardware, and software methods used during operation and in the data reduction pipeline, and accompanies the data release of the first batch of meteoroid orbits. During the month of November 2010, 2169 precisely reduced meteoroid trajectories from 17 nights have an error in the apparent radiant of the trajectory <2° and error in speed <10%. Median values of the error are 0.31° and 0.53 km/s, respectively, sufficient to resolve the intrinsic dispersion of annual meteor showers and resolve minor showers from the sporadic background. The limiting visual magnitude of the cameras is +5.4, recording meteors of +4 magnitude and brighter, bright enough to stand out from the mostly fainter sporadic meteors detected as under dense radar echoes.CAMS readily detected all established showers (6) active during the clear nights in November. Of the showers that needed confirmation, we confirm the theta Aurigids (THA, IAU#390), the chi Taurids (CTA, IAU#388), and the omicron Eridanids (OER, IAU#338). We conclude that the iota November Aurigids (IAR, IAU#248) are in fact the combined activity of the theta Aurigids and chi Taurids, and this shower should be dismissed from the list. Finally, there is also a clustering consistent with the zeta Cancrids (ZCN, IAU#243), but we cannot exclude that this is lower perihelion dust belonging to the Orionid shower.Data are submitted to the IAU Meteor Data Center on a semi-regular basis, and can be accessed also at http://cams.seti.org.  相似文献   

5.
We have carried out double-station TV meteor observations between 1990 and 1994. The orbits of 326 meteors have been determined from doubly observed meteors, and radiant distributions are studied. The mean magnitude of the observed meteors was as faint as +4.7, since I.I. (Image Intensifier) and Video cameras were used. Radiants were widely distributed over the celestial sphere. The velocity distribution showed some similarity with the distribution predicted by the theoretical radiant distribution from comets rather than that from asteroids. In all 13 showers including both major and minor meteor showers were detected from radiant distributions of the observed meteors; from the orbital elements and meteor velocities as well as from the radiant directions.  相似文献   

6.
We discuss a new method for measuring the coordinates of meteor shower radiants from meteor radar data. The method uses a high accuracy of radar goniometer measurements of one of the angular coordinates for meteor radiants and collective properties of incident meteor showers. It is based on a computer technology of searching for the coordinates of radiants using the intersections of meteor position lines on the celestial sphere and filtering nonrandom combinations of these intersections. The method allows the following: to detect meteor showers with a rate of more than 5 per day of observations and to separate meteor groups from different meteor showers with different radiants and velocities. The method makes it possible to increase the angular resolution from 10° × 10° achieved with a quasi-tomographic technique to 2° × 2°, with a prospect of a further increase in the accuracy through the individual reduction of separated meteor groups. We use the reduction of one-day-long observations during maximum activity of the Geminids meteor shower in 1993 to illustrate the potentialities of the method. We show an example of detecting a weak meteor shower that was active during December 1993.  相似文献   

7.
The results of an analysis of the orbital structure of the meteor complex accessible for radar observations at northern midlatitudes are reported. Experimentally, the study is based on the long-term monitoring of the influx of meteor matter into the Earth’s atmosphere performed with the meteor radar of Kazan State University starting from 1986. The study uses a discrete quasi-tomographic method to measure the radiants and velocities of meteor showers based on goniometric data of the meteor radar and diffraction measurements of meteor velocities. The discretization of the detection environment—in particular, in terms of velocity—is shown to result in no substantial loss of measurement accuracy. The error of the measured velocity of the shower does not exceed 1.5 km/s for a standard deviation of a single velocity measurement equal to 3 km/s. Microshower representation is used with microshowers either representing the correlated part of the sporadic complex or being partial streams of major and minor showers, or fragments of the dust environment of minor bodies passing by Earth or falling onto it. The data of measurements made over the entire annual cycle are used to construct combined maps of the distribution of the observed 2263 microshowers (a total of 22 604 orbits) by their inclination, aphelion distance, and longitudes of the ascending nodes of their orbits. The observing conditions are shown to have a significant effect on the parameters of the distribution of aphelion distances for different months, and the corresponding distributions for prograde and retrograde orbits are shown to differ fundamentally. A specific feature of such distribution maps is that they allow uniform representation of both meteor showers and irregularities of the sporadic complex.  相似文献   

8.
The hyperbolic meteor orbits among the 4,581 photographic and 62,906 radar meteors of the IAU MDC have been analysed using statistical methods. It was shown that the vast majority of hyperbolic orbits has been caused by the dispersion of determined velocities. The large proportion of hyperbolic orbits among the known meteor showers strongly suggests the hyperbolicity of the meteors is not real. The number of apparent hyperbolic orbits increases inversely proportional to the difference between the mean heliocentric velocity of meteor shower and the parabolic velocity limit. The number of hyperbolic meteors in the investigated catalogues does not, in any case, represent the number of interstellar meteors in observational data. The apparent hyperbolicity of these orbits is caused by a high spread in velocity determination, shifting a part of the data through the parabolic limit.  相似文献   

9.
The discrete quasitomographic method of the analysis of the interferometric data of meteor radar gives us the possibility of measuring coordinates and velocities of very weak meteor showers with a 2 × 2 square degree resolution on the celestial sphere. The minimal rate of the meteors in each microstream is five meteors per day. At such sensitivity, basic distinctions between irregularities of the sporadic background and meteor streams vanish. More than 1000 of the detected microshowers per month are associated with a combination of (a) the large known meteor showers, (b) the weaker known meteor showers and (c) till now unknown associations of microshowers. All microshowers regardless of association have the identical velocities, limited areas of radiation and near simultaneity of their acting dates. The results are compiled as maps of radiant distribution and average velocities of microstreams for different months. From these it is possible to see how the microshower activity for various discrete sites on the celestial sphere correlate with the behavior of the well-known meteor streams and thus to infer the orbital properties of the different microstream configurations.  相似文献   

10.
We present, for the first time, the main sources of sporadic meteors as inferred from meteor-head echoes obtained by a high-power large-aperture radar (HPLAR). Such results have been obtained at the Jicamarca HPLAR (11.95° S, 76.87° W, 1° dip angle). Observations are based on close to 170,000 meteors detected in less than 90 h spread over 14 days, between November 2001 and February 2006. Meteors with solar orbits are observed to come from basically six previously known sources, i.e., North and South Apex, Helion, Anti-Helion, and North and South Toroidal, representing ∼91% of the observations. The other ∼9% represents meteors with observed velocities greater than the Sun's escape velocity at 1 AU, most of them of extra-solar origin. Results are given before and after removing the Earth's velocity and the sources are modeled with two-dimensional Gaussian distributions. In general, our results are in very good agreement with previously known sources reported by Jones and Brown [Jones, J., Brown, P.G., 1993. Mon. Not. R. Astron. Soc. 265, 524-532] using mainly specular meteor radar (SMR) data gathered over many years and different sites. However, we find slightly different locations and widths, that could be explained on the basis of different sensitivities of the two techniques and/or corrections needed to our results. For example, we find that the North and South Apex sources are well defined and composed each of them of two collocated Gaussian distributions, one almost isotropic with ∼10° width and the other very narrow in ecliptic longitude and wide in ecliptic latitude. This is the first time these narrow-width sources are reported. A careful quantitative analysis is needed to be able to compare the strengths of meteor sources as observed with different techniques. We also present speed and initial altitude distributions for selected sources. Using a simple angular sensitivity function of the combined Earth-atmosphere-radar instrument, and an altitude selection criteria, the resulting meteor sources are in better qualitative agreement with the results obtained with SMRs.  相似文献   

11.
We deal with theoretical meteoroid streams the parent bodies of which are two Halley-type comets in orbits situated at a relatively large distance from the orbit of Earth: 126P/1996 P1 and 161P/2004 V2. For two perihelion passages of each comet in the far past, we model the theoretical stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of theoretical particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of theoretical particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about −23°) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ∼53 km s−1. A significant fraction of particles assumed to be released from comet 126P also cross the Earth’s orbit and, eventually, could be observed as meteors. However, their radiant area is largely dispersed (declination of radiants spans from about +60° to the south pole) and, therefore, mixed with the sporadic meteor background. An identification with real meteors is practically impossible.  相似文献   

12.
Efforts to link minor meteor showers to their parent bodies have been hampered both by the lack of high-accuracy orbits for weak showers and the incompleteness of our sample of potential parent bodies. The Canadian Meteor Orbital Radar (CMOR) has accumulated over one million meteor orbits. From this large data set, the existence of weak showers and the accuracy of the mean orbits of these showers can be improved. The ever-growing catalogue of near-Earth asteroids (NEAs) provides the complimentary data set for the linking procedure. By combining a detailed examination of the background of sporadic meteors near the orbit in question (which the radar data makes possible) and by computing the statistical significance of any shower association (which the improved NEA sample allows) any proposed shower–parent link can be tested much more thoroughly than in the past. Additional evidence for the links is provided by a single-station meteor radar at the CMOR site which can be used to dispel confusion between very weak showers and statistical fluctuations in the sporadic background. The use of these techniques and data sets in concert will allow us to confidently link some weak streams to their parent bodies on a statistical basis, while at the same time showing that previously identified minor showers have little or no activity and that some previously suggested linkages may simply be chance alignments.  相似文献   

13.
S. Close  P. Brown  M. Oppenheim 《Icarus》2007,186(2):547-556
High-power, large-aperture (HPLA) radars detect the plasma that forms in the vicinity of a meteoroid and moves approximately at its velocity; reflections from these plasmas are called head echoes. For over a decade, HPLA radars have been detecting head echoes with peak velocity distributions >50 km/s. These results have created some controversy within the field of meteor physics because previous data, including spacecraft impact cratering studies, optical and specular meteor data, indicate that the peak of the velocity distribution to a set limiting mass should be <20 km/s [Love, S.G., Brownlee, D.E., 1993. Science 262, 550-553]. Thus the question of whether HPLA radars are preferentially detecting high-velocity meteors arises. In this paper we attempt to address this question by examining both modeled and measured head echo data using the ALTAIR radar, collected during the Leonid 1998 and 1999 showers. These data comprise meteors originating primarily from the North Apex sporadic meteor source. First, we use our scattering theory to convert measured radar-cross-section (RCS) to electron line density and mass, as well as to convert modeled electron line density and mass to RCS. We subsequently compare the dependence between mass, velocity, mean-free-path, RCS and line density using both the measured and modeled data by performing a multiple, linear regression fit. We find a strong correlation between derived mass and velocity and show that line density is approximately proportional to mass times velocity3.1. Next, we determine the cumulative mass index using subsets of our data and use this mass index, along with the results of our regression fit, to weight the velocity distribution. Our results show that while there does indeed exist a bias in the measured head echo velocity distribution, it is smaller than those calculated using traditional specular trail data due to the different scattering mechanism, and also includes a bias against the low-mass, very high-velocity meteoroids.  相似文献   

14.
We present the results of a study of meteoroid bulk densities determined from meteor head echoes observed by radar. Meteor observations were made using the Advanced Research Projects Agency Long-Range Tracking And Instrumentation Radar (ALTAIR). ALTAIR is particularly well suited to the detection of meteor head echoes, being capable of detecting upwards of 1000 meteor head echoes per hour. Data were collected for 19 beam pointings and are comprised of approximately 70 min. of VHF observations. During these observations the ALTAIR beam was directed largely at the north apex sporadic source. Densities are calculated using the classical physical theory of meteors. Meteoroid masses are determined by applying a full wave scattering theory to the observed radar cross-section. Observed meteoroids are predominantly in the 10−10 to 10−6 kg mass range. We find that the vast majority of meteoroid densities are consistent with low density, highly porous objects as would be expected from cometary sources. The median calculated bulk density was found to be 900 kg/m3. The orbital distribution of this population of meteoroids was found to be highly inclined.  相似文献   

15.
The distribution of meteor signals reflected from a backscatter radar is considered according to their duration. This duration time (T) is used to classify the meteor echoes and to calculate the mass index (S) of different meteoroids of shower plus sporadic background. Observational data on particle size distribution of the Geminid meteor shower are very scarce, particularly at low latitudes. In this paper the observational data from Gadanki radar (13.46°N, 79.18°E) have been used to determine the particle size distribution and the number density of meteoroids inside the stream of the Geminid meteor shower. The mean variation of meteor number density across the stream has been determined for three echo duration classes, T<0.4, T=0.4–1 and T>1 s. We are more interested in the appearance of echoes of various durations and therefore meteors of various masses in order to understand more on the filamentary structure of the stream. It is observed that the faint particle flux peaks earlier than the larger particles. We found a decreasing trend in the mass index values from the day of peak activity to the next observation days. The mass index profile was found to be U-shaped with a minimum value near the time of peak activity. The observed minimum s values are 1.64±0.05 and 1.65±0.04 in the years 2003 and 2005, respectively. The activity of the shower indicates the mass segregation of meteoroids inside the stream. Our results are best comparable with the “scissors” structure model of the meteoroid stream formation of Ryabova [2007. Mathematical modeling of the Geminid meteoroid stream. Mon. Not. R. Astron. Soc. 375, 1371–1380] by considering the asteroid 3200 Phaethon as an extinct comet.  相似文献   

16.
Forward-scatter radio meteor observations have been made at Japan since 1996 using inexpensive and low-end equipment. The activity of some major meteor showers and the seasonal variability of sporadic meteors in 2006 are presented.  相似文献   

17.
The results of observations of the Orionid meteor shower are given in the period from 2006 to 2008. Observations were carried out using a highly sensitive camera FAVOR (FAst Variability Optical Registrator) a limiting magnitude of above +11.0m (for stars) and a field of view of 18° × 20°. Over the period of the shower from October 2 to November 7, 2006–2008, there were 3713 meteors. 449 of these meteors were associated with the Orionid meteor shower. The distributions of Orionid meteors by the stellar magnitude is presented. It turned out that most of meteors (65%) of this shower have a brightness of +5.0m-+7.0m. On each night of observation the index of meteor activity was calculated for Orionids.  相似文献   

18.
Every year the Earth crosses or passes near one of the dust trails left by Comet 55P/Tempel-Tuttle in its pass through the Solar System every 33.2 years. This produces a meteor shower Commonly called the Leonid. The 2001 Leonid meteor shower is one of the strongest in recent years. We present observations made by the 50 MHz all-sky meteor radar located at the Platteville Atmospheric Observatory in Colorado (40° N, 105° W). The spatial and temporal distributions of the meteor activity detected by the radar during the 2001 Leonid shower differs from the observed sporadic activity detected by VHF radars. Estimation of the radiant flux of the meteor shower of the shower by a well-known methodology is presented, and the intensity of the phenomena is discussed.  相似文献   

19.
Particles of mass less than about 1 gm are a minor fraction of the total matter impinging on the Earth averaged over millennia time scales. However, these particles dominate during a single particular year and produce the most obvious evidence of incoming extra-terrestrial matter in the form of ablation trails in the atmosphere which are visible at night as meteors.Observations of meteors give astronomical information on the composition, structure, and cometary associations of the particles. The composition is deduced from optical spectra of meteors, whilst telescopic studies of the trails during formation give information on the physical structure of the particles. Any cometary associations are deduced from measurement of meteor orbits determined photographically, using television, or by radar.Meteors occur in the atmosphere at heights from about 70 to 120 km. Optical observations are restricted to night-time and usually under conditions of low moonlight. A typical television based detector can record +8M meteors with a sporadic rate of 15–20 per hour and velocities accurate to about 3%. The luminosity of the trail is strongly dependent on the velocity of the meteoroid (to about the third power).Radar observations of meteors are unrestricted by weather or time of day, and can readily detect meteors at least two orders of magnitude smaller in mass than those detectable optically. Again the observations are heavily biased toward the higher velocities as the electron line density varies approximately asV 3.5. However, the higher the velocity of the meteoroid the greater the height of the meteor trail, and the reduced probability of radar detection due to rapid diffusion of the trail. Thus radar observations tend to select meteors in the intermediate velocity range 30–40 km s–1.  相似文献   

20.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号