首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large channels on the Martian surface have been variously attributed to erosional, volcanic, and tectonic processes. Morphometric information shows that large braided Martian channels and islands between those channels are similar in their dimensions to channels and islands of large braided fluvial features on Earth. The information also suggests that braided fractures in solid materials are fundamentally different in morphometry from braided channels of Earth and Mars. Braided tension fractures have characteristically low braiding indices and are much narrower than their irregularly shaped “midchannel” islands. Terrestrial and Martian channels, in contrast, have high braiding indices, and they are wider than their streamlined midchannel islands. Braided volcanic features are known from the earth and the moon, but the absence of volcanic constructs near the large braided channels on Mars indicates that volcanic origin is unlikely. The morphometric information suggests that braided Martian channels are probably of fluvial origin.  相似文献   

2.
Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach.  相似文献   

3.
The plains of Aurorae and Ophir in the equatorial region of Mars display geomorphic evidence indicative of extensive but generally short-lived paleohydrological processes. Elaver Vallis in Aurorae Planum south of Ganges Chasma is an outflow channel system >180 km long, and here inferred to have formed by cataclysmic spillover flooding from a paleolake(s) contained in the Morella crater basin. Ganges Cavus is an enormous 5-km-deep depression of probable collapse origin located in the Morella basin. The fluid responsible for the infilling of the Morella basin likely emerged at least partially through Ganges Cavus or its incipient depression, and it may have been supplied also from small-scale springs in the basin. Similar paleohydrological processes are inferred also in Ophir Planum. It is reasonable to assume that water, sometimes sediment-laden and/or mixed with gases, was the responsible fluid for these phenomena although some of the observed features could be explained by non-aqueous processes such as volcanism. Water emergence may have occurred as consequences of ground ice melting or breaching of cryosphere to release water from the underlying hydrosphere. Dike intrusion is considered to be an important cause of formation for the cavi and smaller depressions in Aurorae and Ophir Plana, explaining also melting of ground ice or breaching of cryosphere. Alternatively, the depressions and crater basins may have been filled by regional groundwater table rising during the period(s) when cryosphere was absent or considerably thin. The large quantities of water necessary for explaining the paleohydrological processes in Aurorae and Ophir Plana could have been derived through crustal migration from the crust of higher plains in western Ophir Planum where water existed in confined aquifers or was produced by melting of ground ice due to magmatic heating or climatic shift, or from a paleolake in Candor Chasma further west.  相似文献   

4.
The mapped area of Harmakhis Vallis, at the eastern Hellas Planitia region (35°30–42°50′S; 91°00–97°30′E), covers the surface area of about 212,000 km2. The region displays an enhanced modification of the initial topography formed by the Hellas impact. The long and complex history of degradation and alteration involves mass-wasting processes, volcanism and fluvial activity, confronting effects of climate-induced slow mass-wasting processes to effects caused by temporary, catastrophic events (impact cratering, volcanism, etc.). Geological mapping at scale of 1:1,500,000 (full scale at 1:540,000) have been carried out on multiple co-registered data sets available from the past and ongoing orbiter missions to Mars. The mapped geomorphic features of small- and medium-scales reveal in detail events that shaped the topography of the region throughout history, providing specific constraints on the geologic and climatic history of the region. This study highlights events from the most recent Martian history, including fluvial activity recorded in relation to a debris apron flanking Centauri Montes, and evidence of recent positive geothermal anomalies of a high heat-flux with relatively small spatial extents, on the timescale of several million years ago.  相似文献   

5.
The central Valles Marineris is the widest part of the equatorial trough system of Mars. Melas Chasma and parts of Coprates and Candor Chasmata provide some of the clearest clues on the relationships between erosional landforms, deposits and various volcanic and tectonic features. A detailed geomorphic study of the troughs allows the identification of faults and other structures in most parts of this area, in spite of local obliteration by erosional and depositional processes. Tectonic control on erosional landforms appears mainly in the northern walls of Melas Chasma and in the edge of the inner plateau above the trough floor. Longitudinal major faults are identified only along the northern wall. However the trough may not be a simple half graben: another fault line is inferred inside Melas Chasma southern walls along the edge of a wide bench of layered deposits. A deep and relatively narrow graben linking those of Ius and Coprates Chasmata appears to be downfaulted inside a wider basin with eroded sides. Transverse or oblique faults control some outlines of these erosional landforms, whereas a few monoclines or faults restricted to the basin beds reveal compressional stresses or differential vertical movements related to the basin development.  相似文献   

6.
Scott C. Mest  David A. Crown 《Icarus》2005,175(2):335-359
The geology and stratigraphy of Millochau crater (21.4° S, 275° W), located in the highlands of Tyrrhena Terra, Mars, are documented through geomorphic analyses and geologic mapping. Crater size-frequency distributions and superposition relationships are used to constrain relative ages of geologic units and determine the timing and duration of the geologic processes that modified Millochau rim materials and emplaced deposits on Millochau's floor. Crater size-frequency distributions show a Middle Noachian age for rim materials and Middle Noachian to Early Hesperian ages for most of the interior deposits. Valley networks and gullies incised within Millochau's rim materials and interior wall, respectively, indicate fluvial activity was an important erosional process. Millochau contains an interior plateau, offset northeast of Millochau's center, which rises up to 400 m above the surrounding crater floor and slopes downward to the south and west. Layers exposed along the northern and eastern scarp boundaries of the plateau are tens to hundreds of meters thick and laterally continuous in MOC images. These layers suggest most materials within Millochau were emplaced by sedimentary processes (e.g., fluvial or eolian), with the potential for lacustrine deposition in shallow transient bodies of water and contributions of volcanic airfall. Mass wasting may have also contributed significant quantities of material to Millochau's interior, especially to the deposits surrounding the plateau. Superposition relationships combined with impact crater statistics indicate that most deposition and erosion of Millochau's interior deposits is ancient, which implies that fluvial activity in this part of Tyrrhena Terra is much older than in the eastern Hellas region. Eolian processes mobilized sediment to form complicated patterns of long- and short-wavelength dunes, whose emplacement is controlled by local topography. These deposits are some of the youngest within Millochau (Amazonian) and eolian modification may be ongoing.  相似文献   

7.
High Resolution Imaging Science Experiment (HiRISE) imagery and digital elevation models of the Candor Chasma region of Valles Marineris, Mars, reveal prominent and distinctive positive-relief knobs amidst light-toned layers. Three classifications of knobs, Types 1, 2, and 3, are distinguished from a combination of HiRISE and Thermal Emission Imaging System (THEMIS) images based on physical expressions (geometries, spatial relationships), and spectral data from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Type 1 knobs are abundant, concentrated, topographically resistant features with their highest frequency in West Candor, which have consistent stratigraphic correlations of the peak altitude (height). These Type 1 knobs could be erosional remnants of a simple dissected terrain, possibly derived from a more continuous, resistant, capping layer of pre-existing material diagenetically altered through recrystallization or cementation. Types 2 and 3 knobs are not linked to a single stratigraphic layer and are generally solitary to isolated, with variable heights. Type 3 are the largest knobs at nearly an order of magnitude larger than Type 1 knobs. The variable sizes and occasional pits on the tops of Type 2 and 3 knobs suggest a different origin, possibly related to more developed erosion, preferential cementation, or textural differences from sediment/water injection or intrusion, or from a buried impact crater. Enhanced color HiRISE images show a brown coloration of the knob peak crests that is attributable to processing and photometric effects; CRISM data do not show any detectable spectral differences between the knobs and the host rock layers, other than albedo. These intriguing knobs hold important clues to deducing relative rock properties, timing of events, and weathering conditions of Mars history.  相似文献   

8.
Geomorphic change in high mountains: a western Himalayan perspective   总被引:1,自引:0,他引:1  
Globally significant interactions between climate, surface processes, and tectonics have recently been proposed to explain climate change and mountain building. Assessing climate-driven erosion processes and geomorphic change in high-mountain environments, however, is notoriously difficult. In the western Himalaya, the coupling of climate, surface processes, and tectonics results in complex topography that frequently records the polygenetic nature of topographic evolution over the last 100 ka. Depending upon the erosional history of a particular landscape, temporal overprinting of geomorphic events can produce unique topographic properties which define the spatial complexity of the topography. Field work coupled with analysis of the topography using digital elevation models (DEMs) enable low- and high-frequency spatial patterns and scale-dependent properties of the topography to be detected and associated with geomorphic events caused by climate and tectonic forcing. We conducted spatial analysis of the topography at Nanga Parbat in northern Pakistan to demonstrate the utility of geomorphometry and to characterize dramatic geomorphic change over the past 100 ka. Results indicate rapid river incision, extensive glaciation, and variable denudation rates by mass movement, glaciation, and catastrophic flood flushing. Furthermore, topographic and chronologic evidence indicate that glaciation is strongly controlled by the southwestern monsoon, and that modern fluvial systems are still responding to tectonic forcing and deglaciation. Scale-dependent analysis of the topography revealed that different erosion processes uniquely alter the spatial complexity of the topography, such that the greatest mesoscale relief appears to be caused by glaciation. Collectively, our results indicate that topographic development in the western Himalaya is inherently polygenetic in nature, with glaciation, fluvial and slope processes all playing important roles at different times, and that they can do so sequentially on the same portion of the landscape. Given the rapidity of major changes in climate and glaciation over the last 100 ka, the landscape cannot be in steady-state.  相似文献   

9.
This paper presents new, detailed analyses of small-scale morphologic and topographic characteristics of martian debris aprons that support Viking-based interpretations of debris aprons as ice-rich flow features derived from local uplands. Fifty-four debris apron complexes in the eastern Hellas region of Mars were examined using Mars Global Surveyor data sets, including Mars Orbiter Camera images and Mars Orbiter Laser Altimeter topographic profiles. Consistent patterns in a suite of small-scale surface textures and geomorphic features observed throughout the population reflect a history of viscous flow and surface degradation through wind ablation and loss of contained ice. A wide variety of shapes seen in topographic profile reveal variations in distribution of contained ice and different stages of apron development and degradation. The results of this study provide new evidence consistent with multiple models of apron formation, including rock glacier, debris-covered glacier, and ice-rich landslide models. Typical eastern Hellas debris aprons formed from a series of large-scale events, emplacing debris that was enriched initially or later by ground ice, complemented by small-scale mass wasting of multiple styles and postemplacement flow of apron masses.  相似文献   

10.
Our numerical analyses of the velocity and spatial distributions of pickup interstellar helium ions in the region of the solar gravitational cone in the ecliptic plane at a distance of 1 AU show that the ion density maximum must be displaced relative to the neutral helium cone axis in the direction of the Earth’s revolution around the Sun. The solar wind parameters in the numerical model correspond to their observed values during the crossing of the helium cone by the ACE spacecraft in 1998. At these parameters, the calculated angular displacement is 5°. The absence of a similar displacement in the ACE measurements is shown to stem from the fact that the spectrometer onboard ACE records and identifies only a fraction of the pickup helium ions with fairly high magnitudes and certain directions of the velocities.  相似文献   

11.
The form of erosional remnants of the Medusae Fossae Formation (MFF) on Mars provide evidence of their development progression and implicate two spatially distinct environments in the equatorial regions of Mars. Ubiquitous yardangs are clearly the product of strong unidirectional winds acting over time on variably indurated deposits. Yardang orientation is used as a proxy to map regional and local wind direction at meso-scale resolution. In other, more limited areas not subjected to strong unidirectional winds, randomly oriented kilometer-scale mesas and buttes are found to be remnants of progressive cliff recession through mass wasting as support is lost from within the MFF lithology at its margins. The differing processes that dominate the formation of the distinctive landforms have implications for meso-scale variations in climate that remain unresolved by current modeling efforts. Additionally, the variability of erosional forms within the deposit emphasizes the overall complexity of this extensive formation.  相似文献   

12.
The Dry Valleys of Antarctica are an excellent analog of the environment at the surface of Mars. Soil formation histories involving slow processes of sublimation and migration of water-soluble ions in polar desert environments are characteristic of both Mars and the Dry Valleys. At the present time, the environment in the Dry Valleys is probably the most similar to that in the mid-latitudes on Mars although similar conditions may be found in areas of the polar regions during their respective Mars summers. It is thought that Mars is currently in an interglacial period, and that subsurface water ice is sublimating poleward. Because the Mars sublimation zones seem to be the most similar to the Antarctic Dry Valleys, the Dry Valleys-type Mars climate is migrating towards the poles. Mars has likely undergone drastic obliquity changes, which means that the Dry Valleys analog to Mars may be valid for large parts of Mars, including the polar regions, at different times in geologic history. Dry Valleys soils contain traces of silicate alteration products and secondary salts much like those found in Mars meteorites. A martian origin for some of the meteorite secondary phases has been verified previously; it can be based on the presence of shock effects and other features which could not have formed after the rocks were ejected from Mars, or demonstrable modification of a feature by the passage of the meteorite through Earth's atmosphere (proving the feature to be pre-terrestrial). The martian weathering products provide critical information for deciphering the near-surface history of Mars. Definite martian secondary phases include Ca-carbonate, Ca-sulfate, and Mg-sulfate. These salts are also found in soils from the Dry Valleys of Antarctica. Results of earlier Wright Valley work are consistent with what is now known about Mars based on meteorite and orbital data. Results from recent and current Mars missions support this inference. Aqueous processes are active even in permanently frozen Antarctic Dry Valleys soils, and similar processes are probably also occurring on Mars today, especially at the mid-latitudes. Both weathering products and life in Dry Valleys soils are distributed heterogeneously. Such variations should be taken into account in future studies of martian soils and also in the search for possible life on Mars.  相似文献   

13.
We report observations of Icelandic hillside gully systems that are near duplicates of gullies observed on high-latitude martian hillsides. The best Icelandic analogs involve basaltic talus slopes at the angle of repose, with gully formation by debris flows initiated by ground water saturation, and/or by drainage of water from upslope cliffs. We report not only the existence of Mars analog gullies, but also an erosional sequence of morphologic forms, found both on Mars and in Iceland. The observations support hypotheses calling for creation of martian gullies by aqueous processes. Issues remain whether the water in each case comes only from surficial sources, such as melting of ground ice or snow, or from underground sources such as aquifers that gain surface access in hillsides. Iceland has many examples of the former, but the latter mechanism is not ruled out. Our observations are consistent with the martian debris flow mechanism of F. Costard et al. (2001c, Science295, 110-113), except that classic debris flows begin at midslope more frequently than on Mars. From morphologic observations, we suggest that some martian hillside gully systems not only involve significant evolution by extended erosive activity, but gully formation may occur in episodes, and the time interval since the last episode is considerably less than the time interval needed to erase the gully through normal martian obliteration processes.  相似文献   

14.
Abundant evidence exists for glaciation being an important geomorphic process in the mid-latitude regions of both hemispheres of Mars, as well as in specific environments at near-equatorial latitudes, such as along the western flanks of the major Tharsis volcanoes. Detailed analyses of glacial landforms (lobate-debris aprons, lineated valley fill, concentric crater fill, viscous flow features) have suggested that this glaciation was predominantly cold-based. This is consistent with the view that the Amazonian has been continuously cold and dry, similar to conditions today. We present new data based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter that some of these glaciers experienced limited surface melting, leading to the formation of small glaciofluvial valleys. Some of these valleys show evidence for proglacial erosion (eroding the region immediately in front of or adjacent to a glacier), while others are supraglacial (eroding a glacier’s surface). These valleys formed during the Amazonian, consistent with the inferred timing of glacial features based on both crater counts and stratigraphic constraints. The small scale of the features interpreted to be of glaciofluvial origin hindered earlier recognition, although their scale is similar to glaciofluvial counterparts on Earth. These valleys appear qualitatively different from valley networks formed in the Noachian, which can be much longer and often formed integrated networks and large lakes. The valleys we describe here are also morphologically distinct from gullies, which are very recent fluvial landforms formed during the last several million years and on much steeper slopes (∼20-30° for gullies versus ?10° for the valleys we describe). These small valleys represent a distinct class of fluvial features on the surface of Mars (glaciofluvial); their presence shows that the hydrology of Amazonian Mars is more diverse than previously thought.  相似文献   

15.
Permafrost is ground remaining frozen (temperatures are below the freezing point of water) for more than two consecutive years. An active layer in permafrost regions is defined as a near-surface layer that undergoes freeze-thaw cycles due to day-average surface and soil temperatures oscillating about the freezing point of water. A “dry” active layer may occur in parched soils without free water or ice but significant geomorphic change through cryoturbation is not produced in these environments. A wet active layer is currently absent on Mars. We use recent calculations on the astronomical forcing of climate change to assess the conditions under which an extensive active layer could form on Mars during past climate history. Our examination of insolation patterns and surface topography predicts that an active layer should form on Mars in the geological past at high latitudes as well as on pole-facing slopes at mid-latitudes during repetitive periods of high obliquity. We examine global high-resolution MOLA topography and geological features on Mars and find that a distinctive latitudinal zonality of the occurrence of steep slopes and an asymmetry of steep slopes at mid-latitudes can be attributed to the effect of active layer processes. We conclude that the formation of an active layer during periods of enhanced obliquity throughout the most recent period of the history of Mars (the Amazonian) has led to significant degradation of impact craters, rapidly decreasing the steep slopes characterizing pristine landforms. Our analysis suggests that an active layer has not been present on Mars in the last ∼5 Ma, and that conditions favoring the formation of an active layer were reached in only about 20% of the obliquity excursions between 5 and 10 Ma ago. Conditions favoring an active layer are not predicted to be common in the next 10 Ma. The much higher obliquity excursions predicted for the earlier Amazonian appear to be responsible for the significant reduction in magnitude of crater interior slopes observed at higher latitudes on Mars. The observed slope asymmetry at mid-latitudes suggests direct insolation control, and hence low atmospheric pressure, during the high obliquity periods throughout the Amazonian. We formulate predictions on the nature and distribution of candidate active layer features that could be revealed by higher resolution imaging data.  相似文献   

16.
Tectonic geomorphology of the northern Upper Rhine Graben, Germany   总被引:5,自引:2,他引:3  
This paper focuses on the northern Upper Rhine Graben (URG), which experienced low tectonic deformation and multiple climate changes during Quaternary times. Recently, human modifications have been high. The paper presents the results of a study into the effects of fault activity on the landscape evolution of the area. The study aims to detect active faults and to determine the last phase of tectonic activity. Information on the long-term tectonic activity is gained from the geological record (drainage system, sediment distributions, fluvial terraces, fault mapping). Previous studies are reviewed and supplemented with new data on tectonic activity. The compilation of all data is presented as a series of paleogeographic maps from Late Miocene to present. It is demonstrated that differential uplift of the western margin of the northern URG had significant impact on the drainage system, the formation of fluvial terraces and the landscape of the western graben shoulder. In a second part of the paper, the imprint of tectonics on the present-day landscape is investigated at the regional scale in order to determine the location of fault scarps and tectonically influenced parts of the drainage system. This study uses an integrated analysis of topography, drainage patterns and fault network. The comparison of features suggests a structural control by numerous NNE- and NNW-oriented intra-graben faults on the flow directions of streams in the Rhine Valley. Several scarps in the Rhine Valley are identified and interpreted to result from intra-graben faulting activity, which in turn controlled fluvial dissection. The third part of the paper presents quantitative measurements of the present-day landscape shape. Calculations of geomorphic indices are used to determine the balance between erosional and tectonic processes and to identify active fault segments. The mountain-front sinuosity and valley shape indices measured along the border faults and in the footwall area are used to determine the level of activity of the faults. Stream profiles of the western and eastern catchments of the River Rhine are investigated for gradient changes at the crossing of the border faults. The combined interpretation of geomorphic indices points to active border fault segments on both sides of the graben. Based on the integration of all results it is concluded that the tectonic morphology identified for the northern URG formed in response to long-term, low level tectonic processes. Due to a significant decrease in erosional and depositional activity during the last 15,000 years, the tectonic morphology has probably been preserved until present.  相似文献   

17.
Eileen McGowan 《Icarus》2009,202(1):78-89
Many putative water-related features exist in the northern lowlands of Mars. These features may provide clues to the abundance and timing of water or ice that existed there in the past. The Cydonia Mensae and Southern Acidalia area was chosen as the study area owing to the abundance of two of these features: giant polygons and pitted cones. In addition a section of the Deuteronilus shoreline is located there. The abundance and close proximity of the features makes this area an excellent place to study the spatial relationships between these landforms, as well as the morphological characteristics of pitted cones. The features were mapped into a GIS for spatial analyses. The highest densities of pitted cones and giant polygons are adjacent but distinctly separated by a knobby ridge that is surrounded by the Deuteronilus putative shoreline. Pitted cones were measured and examined to determine if a classification by morphology is possible, but the results were inconclusive. Statistical tests on pit-to-cone diameter ratios and tests of surface temperatures of cone material suggest, but do not verify, a single cone origin. The various shapes, sizes, and putative ages of pitted cones may be attributed to temporal variation in emplacement and spatial variation in material properties. Among the possible scenarios put forth for pitted cone genesis on Mars two are likely candidates in Cydonia Mensae: (1) the sublimation of a cold-based glacier, and (2) a buried lens of methane and/or CO2 clathrates.  相似文献   

18.
On Earth, periglacial solifluction is a slow mass-wasting process related to freeze–thaw activity. We compare the morphology of small-scale lobate features on Mars to solifluction lobes in Svalbard to constrain their processes of formation. The analysis is based on high-resolution satellite imagery of Mars (HiRISE, ~25 cm/pxl), aerial images of Svalbard with a similar spatial resolution (HRSC–AX, ~20 cm/pxl) acquired through an air campaign in summer 2008, and ground truth obtained during two summer expeditions in 2009 and 2011 on Svalbard. We present a detailed study of two crater environments on Mars displaying two types of lobate forms, characterized as sorted (clast-banked) and non-sorted lobes. On both Svalbard and Mars such lobes typically occur as clusters of overlapping risers (lobe fronts), pointing to differential velocities in the soil. The martian small-scale lobes have well-defined arcuate risers and lobe treads (surface). Lobe widths range between 14 and 127 m and tread lengths between 13 and 105 m. Riser height is estimated to be approximately 1–5 m. The lobes on Mars share the plan view morphology of solifluction lobes on Svalbard and their morphometry is within the range of values of terrestrial solifluction lobes. The lobes are distinct from permafrost-creep landforms such as rock glaciers. We show the results of a survey of 53 HiRISE images covering latitudes between 59°N and 81°N. Similar to Svalbard, the studied lobate features on Mars occur in close spatial proximity to gullies and thermal contraction polygons. The widespread distribution of the lobate forms in the northern hemisphere and their close association to ground-ice and gullies are best explained by mass-wasting processes related to frost creep, gelifluction and/or plug-like flow. This suggests a protracted process (thousand to several thousands of years) of freeze–thaw activity at the northern high latitudes on Mars. Age constraints on lobe deposits and superposition relationships with gullies and polygons imply a process involving liquid water within the last few million years.  相似文献   

19.
Gale Crater contains a 5.2 km-high central mound of layered material that is largely sedimentary in origin and has been considered as a potential landing site for both the MER (Mars Exploration Rover) and MSL (Mars Science Laboratory) missions. We have analyzed recent data from Mars Reconnaissance Orbiter to help unravel the complex geologic history evidenced by these layered deposits and other landforms in the crater. Results from imaging data from the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) confirm geomorphic evidence for fluvial activity and may indicate an early lacustrine phase. Analysis of spectral data from the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument shows clay-bearing units interstratified with sulfate-bearing strata in the lower member of the layered mound, again indicative of aqueous activity. The formation age of the layered mound, derived from crater counts and superposition relationships, is ∼3.6-3.8 Ga and straddles the Noachian-Hesperian time-stratigraphic boundary. Thus Gale provides a unique opportunity to investigate global environmental change on Mars during a period of transition from an environment that favored phyllosilicate deposition to a later one that was dominated by sulfate formation.  相似文献   

20.
The conditions of formation and the form of yardangs in ignimbrites in the Central Andes of Chile, Bolivia, and Argentina may be the most convincing terrestrial analog to the processes and lithology that produce the extensive yardangs of the Medusae Fossae Formation (MFF) of Mars. Through remote and field study of yardang morphologies in the Central Andes we highlight the role that variable material properties of the host lithology plays in their final form. Here, ignimbrites typically show two main facies: an indurated and jointed facies, and a weakly to poorly indurated, ash- and pumice-rich facies. Both facies are vertically arranged in large (erupted volume >100's of km3) ignimbrites resulting in a resistant capping layer, while smaller (10's of km3) ignimbrites are made predominantly of the weakly indurated facies. The two facies have quite different mechanical properties; the indurated facies behaves as strong rock, fails by block collapse and supports steep/vertical cliffs, while the non-indurated facies is more easily eroded and forms gentle slopes and manifests as more subdued erosional forms. In response to aeolian action, the presence of an upper indurated facies results in large, elongate, high aspect ratio (1:20-1:40) megayardangs that form tall (100 m), thin ridges with steep to vertical walls. These are built on a broad apron of the weakly indurated facies with abundant fallen blocks from the upper indurated facies. These terrestrial megayardangs appear to be analogous to megayardangs with associated block fields seen on Mars. Smaller-volume, weakly indurated ignimbrites are sculpted into smaller, stubbier forms with aspect ratios of 1:5-1:10 and heights rarely exceeding 10 m. Excavation of a windward basal moat suggests an erosional progression like that seen in incipient yardangs on Mars. Excavation rates of 0.007-0.003 cm/year are calculated for the weakly indurated ignimbrites. While a persistent strong unidirectional wind is the dominant parameter controlling yardang formation and orientation, a role for flow separation and vorticity is also suggested by our observations at both yardang types. While the indurated facies is commonly pervasively jointed, jointing is of secondary importance in controlling yardang orientation. Serrated margins, a common feature on Mars, result from oblique intersections of jointing with yardang flanks or scarps of ignimbrite. The processes of yardang formation we describe from ignimbrites from the Central Andes are not necessarily specific to ignimbrites, but do connote that degree and distribution of induration is a major control in yardang formation and this has implications for the lithology of the MFF on Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号