首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We provide an overview of features indicative of the interaction between water and lava and/or magma on Mars as seen by the High Resolution Imaging Science Experiment (HiRISE) camera during the Primary Science Phase of the Mars Reconnaissance Orbiter (MRO) mission. The ability to confidently resolve meter-scale features from orbit has been extremely useful in the study of the most pristine examples. In particular, HiRISE has allowed the documentation of previously undescribed features associated with phreatovolcanic cones (formed by the interaction of lava and groundwater) on rapidly emplaced flood lavas. These include “moats” and “wakes” that indicate that the lava crust was thin and mobile, respectively [Jaeger, W.L., Keszthelyi, L.P., McEwen, A.S., Dundas, C.M., Russel, P.S., 2007. Science 317, 1709-1711]. HiRISE has also discovered entablature-style jointing in lavas that is indicative of water-cooling [Milazzo, M.P., Keszthelyi, L.P., Jaeger, W.L., Rosiek, M., Mattson, S., Verba, C., Beyer, R.A., Geissler, P.E., McEwen, A.S., and the HiRISE Team, 2009. Geology 37, 171-174]. Other observations strongly support the idea of extensive volcanic mudflows (lahars). Evidence for other forms of hydrovolcanism, including glaciovolcanic interactions, is more equivocal. This is largely because most older and high-latitude terrains have been extensively modified, masking any earlier 1-10 m scale features. Much like terrestrial fieldwork, the prerequisite for making full use of HiRISE’s capabilities is finding good outcrops.  相似文献   

2.
Using images from the Mars Orbiter Camera, we have identified several linear ridges located 10-60 km north of the volcano Olympus Mons, Mars, at the edge of the Olympus Mons aureole materials. These ridges appear to be made of unconsolidated material by virtue of the many dust avalanche scars seen on their upper slopes. Based upon their morphology (several ridges have crater-like central depressions) and superposition relationships, the ridges appear to have formed very recently and post-date the formation of the youngest lava flows spilling over the northern escarpment of Olympus Mons. Several possible origins for the ridges, including an eolian, periglacial, or depositional origin have been considered, but we favor a ridge origin by a series of small explosive eruptions initiated by the intrusion of a dike into a volatile-rich substrate. To explore this process, we develop a numerical model for dike intrusion into a volatile-rich substrate that yields plausible dike widths between 2.4-3.5 m. The total volume of a single ridge system is ∼65×106 m3, and we calculate that it may have taken only a few minutes to form. Viable solutions only exist when the thicknesses of the ice-rich layer is less than ∼1000-2000 m. This strongly suggests that the ice-rich region is limited in its vertical extent to a value of this order.  相似文献   

3.
Candidate examples of impact melt flows and debris flows have been identified at Tooting crater, an extremely young (<2 Myr), 29 km diameter impact crater in Amazonis Planitia, Mars. Using HiRISE and CTX images, and stereo-derived digital elevation models derived from these images, we have studied the rim and interior wall of Tooting crater to document the morphology and topography of several flow features in order to constrain the potential flow formation mechanisms. Four flow types have been identified; including possible impact melt sheets and three types of debris flows. The flow features are all located within 2 km of the rim crest on the southern rim or lie on the southern interior wall of the crater ∼1500 m below the rim crest. Extensive structural failure has modified the northern half of the crater inner wall and we interpret this to have resulted in the destruction of any impact melt emplaced, as well as volatile-rich wall rock. The impact melt flows are fractured on the meter to decameter scale, have ridged, leveed lobes and flow fronts, and cover an area >6 km × 5 km on the southern rim. The debris flows are found on both the inner wall and rim of the crater, are ∼1-2 km in length, and vary from a few tens of meters to >300 m in width. These flows exhibit varying morphologies, from a channelized, leveed flow with arcuate ridges in the channel, to a rubbly flow with a central channel but no obvious levees. The flows indicate that water existed within the target rocks at the time of crater formation, and that both melt and fluidized sediment was generated during this event.  相似文献   

4.
Niels Hovius 《Icarus》2008,197(1):24-38
Formation of chasms in the polar ice caps of Mars has been attributed to meltwater outburst floods, but the cause of melting has remained uncertain. In a cap re-entrant enveloping Abalos Colles, west of Casma Boreale in the north polar cap, we have found possible evidence of recent volcano-ice interaction and outburst flooding. In this paper we demonstrate that these two mechanisms can have acted together to form or expand the Abalos re-entrant. Flat-topped ridges and circular rims protruding above the ice cap surface in the re-entrant apex may be lava ridges and volcano craters, and can have caused melting of 3.3 to 7.7×103 km3 of ice. The surrounding cap surface appears to have subsided and the likely volume of missing ice matches the melt estimate. Outburst flooding from this area may have reached peak discharges of 0.3 to according to scour patterns in one of the re-entrant channels. This required ponding of melt water during lava eruption and catastrophic release through a sub- or englacial melt water tunnel, the collapse of which has left a chasm in the ice cap margin. The flood features are geologically recent, and volcano-ice interaction may have occurred within the last 20,000 years.  相似文献   

5.
The origin of the martian chaotic terrains is still uncertain; and a variety of geologic scenarios have been proposed. We provide topographic profiles of different chaos landscapes, notably Aureum and Hydraotes Chaos, showing that an initial shallow ground subsidence occurred at the first step of the chaos formation. We infer that the subsidence was caused by intrusion of a volcanic sill; which could have produced consequent melting as well as release of ground water from disrupted aquifer. Signs of a volcanic activity are observed on the floor of Hydraotes Chaos, a complex and deep depression located at the junction of three channels. The volcanic activity is represented by small, 0.5 to 1.5 km diameter, rounded cones with summit pits. The cone's size and morphology, as well as the presence of possible surrounding lava flows, suggest that they are primary volcanic cones similar to terrestrial cinder cones. The identification of volcanic activity on the deepest chaos, where the lower crustal thickness and the faults/fractures system contributed to the magma rising, reveals that magmatic activity, proved by the cones, and possibly help by structural activity, has been a major factor in the formation of chaotic terrains.  相似文献   

6.
Pingos are small hills with cores of ice, formed by injection and freezing of pressurized water. The possibility of pingos on Mars is of particular interest because of the associated implications for liquid water. We have systematically searched for candidate pingos using images from the High Resolution Imaging Science Experiment (HiRISE) camera. Since pingos are expected to develop surface fractures due to extension of the frozen ground over the ice core, we have searched for fractured features and identified a variety of mounds. These features are confined to the martian mid-latitudes, in the bands where gullies are also most common. The observed fractured mounds have a variety of morphologies and are likely of multiple origins. Isolated fractured mounds found on the floors of gullied craters in the southern hemisphere match the general morphologic characteristics of terrestrial pingos and are the best candidates for martian pingos, but there is currently no direct evidence for presence of ice cores and it is difficult to produce the necessary water volumes, so these features should still be interpreted with caution. Other fractured mounds appear more likely to be erosional remnants of an unusual mantling layer or possibly thermokarst structures. Flat-topped mounds in Utopia have some characteristics (fracture pattern and latitudinal distribution) consistent with pingos but differ in other aspects such as shape and setting. While we do not rule out a pingo origin, we prefer an erosional model for these enigmatic features.  相似文献   

7.
In the western hemisphere of Mars Amazonian volcanism from Arsia Mons produced the smooth surfaces of Daedalia Planum and masks older rocks. Close to the southern termination of Daedalia Planum basement rocks are exposed in which are preserved craters that escaped or were only partially filled by this most recent volcanism. Pickering Crater is an approximately 130 km diameter crater. The youngest lavas flowed into this crater from Daedalia Planum by way of a NW rim breach, covering its western part. East of a well-defined flow front an older lava sequence with a distinctive platy surface and derived from a more proximal unestablished source to the northeast is exposed. Several units are identified within this sequence on the basis of surface texture, which is more subdued in progressively older rocks. Only local mapping of the flow front boundaries of these units is possible because of incomplete coverage by high resolution imagery. During emplacement of the older lavas a NE-SW striking en echelon graben system and parallel smaller troughs and dikes formed under inferred regional NW-SE extension. A much earlier strike-slip regime pre-dating the lavas exposed in the crater floor is postulated, based on the highly fretted nature of the rim of Pickering Crater and an elongated smaller crater to its northeast, approximately 40 km long in the NE-SW direction. The rims of these craters contrast with that of a smoother rimmed impact crater in the southeast that was excavated subsequent to strike-slip deformation but prior to the emplacement of platy surfaced lavas.  相似文献   

8.
Thermal contraction crack polygons are complex landforms that have begun to be deciphered on Earth and Mars by the combined investigative efforts of geomorphology, environmental monitoring, physical models, paleoclimate reconstruction, and geochemistry. Thermal contraction crack polygons are excellent indicators of the current or past presence of ground ice, ranging in ice content from weakly cemented soils to debris-covered massive ice. Relative to larger topographic features, polygons may form rapidly, and reflect climate conditions at the time of formation—preserving climate information as relict landforms in the geological record. Polygon morphology and internal textural characteristics can be used to distinguish surfaces modified by the seasonal presence of a wet active layer or dry active layer, and to delimit subsurface ice conditions. Analysis of martian polygon morphology and distribution indicates that geologically-recent thermal contraction crack polygons on Mars form predominantly in an ice-rich latitude-dependent mantle, more likely composed of massive ice deposited by precipitation than by cyclical vapor diffusion into regolith. Regional and local heterogeneities in polygon morphology can be used to distinguish variations in ice content, deposition and modification history, and to assess microclimate variation on timescales of ka to Ma. Analyses of martian polygon morphology, guided by investigations of terrestrial analog thermal contraction crack polygons, strongly suggest the importance of excess ice in the formation and development of many martian thermal contraction crack polygons—implying the presence of an ice-rich substrate that was fractured during and subsequent to obliquity-driven depositional periods and continually modified by ongoing vapor equilibration processes.  相似文献   

9.
A number of martian outflow channels were carved by discharges from large dilational fault zones. These channels were sourced by groundwater, not surface water, and when observed on high-standing plateaus they provide indicators of elevated paleo-groundwater levels. We identify three outflow channels of Hesperian age that issued from a 750-km-long fault zone extending from Candor Chasma to Ganges Chasma. Two of these channels, Allegheny Vallis and Walla Walla Vallis, have sources >2500 m above the topographic datum, too high to be explained by discharge from a global aquifer that was recharged solely in the south polar region. The indicated groundwater levels likely required regional sources of recharge at low latitudes. The floodwaters that erupted from Ophir Cavus to form Allegheny Vallis encountered two ridges that restricted the flow, forming temporary lakes. The flow probably breached or overtopped these obstructions quickly, catastrophically draining the lakes and carving several scablands. After the last obstacle had been breached, a single main channel formed that captured all subsequent flow. We performed hydrologic analyses of this intermediate phase of the flooding, prior to incision of the channel to its present depth. Using floodwater depths of 30-60 m, we calculated flow velocities of 6-15 m s−1 and discharges in the range of . Locally higher flow velocities and discharges likely occurred when the transient lakes were drained. Variable erosion at the channel and scabland crossing of MOLA pass 10644 suggests that the upper 25-30 m may consist of poorly consolidated surface materials underlain by more cohesive bedrock. We infer that an ice-covered lake with a surface elevation >2500 m probably existed in eastern Candor Chasma because this canyon is intersected by the Ophir Catenae fault system from which Allegheny Vallis and Walla Walla Vallis originated. We introduce a new hydrology concept for Mars in which the groundwater system was augmented by recharge from canyon lakes that were formed when water was released by catastrophic melting of former ice sheets in Tharsis by effusions of flood basalts. This model could help to reconcile the expected presence of a thick cryosphere during the Hesperian with the abundant evidence for groundwater as a source for some of the circum-Chryse outflow channels.  相似文献   

10.
The SHARAD (shallow radar) sounding radar on the Mars Reconnaissance Orbiter detects subsurface reflections in the eastern and western parts of the Medusae Fossae Formation (MFF). The radar waves penetrate up to 580 m of the MFF and detect clear subsurface interfaces in two locations: west MFF between 150 and 155° E and east MFF between 209 and 213° E. Analysis of SHARAD radargrams suggests that the real part of the permittivity is ∼3.0, which falls within the range of permittivity values inferred from MARSIS data for thicker parts of the MFF. The SHARAD data cannot uniquely determine the composition of the MFF material, but the low permittivity implies that the upper few hundred meters of the MFF material has a high porosity. One possibility is that the MFF is comprised of low-density welded or interlocked pyroclastic deposits that are capable of sustaining the steep-sided yardangs and ridges seen in imagery. The SHARAD surface echo power across the MFF is low relative to typical martian plains, and completely disappears in parts of the east MFF that correspond to the radar-dark Stealth region. These areas are extremely rough at centimeter to meter scales, and the lack of echo power is most likely due to a combination of surface roughness and a low near-surface permittivity that reduces the echo strength from any locally flat regions. There is also no radar evidence for internal layering in any of the SHARAD data for the MFF, despite the fact that tens-of-meters scale layering is apparent in infrared and visible wavelength images of nearby areas. These interfaces may not be detected in SHARAD data if their permittivity contrasts are low, or if the layers are discontinuous. The lack of closely spaced internal radar reflectors suggests that the MFF is not an equatorial analog to the current martian polar deposits, which show clear evidence of multiple internal layers in SHARAD data.  相似文献   

11.
The morphology of materials on the floor of Gusev Crater (14° S, 175° W), Mars, imply a history of volcanism and subsequent removal of an ice-rich deposit. Fluid lava flows observed in the western portion of Gusev Crater paradoxically terminate in a steep, thick (<60 m) flow front adjacent to hummocky terrain. The hummocky terrain is morphologically similar to deglaciated terrain on Earth, generated when glacial debris are left behind after the glacier has retreated. We propose the following scenario for the floor of Gusev Crater. First, ice-rich material was deposited adjacent to Thira Crater. Second, fluid lavas were emplaced and ponded against the ice-rich deposits. At some later time, the ice within the deposit sublimated, leaving hummocky terrain. Current age estimates for the Gusev flows are Hesperian, suggesting that the ice removal occurred in the upper Hesperian or more recently. If this hypothesis is correct, quench features (glassy rinds, columnar jointing) should be observed at the lava flow margin; the hummocky deposit should be poorly sorted, angular debris.  相似文献   

12.
Evidence of volcano-ground ice interactions on Mars can provide important constraints on the timing and distribution of martian volcanic processes and climate characteristics. Northwest of the Elysium Rise is Hrad Vallis, a ∼370 m deep, 800 km long sinuous valley that begins in a source region at 34° N, 218° W. Flanking both sides of the source region is a lobate deposit that extends ∼50 km perpendicular from the source and is an average of ∼40 m thick. Previous studies have suggested the formation of the Hrad Vallis source region was the result of explosive magma-ice interaction and that the lobate deposit is a mudflow; here we use newly available MOLA, MOC, and THEMIS data to investigate the evidence supporting this hypothesis. Within the lobate deposit we have identified 12 craters with thermal infrared signatures and morphologies that are distinct from any other craters or depressions in the region. The thermally distinct craters are distinguished by their cool interiors surrounded by warm ejecta in the nighttime THEMIS IR data and warm interiors surrounded by cool ejecta in the daytime THEMIS IR data. The craters are typically 1100-1800 m in diameter (one crater is ∼2300 m across) and 30-40 m deep, but may be up to 70 m. The craters are typically circular and have central depressions (several with interior dune fill) surrounded by ∼1 to >6 concentric fracture sets. The distribution of the craters and their morphology suggests that they are likely the result of the interaction between a hot mudflow and ground ice.  相似文献   

13.
In the western sector of Nepenthes Mensae, Mars, there are some geomorphological features that could be related to a standing water sheet in the area, such as fluvial terraces, deltas and shorelines. A detailed analysis of these features reveals two variations in water level, probably related to tectonic processes, as suggested by the existence of a fissural volcano at this site.  相似文献   

14.
We examine the nature of the surface layer in Gale Crater as determined from high-resolution thermal and visible Mars Odyssey Thermal Emission Imaging System (THEMIS) data as well as how our conclusions compare to past analyses. At THEMIS resolution, the thermal surface structure is dominated by local control, thus providing us with detailed images that contain thermophysical information as well. Using these data sets we have created a map of the area, defining units based primarily on their geomorphology as determined from the daytime thermal and visible images and then using the nighttime thermal data to interpret the nature of the surface layer within each unit. Seven units have been defined: (i) partially blanketed knobby plateaus, (ii) crater walls with terrain similar to that on the plateaus on the upper half and exposed, rocky surfaces on the lower half, (iii)-(v) three floor units with varying combinations of bedrock and indurated and/or particulate deposits, (vi) sand sheets, and (vii) a central mound, consisting of indurated and/or rocky material forming layers, terraces, and slides, covered by particulate material that tapers in thickness downslope. Additionally, dozens of channels have been observed on the crater walls and central mound. The results indicate that aeolian processes have played a major role in shaping much of the present surface layer within Gale and may still be active today. Because of the dramatic size and structure of Gale, the winds are most likely controlled by the local topography. Additionally, the presence and frequency of channels within Gale bolster hypotheses involving aqueous episodes in the history of the crater.  相似文献   

15.
We examine the nature of the surface layer in a small area of the Melas Chasma region as determined from high-resolution thermal and visible Mars Odyssey Thermal Emission Imaging System (THEMIS) data as well as how our conclusions compare to past analyses. At THEMIS resolution, the thermal structure is dominated by local control and all significant thermal variations can be linked to morphology. Thus, THEMIS provides us with detailed images that contain thermophysical information as well, allowing us to create a surficial geologic map intended to reflect the surface structure of the region. Eight units have been defined: (i) blanketed plateaus with thermally distinct craters and fractures, (ii) blanketed canyon walls with rocky edges, (iii) indurated and/or rocky canyon wall slide material partially covered by aeolian material, (iv) an anomalous wall region with fluvial-like depressions partially filled with particulate material, (v) indurated and/or rocky ridged and non-ridged canyon floor landslide material mingled with aeolian material, (vi) sand sheets, (vii) indurated and/or rocky rounded blocks intermingled with small areas of aeolian material, and (viii) transverse dunes. The THEMIS thermal data support conclusions from previous studies but also reveal much more structure than was seen in the past. We have found that all significant thermal variations in this region can be linked to morphology but all morphological variations cannot be linked to significant thermal variations. THEMIS visible images provide an intermediate resolution that bridges the gap between MOC and Viking and allow for a more meaningful interpretation of the geologic context of a region. Surfaces indicate that landslides were an important geologic process long ago, shaping the canyon walls and floor, while aeolian processes have subsequently altered the surface layer in many locations and may still be active.  相似文献   

16.
We use Viking and new MGS and Odyssey data to characterize the lobate deposits superimposed on aureole deposits along the west and northwest flanks of Olympus Mons, Mars. These features have previously been interpreted variously as landslide, pyroclastic, lava flow or glacial features on the basis of Viking images. The advent of multiple high-resolution image and topography data sets from recent spacecraft missions allow us to revisit these features and assess their origins. On the basis of these new data, we interpret these features as glacial deposits and the remnants of cold-based debris-covered glaciers that underwent multiple episodes of advance and retreat, occasionally interacting with extrusive volcanism from higher on the slopes of Olympus Mons. We subdivide the deposits into fifteen distinctive lobes. Typical lobes begin at a theater-like alcove in the escarpment at the base of Olympus Mons, interpreted to be former ice-accumulation zones, and extend outward as a tongue-shaped or fan-shaped deposit. The surface of a typical lobe contains (moving outward from the basal escarpment): a chaotic facies of disorganized hillocks, interpreted as sublimation till in the accumulation zone; arcuate-ridged facies characterized by regular, subparallel ridges and interpreted as the ridges of surface debris formed by the flow of underlying ice; and marginal ridges interpreted as local terminal moraines. Several lobes also contain a hummocky facies toward their margins that is interpreted as a distinctive type of sublimation till shaped by structural dislocations and preferential loss of ice. Blocky units are found extending from the escarpment onto several lobes; these units are interpreted as evidence of lava-ice interaction and imply that ice was present at a time of eruptive volcanic activity higher on the slopes of Olympus Mons. Other than minor channel-like features in association with lava-ice interactions, we find no evidence for the flow of liquid water in association with these lobate features that might suggest: (1) near-surface groundwater as a source for ice in the alcoves in the lobe source region at the base of the scarp, or (2) basal melting and drainage emanating from the lobes that might indicate wet-based glacial conditions. Instead, the array of features is consistent with cold-based glacial processes. The glacial interpretations outlined here are consistent with recent geological evidence for low-latitude ice-rich features at similar positions on the Tharsis Montes as well as with orbital dynamic and climate models indicating extensive snow and ice accumulation associated with episodes of increased obliquity during the Late Amazonian period of the history of Mars.  相似文献   

17.
The Medusae Fossae Formation (MFF) has long been thought to be of Amazonian age, but recent studies propose that a significant part of its emplacement occurred in the Hesperian and that many of the Amazonian ages represent modification (erosional and redepositional) ages. On the basis of the new formational age, we assess the hypothesis that explosive eruptions from Apollinaris Patera might have been the source of the Medusae Fossae Formation. In order to assess the likelihood of this hypothesis, we examine stratigraphic relationships between Apollinaris Patera and the MFF and analyze the relief of the MFF using topographic data. We predict the areal distribution of tephra erupted from Apollinaris Patera using a Mars Global Circulation Model (GCM) combined with a semi-analytical explosive eruption model for Mars, and compare this with the distribution of the MFF. We conclude that Apollinaris Patera could have been responsible for the emplacement of the Medusae Fossae Formation.  相似文献   

18.
Compositional data analysis was performed on chemical compositions of martian surface materials in order to unravel scenarios of past and present weathering and to evaluate the role of meteoritic accumulation. The observed chemical variability is analyzed by means of principal component analysis. Potential reservoirs that may have contributed primary material to soil formation are assessed. Chemical alteration in the course of in situ weathering is described in terms of alteration vectors that link the compositions of fresh rocks and their weathering crusts. The interplay of localized chemical alteration and global scale re-distribution and mixing of fines material is documented through the identification of different soil forming branches. These branches emanate from distinct compositional domains, which comprise basaltic and basalt-andesitic primary materials, and they converge to a global dust composition, which represents the product of chemical and physical disintegration and subsequent global mixing. Mass balance considerations applied to localized weathering phenomena are in line with findings from experimental acid-sulfate weathering on olivine-bearing basalts and the persistence of secondary silica in evaporitic rocks. In addition the composition and oxidation state of involved volcanic gases is deduced. Our findings corroborate the past activity of volcanic exhalation products in combination with liquid water. We conclude that average martian crust is dominated by basaltic materials at its topmost level and that the amount of meteoritic accumulation may contribute about 6 wt% to the martian fines. From the meteoritic contribution minimum soil formation rates of 60±20 cm/Gyr are derived. Sequestration of atmospheric oxygen during weathering of primary materials may account for the oxygen deficiency of the martian atmosphere. A 4-14-m-thick layer of oxidized martian fines may account for the estimated deficit of 1.7×1018 mol O2 in the martian atmosphere depending on the primary oxidation state of volatile volcanic emanations.  相似文献   

19.
HiRISE images of the lower member of the Medusae Fossae Formation (MFF) were used to identify characteristics of two specific landforms that are well expressed in this particular geologic unit; yardangs and sinuous ridges. Yardangs are wind-eroded ridges that are usually confined to arid environments where the bedrock materials can be easily eroded by windblown sand. Yardangs are common in the lower member of MFF, where many individual yardangs show evidence of a caprock unit overlying a more friable unit, most consistent with an ignimbrite origin for these MFF deposits. Heights of the yardangs in the lower member materials are generally less than a few tens of meters, in contrast to yardangs in the thicker middle member MFF materials to the east of the study area. The yardangs may form in materials comprised of discrete depositional units, and there is good evidence that at least a dozen such depositional events contributed to the emplacement of the lower member of MFF. The lower member yardang heights indicate aeolian erosion has removed at least 19,000 km3 of lower member MFF materials. Sinuous ridges are elongate, positive-relief landforms that have been attributed to a variety of possible fluvial flow processes on Mars. Sinuous ridges are very common within exposures of the lower member of MFF. Multiple ridge types are present, but all forms seen at HiRISE scale are most consistent with some form of aqueous channel flow rather than other possible origins. The results from this initial examination of HiRISE images indicate the potential utility of comparing yardangs and sinuous ridges in the lower member to other members of MFF, although it remains to be determined if sinuous ridges are abundant in the younger MFF members.  相似文献   

20.
We study the thermal fields over Olympus Mons separating seasons (northern spring and summer against southern spring and summer) and local time observations (day side versus night side). Temperature vertical profiles retrieved from Planetary Fourier Spectrometer on board Mars Express (PFS-MEX) data have been used. In many orbits (running north to south along a meridian) passing over the top of the volcano there is evidence of a hot air on top of the volcano, of two enhancement of the air temperature both north and south of it and in between a collar of air that is colder than nearby at low altitudes, and warmer than nearby at high altitudes. Mapping together many orbits passing over or near the volcano we find that the hot air has the tendency to form an hot ring around it. This hot structure occurs mostly between LT = 10.00 and 15.00 and during the northern summer. Distance of the hot structure from the top of the volcano is about 600 km (10° of latitude). The hot atmospheric region is 300-420 km (5-7°) wide. Hot ring temperature contrasts of about 40 K occur at 2 km above the surface and decrease to 20 K at 5 km and to 10 K at 10 km. The atmospheric circulation over an area of 40° × 40° (latitudes and longitudes) is affected by the topography and the presence of Olympus Mons (−133°W, 18°N). We discuss also the thermal stability of the atmosphere over the selected area using the potential temperatures. The temperature field over the top of the volcano shows unstable atmosphere within 10 km from the surface. Finally, we interpret the hot temperatures around volcano as an adiabatic compression of down-welling branch coming from over the top of volcano.Different air temperature profiles are observed in the same seasons during the night, or in different seasons. In northern spring-summer during the night the isothermal contours do not show the presence of the volcano until we reach close to the surface very much, where a thermal inversion is observed. The surface temperature shows higher values (by 10 K) in correspondence of the scarp (an abrupt altimetry variation of roughly 5 km) on south (6°N) and north (30°N) sides of volcano. During the southern spring-summer, on the contrary the isothermal curves run parallel to the surface even on top the volcano, just like the GCM have predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号