首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present, for the first time, the main sources of sporadic meteors as inferred from meteor-head echoes obtained by a high-power large-aperture radar (HPLAR). Such results have been obtained at the Jicamarca HPLAR (11.95° S, 76.87° W, 1° dip angle). Observations are based on close to 170,000 meteors detected in less than 90 h spread over 14 days, between November 2001 and February 2006. Meteors with solar orbits are observed to come from basically six previously known sources, i.e., North and South Apex, Helion, Anti-Helion, and North and South Toroidal, representing ∼91% of the observations. The other ∼9% represents meteors with observed velocities greater than the Sun's escape velocity at 1 AU, most of them of extra-solar origin. Results are given before and after removing the Earth's velocity and the sources are modeled with two-dimensional Gaussian distributions. In general, our results are in very good agreement with previously known sources reported by Jones and Brown [Jones, J., Brown, P.G., 1993. Mon. Not. R. Astron. Soc. 265, 524-532] using mainly specular meteor radar (SMR) data gathered over many years and different sites. However, we find slightly different locations and widths, that could be explained on the basis of different sensitivities of the two techniques and/or corrections needed to our results. For example, we find that the North and South Apex sources are well defined and composed each of them of two collocated Gaussian distributions, one almost isotropic with ∼10° width and the other very narrow in ecliptic longitude and wide in ecliptic latitude. This is the first time these narrow-width sources are reported. A careful quantitative analysis is needed to be able to compare the strengths of meteor sources as observed with different techniques. We also present speed and initial altitude distributions for selected sources. Using a simple angular sensitivity function of the combined Earth-atmosphere-radar instrument, and an altitude selection criteria, the resulting meteor sources are in better qualitative agreement with the results obtained with SMRs.  相似文献   

2.
Every year the Earth crosses or passes near one of the dust trails left by Comet 55P/Tempel-Tuttle in its pass through the Solar System every 33.2 years. This produces a meteor shower Commonly called the Leonid. The 2001 Leonid meteor shower is one of the strongest in recent years. We present observations made by the 50 MHz all-sky meteor radar located at the Platteville Atmospheric Observatory in Colorado (40° N, 105° W). The spatial and temporal distributions of the meteor activity detected by the radar during the 2001 Leonid shower differs from the observed sporadic activity detected by VHF radars. Estimation of the radiant flux of the meteor shower of the shower by a well-known methodology is presented, and the intensity of the phenomena is discussed.  相似文献   

3.
Diego Janches  Sigrid Close 《Icarus》2008,193(1):105-111
Meteor head-echo observations using High Power and Large Aperture (HPLA) radars have been routinely used for micrometeor studies for over a decade. The head-echo is a signal from the radar-reflective plasma region traveling with the meteoroid and its detection allows for very precise determination of instantaneous meteor altitude, velocity and deceleration. Unlike specular meteor radars (SMR), HPLA radars are diverse instruments when compared one to another. The operating frequencies range from 46 MHz to 1.29 GHz while the antenna configurations changes from 18,000 dipoles in a 300 m×300 m square array, phase arrays of dipoles to single spherical or parabolic dishes of various dimensions. Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi:10.1016/j.icarus.2006.09.07] recently showed, by utilizing a head-echo plasma-based model, the presence of instrumental biases in the ALTAIR VHF radar system against detecting meteors produced by very small particles (<1 μg) moving at slow (∼20 km/s) velocities due to the low head echo radar cross-section (RCS) associated with these particles. In this paper we apply the same methodology to the Arecibo 430 MHz radar and compare the results with those presented by Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi:10.1016/j.icarus.2006.09.07]. We show that, if the methodology applied by Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi:10.1016/j.icarus.2006.09.07] is accurate, for particles at least 1 μg or heavier, while the bias may exist for the ALTAIR measurements, it does not exist in the Arecibo data due to its greater sensitivity.  相似文献   

4.
The MARSIS radar experiment aboard the ESA Mars Express satellite has recorded several unusual reflections in the Ma'adim Vallis region of Mars. These reflections display a wide variety of morphologies which are very different from those of reflections seen beneath the Polar Layered Deposits, Medusae Fossae Formation and Dorsa Argentea Formation. Their morphologies are sometimes very laterally extensive, parabolic or hyperbolic, and apparently deep, but they can also appear horizontal and shallow. Aided by a geological map of the Ma'adim Vallis region, the morphological, locational and temporal characteristics of the reflections have been studied individually in an attempt to constrain their origin. While some may be subsurface reflections based on their shallow morphologies and correlation with the Eridania Planitia basin network, all of the reflections are ambiguous to some degree, displaying characteristics that do not allow a definite subsurface- or possibly ionospheric-sourced mechanism to be proposed for their creation. Those with more exaggerated morphologies are regarded as being much more likely to result from ionospheric distortion rather than subsurface inhomogeneity.  相似文献   

5.
S. Close  M. Oppenheim  A. Coster 《Icarus》2004,168(1):43-52
Large-aperture radars detect the high-density plasma that forms in the vicinity of a meteoroid and moves approximately at its velocity; reflections from these plasmas are called head echoes. To determine the head plasma density and configuration, we model the interaction of a radar wave with the plasma without using assumptions about plasma density. This paper presents a scattering method that enables us to convert measurements of radar cross-section (RCS) from a head echo into plasma density by applying a spherical scattering model. We use three methods to validate our model. First, we compare the maximum plasma densities determined from the spherical solution using 30 head echoes detected simultaneously at VHF and UHF. Second, we use a head echo detected simultaneously at VHF, UHF and L-band to compare plasma densities at all frequencies. Finally, we apply our spherical solution to 723 VHF head echoes and calculate plasma density, line density and meteoroid mass in order to compare these values with those obtained from a meteoroid ablation and ionization model. In all three comparisons, our results show that the spherical solution produces consistent results across a wide frequency range and agrees well with the single-body ablation model.  相似文献   

6.
M.D. Campbell-Brown 《Icarus》2008,196(1):144-163
Five years of meteor orbit data from CMOR (the Canadian Meteor Orbit Radar) are used to study the high-resolution orbital structure of the sporadic meteoroid complex. The large number of high quality orbits (2.35 million) allows the orbital characteristics of meteoroids to be studied not only in the five sporadic sources accessible from the latitude of London, Ontario, Canada, but at a resolution of 2 degrees. The radiant distribution of sporadic meteors is investigated, applying corrections for observing biases, and weighting to a constant limiting mass, and to a constant limiting energy. The orbital distribution of the sporadic sources is compared to other studies. The variation of average geocentric speed, semimajor axis, eccentricity, inclination and perihelion distance with meteoroid radiant is investigated. The source of a ring depleted in meteor radiants at 55 degrees from the apex is attributed to shorter collisional lifetimes inside the ring, due to a higher probability of catastrophic collisions with particles in the zodiacal cloud for the predominantly retrograde meteoroids inside the ring.  相似文献   

7.
8.
The distribution of meteor signals reflected from a backscatter radar is considered according to their duration. This duration time (T) is used to classify the meteor echoes and to calculate the mass index (S) of different meteoroids of shower plus sporadic background. Observational data on particle size distribution of the Geminid meteor shower are very scarce, particularly at low latitudes. In this paper the observational data from Gadanki radar (13.46°N, 79.18°E) have been used to determine the particle size distribution and the number density of meteoroids inside the stream of the Geminid meteor shower. The mean variation of meteor number density across the stream has been determined for three echo duration classes, T<0.4, T=0.4–1 and T>1 s. We are more interested in the appearance of echoes of various durations and therefore meteors of various masses in order to understand more on the filamentary structure of the stream. It is observed that the faint particle flux peaks earlier than the larger particles. We found a decreasing trend in the mass index values from the day of peak activity to the next observation days. The mass index profile was found to be U-shaped with a minimum value near the time of peak activity. The observed minimum s values are 1.64±0.05 and 1.65±0.04 in the years 2003 and 2005, respectively. The activity of the shower indicates the mass segregation of meteoroids inside the stream. Our results are best comparable with the “scissors” structure model of the meteoroid stream formation of Ryabova [2007. Mathematical modeling of the Geminid meteoroid stream. Mon. Not. R. Astron. Soc. 375, 1371–1380] by considering the asteroid 3200 Phaethon as an extinct comet.  相似文献   

9.
In November 2005, we observed the moons of Mars using the Arecibo 2380-MHz (13-cm) radar, obtaining a result for the OC radar albedo of Phobos (0.056±0.014) consistent with its previously reported radar albedo and implying an upper bound on its near-surface bulk density of . We detected Deimos by radar for the first time, finding its OC radar albedo to be 0.021±0.006, implying an upper bound on its near-surface density of , consistent with a high-porosity regolith. We briefly discuss reasons for these low radar albedos, Deimos' being possibly the lowest of any Solar System body yet observed by radar.  相似文献   

10.
The 33.2 MHz interferometric meteor radars located at Davis Station, Antarctica and Darwin, Australia typically detect around 15 000 specular underdense meteor echoes every day. While the angle of arrival of the scattered radio wave can be inferred using phase differences between receive antennae, the direction of individual meteors is not known beyond a plane of ambiguity perpendicular to the angle of arrival. Using the great circle mapping technique with a Jones & Jones type weighting function, 37 meteor shower systems were detected in data collected at both locations over 2006–2007, including nine undocumented showers. The orbital elements of the parent debris streams were then calculated for the 31 showers where sufficiently precise measurements were available.  相似文献   

11.
We report Arecibo observations of 55 main-belt asteroids (MBAs) during 1999-2003. Most of our targets had not been detected previously with radar, so these observations more than double the number of radar-detected MBAs. Our bandwidth estimates constrain our targets' pole directions in a manner that is geometrically distinct from optically derived constraints. We present detailed statistical analyses of the disk-integrated properties (radar albedo and circular polarization ratio) of the 84 MBAs observed with radar through March 2003; all of these observations are summarized in the online supplementary information. Certain conclusions reached in previous studies are strengthened: M asteroids have higher mean radar albedos and a wider range of albedos than do other MBAs, suggesting that both metal-rich and metal-poor M-class objects exist; and C- and S-class MBAs have indistinguishable radar albedo distributions, suggesting that most S-class objects are chondritic. Also in accord with earlier results, there is evidence that primitive asteroids from outside the C taxon (F, G, P, and D) are not as radar-bright as C and S objects, but a convincing statistical test must await larger sample sizes. In contrast with earlier work, we find S-class MBAs to have higher circular polarization ratios than other MBAs, indicating greater near-surface structural complexity at decimeter scales, due to different mineralogy (material strength or loss tangent), a different impactor population, or both.  相似文献   

12.
Hong-Jin Yang  Changbom Park 《Icarus》2005,175(1):215-225
We have compiled and analyzed historical Korean meteor and meteor shower records in three Korean official history books, Samguksagi which covers the three Kingdoms period (57 B.C.-A.D. 935), Goryeosa of Goryeo dynasty (A.D. 918-1392), and Joseonwangjosillok of Joseon dynasty (A.D. 1392-1910). We have found 3861 meteor and 31 meteor shower records. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte Carlo test. The peaks persist from the period of Goryeo dynasty to that of Joseon dynasty, for almost one thousand years. Korean records show a decrease of Perseids activity and an increase of Orionids/north-Taurids/Leonids activity. We have also analyzed seasonal variation of sporadic meteors from Korean records. We confirm the seasonal variation of sporadic meteors from the records of Joseon dynasty with the maximum number of events being roughly 1.7 times the minimum. The Korean records are compared with Chinese and Japanese records for the same periods. Major features in Chinese meteor shower records are quite consistent with those of Korean records, particularly for the last millennium. Japanese records also show Perseids feature and Orionids/north-Taurids/Leonids feature, although they are less prominent compared to those of Korean or Chinese records.  相似文献   

13.
G.J. Black  D.B. Campbell 《Icarus》2011,212(1):300-320
We have observed Titan with the Arecibo Observatory’s 12.6 cm wavelength radar system during the last eight oppositions of the Saturn system with sufficient sensitivity to characterize its scattering properties as a function of sub-Earth longitude. In a few sessions the Green Bank Telescope was used as the receiving instrument in a bistatic configuration to boost sub-radar track length and integration time. Radar echo spectra have been obtained for a total of 92 viewing geometries with sub-Earth locations scattered through all longitudes and at latitudes between 7.6°S and 26.3°S, close to the maximum southern excursion of the sub-Earth track. We find Titan to have globally average radar albedos at this wavelength of 0.161 in the opposite circular polarization sense as that transmitted (OC) and 0.074 in the same sense (SC), giving a polarization ratio SC/OC of 0.46. These values are intermediate between lower reflectivity rocky surfaces and higher reflectivity clean icy surfaces. The variations with longitude in general mirror the surface brightness variations seen through the infrared atmospheric windows. Xanadu Regio’s radar reflectivity and polarization ratio are higher than the global averages, and suggest that its composition is relatively cleaner water ice or, possibly, some other material with low propagation loss at radio wavelengths. For all echo spectra most of the power is in a broad diffuse component but with a specular component whose strength and narrowness is highly variable as a function of surface location. For all data we fit a sum of the standard Hagfors scattering law describing the specular component and an empirical diffuse radar scattering model to extract bulk parameters of the surface. Many areas exhibit very narrow specular reflections implying terrain that are quite flat on centimeter to meter scales over spans of tens to perhaps hundreds of kilometers. The proportion of spectra showing these narrow specular echoes has fallen significantly over the observational time span, indicating either a latitudinal effect related to terrain differences or changing surface conditions over the past several years. A few radar tracks, especially those from the 2008 session, overlap some high resolution Cassini RADAR imagery swaths to allow a direct comparison with terrain.  相似文献   

14.
A 7 year survey using the Canadian Meteor Orbit Radar (CMOR), a specular backscattering orbital radar, has produced three million individually measured meteoroid orbits for particles with mean mass near 10−7 kg. We apply a 3D wavelet transform to our measured velocity vectors, partitioning them into 1° solar longitude bins while stacking all 7 years of data into a single “virtual” year to search for showers which show annual activity and last for at least 3 days. Our automated stream search algorithm has identified 117 meteor showers. We have recovered 42 of the 45 previously described streams from our first reconnaissance survey (Brown, P., Weryk, R.J., Wong, D.K., Jones, J. [2008]. Icarus 195, 317-339). Removing possible duplicate showers from the automated results leaves 109 total streams. These include 42 identified in survey I and at least 62 newly identified streams. Our large data sample and the enhanced sensitivity of the 3D wavelet search compared to our earlier survey have allowed us to extend the period of activity for several major showers. This includes detection of the Geminid shower from early November to late December and the Quadrantids from early November to mid-January. Among our newly identified streams are the Theta Serpentids which appears to be derived from 2008 KP and the Canum Venaticids which have a similar orbit to C/1975 X1 (Sato). We also find evidence that nearly 60% of all our streams are part of seven major stream complexes, linked via secular invariants.  相似文献   

15.
G.J. Black  D.B. Campbell 《Icarus》2007,191(2):702-711
We have measured the bulk radar reflectance properties of the mid-size saturnian satellites Rhea, Dione, Tethys, and Enceladus with the Arecibo Observatory's 13 cm wavelength radar system during the 2004 through 2007 oppositions of the Saturn system. Comparing to the better studied icy Galilean satellites, we find that the total reflectivities of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus' reflectivity falls between those of Ganymede and Europa. The mean circular polarization ratios of the saturnian satellites range from ∼0.8 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength although still larger than expected for single reflections off the surface. The ratio for the trailing hemisphere of Enceladus may be the exception with a value ?0.56. The 13 cm wavelength radar albedos and polarization ratios may be systematically lower than similar results from the Cassini orbiter's RADAR instrument at 2.2 cm wavelength [Ostro, S.J., and 19 colleagues, 2006. Icarus 183, 479-490]. Overall, these reflectivities and polarization properties, together with the shapes of the echo spectra, suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. All these saturnian moons and icy jovian moons are atmosphere-less, low temperature water ice surfaces, and any differences in radar properties may be indicative of differences in composition or the effects of various processes that modify the regolith structure. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer.  相似文献   

16.
Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) is a subsurface and topside ionosphere radar sounder aboard the European Space Agency spacecraft Mars Express, in orbit at Mars since 25 December 2003, and in operation since 17 June 2005. The ionospheric sounding mode of MARSIS is capable of detecting the reflection of the sounding wave from the martian surface. This ability has been used in previous work to show that the surface reflection is absorbed and disappears during periods when high fluxes of energetic particles are incident on the ionosphere of Mars. These absorption events are believed to be the result of increased collisional damping of the sounding wave, caused by increased electron density below the spacecraft, in turn caused by impact ionization from the impinging particles. In this work we identify two absorption events that were isolated during periods when the surface reflection is consistently visible and when Mars is nearly at opposition. The visibility of the surface reflection is viewed in conjunction with particle and photon measurements taken at both Mars and Earth. Both absorption events are found to coincide with Earth passing through solar wind speed and ion flux signatures indicative of a corotating interaction region (CIR). The two events are separated by an interval of approximately 27 days, corresponding to one solar rotation. The first of the two events coincides with abruptly enhanced particle fluxes seen in situ at Mars. Simultaneous with the particle enhancement there are an abrupt decrease in the intensity of electron oscillations, typically seen by the Mars Express particle instrument ASPERA-3 between the magnetic pileup boundary and the martian bow shock, and a sharp drop in the solar wind pressure, seen in the proxy quantity based on MGS magnetometer observations. The decrease in oscillation intensity is therefore the probable effect of a relaxation of the martian bow shock. The second absorption event does not show a particle enhancement and complete ASPERA-3 data during that time are unavailable. Other absorption events are the apparent result of solar X-ray and XUV enhancements. We conclude that surface reflection absorption events are sometimes caused by enhanced ionospheric ionization from high energy particles accelerated by the shocks associated with a CIR. A full statistical analysis of CIRs in relation to observed absorption events in conjunction with a quantitative analysis of the deposition of ionization during space weather events is needed for a complete understanding of this phenomenon. If such analyses can be carried out, radar sensing of the martian ionosphere might be useful as a space weather probe.  相似文献   

17.
P. Brown  R.J. Weryk  D.K. Wong  J. Jones 《Icarus》2008,195(1):317-339
Using a meteor orbit radar, a total of more than 2.5 million meteoroids with masses ∼10−7 kg have had orbits measured in the interval 2002-2006. From these data, a total of 45 meteoroid streams have been identified using a wavelet transform approach to isolate enhancements in radiant density in geocentric coordinates. Of the recorded streams, 12 are previously unreported or unrecognized. The survey finds >90% of all meteoroids at this size range are part of the sporadic meteoroid background. A large fraction of the radar detected streams have q<0.15 AU suggestive of a strong contribution from sungrazing comets to the meteoroid stream population currently intersecting the Earth. We find a remarkably long period of activity for the Taurid shower (almost half the year as a clearly definable radiant) and several streams notable for a high proportion of small meteoroids only, among these a strong new shower in January at the time of the Quadrantids (January Leonids). A new shower (Epsilon Perseids) has also been identified with orbital elements almost identical to Comet 96P/Machholz.  相似文献   

18.
We present an improved technique for calculating bulk densities of low-mass (<1 g) meteoroids using a scattering model applied to the high-density plasma formed around the meteoroid as it enters Earth’s atmosphere. These plasmas, referred to as head echoes, travel at or near the speed of the meteoroid, thereby allowing the determination of the ballistic coefficient (mass divided by physical cross-section), which depends upon speed and deceleration. Concurrently, we apply a scattering model to the returned signal strength of the head echo in order to correlate radar-cross-section (RCS) to plasma density and meteoroid mass. In this way, we can uniquely solve for the meteoroid mass, radius and bulk density independently. We have applied this new technique to head echo data collected in 2007 and 2008 simultaneously at VHF (160 MHz) and UHF (422 MHz) at ALTAIR, which is a high-power large-aperture radar located on the Kwajalein Atoll. These data include approximately 20,000 detections with dual-frequency, dual-polarization, and monopulse (i.e. angle) returns. From 2000 detections with the smallest monopulse errors, we find a mean meteoroid bulk density of 0.9 g/cm3 with observations spanning almost three orders of magnitude from 0.01 g/cm3 to 8 g/cm3. Our results show a clear dependence between meteoroid bulk density and altitude of head echo formation, as well as dependence between meteoroid bulk density and 3D speed. The highest bulk densities are detected at the lowest altitudes and lowest speeds. Additionally, we stipulate that the approximations used to derive the ballistic parameter, in addition to neglecting fragmentation, suggest that the traditional ballistic parameter must be used with caution when determining meteoroid parameters.  相似文献   

19.
We report Arecibo (2380-MHz, 13-cm) observations of Asteroid 1580 Betulia in May-June 2002. We combine these continuous-wave Doppler spectra and delay-Doppler images with optical lightcurves from the 1976 and 1989 apparitions in order to estimate Betulia's shape and spin vector. We confirm the spin vector solution of Kaasalainen et al. [Kaasalainen, M., and 21 colleagues, 2004. Icarus 167, 178-196], with sidereal period P=6.13836 h and ecliptic pole direction (λ,β)=(136°,+22°), and obtain a model that resembles the Kaasalainen et al. convex-definite shape reconstruction but is dominated by a prominent concavity in the southern hemisphere. We find that Betulia has a maximum breadth of 6.59±0.66 km and an effective diameter of 5.39±0.54 km. These dimensions are in accord with reanalyzed polarimetric and radar data from the 1970s. Our effective diameter is 15% larger than the best radiometric estimate of Harris et al. [Harris, A.W., Mueller, M., Delbó, M., Bus, S.J., 2005. Icarus 179, 95-108], but this difference is much smaller than the size differences between past models. Considering orbits of test particles around Betulia, we find that this asteroid's unusual shape results in six equilibrium points close to its equatorial plane rather than the usual four points; two of these six points represent stable synchronous orbits while four are unstable. Betulia's close planetary encounters can be predicted for over four thousand years into the future.  相似文献   

20.
In order to understand the cometary plasma environment it is important to track the closely linked chemical reactions that dominate ion evolution. We used a coupled MHD ion-chemistry model to analyze previously unpublished Giotto High Intensity Ion Mass Spectrometer (HIS-IMS) data. In this way we study the major species, but we also try to match some minor species like the CHx and the NHx groups. Crucial for this match is the model used for the electrons since they are important for ion-electron recombination. To further improve our results we included an enhanced density of supersonic electrons in the ion pile-up region which increases the local electron impact ionization. In this paper we discuss the results for the following important ions: C+, CH+, CH+2, CH+3, N+, NH+, NH+2, NH+3, NH+4, O+, OH+, H2O+, H3O+, CO+, HCO+, H3CO+, and CH3OH+2. We also address the inner shock which is very distinctive in our MHD model as well as in the IMS data. It is located just inside the contact surface at approximately 4550 km. Comparisons of the ion bulk flow directions and velocities from our MHD model with the data measured by the HIS-IMS give indication for a solar wind magnetic field direction different from the standard Parker angle at Halley's position. Our ion-chemical network model results are in a good agreement with the experimental data. In order to achieve the presented results we included an additional short lived inner source for the C+, CH+, and CH+2 ions. Furthermore we performed our simulations with two different production rates to better match the measurements which is an indication for a change and/or an asymmetric pattern (e.g. jets) in the production rate during Giotto's fly-by at Halley's comet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号