首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
High-resolution infrared imaging spectroscopy of Mars has been achieved at the NASA Infrared Telescope Facility (IRTF) on June 19-21, 2003, using the Texas Echelon Cross Echelle Spectrograph (TEXES). The areocentric longitude was 206°. Following the detection and mapping of hydrogen peroxide H2O2 [Encrenaz et al., 2004. Icarus 170, 424-429], we have derived, using the same data set, a map of the water vapor abundance. The results appear in good overall agreement with the TES results and with the predictions of the Global Circulation Model (GCM) developed at the Laboratory of Dynamical Meteorology (LMD), with a maximum abundance of water vapor of 3±1.5×10−4(17±9 pr-μm). We have searched for CH4 over the martian disk, but were unable to detect it. Our upper limits are consistent with earlier reports on the methane abundance on Mars. Finally, we have obtained new measurements of CO2 isotopic ratios in Mars. As compared to the terrestrial values, these values are: (18O/17O)[M/E] = 1.03 ± 0.09; (13C/12C)[M/E] = 1.00 ± 0.11. In conclusion, in contrast with the analysis of Krasnopolsky et al. [1996. Icarus 124, 553-568], we conclude that the derived martian isotopic ratios do not show evidence for a departure from their terrestrial values.  相似文献   

2.
The infrared AOTF spectrometer is a part of the SPICAM experiment onboard the Mars-Express ESA mission. The instrument has a capability of solar occultations and operates in the spectral range of 1-1.7 μm with a spectral resolution of ∼3.5 cm−1. We report results from 24 orbits obtained during MY28 at Ls 130°-160°, and the latitude range of 40°-55° N. For these orbits the atmospheric density from 1.43 μm CO2 band, water vapor mixing ratio based on 1.38 μm absorption, and aerosol opacities were retrieved simultaneously. The vertical resolution of measurements is better than 3.5 km. Aerosol vertical extinction profiles were obtained at 10 wavelengths in the altitude range from 10 to 60 km. The interpretation using Mie scattering theory with adopted refraction indices of dust and H2O ice allows to retrieve particle size (reff∼0.5-1 μm) and number density (∼1 cm−3 at 15-30 km) profiles. The haze top is generally below 40 km, except the longitude range of 320°-50° E, where high-altitude clouds at 50-60 km were detected. Optical properties of these clouds are compatible with ice particles (effective radius reff=0.1-0.3 μm, number density N∼10 cm−3) distributed with variance νeff=0.1-0.2 μm. The vertical optical depth of the clouds is below 0.001 at 1 μm. The atmospheric density profiles are retrieved from CO2 band in the altitude range of 10-90 km, and H2O mixing ratio is determined at 15-50 km. Unless a supersaturation of the water vapor occurs in the martian atmosphere, the H2O mixing ratio indicates ∼5 K warmer atmosphere at 25-45 km than predicted by models.  相似文献   

3.
Hydrogen peroxide (H2O2) has been suggested as a possible oxidizer of the martian surface. Photochemical models predict a mean column density in the range of 1015-1016 cm−2. However, a stringent upper limit of the H2O2 abundance on Mars (9×1014 cm−2) was derived in February 2001 from ground-based infrared spectroscopy, at a time corresponding to a maximum water vapor abundance in the northern summer (30 pr. μm, Ls=112°). Here we report the detection of H2O2 on Mars in June 2003, and its mapping over the martian disk using the same technique, during the southern spring (Ls=206°) when the global water vapor abundance was ∼10 pr. μm. The spatial distribution of H2O2 shows a maximum in the morning around the sub-solar latitude. The mean H2O2 column density (6×1015 cm−2) is significantly greater than our previous upper limit, pointing to seasonal variations. Our new result is globally consistent with the predictions of photochemical models, and also with submillimeter ground-based measurements obtained in September 2003 (Ls=254°), averaged over the martian disk (Clancy et al., 2004, Icarus 168, 116-121).  相似文献   

4.
Hydrocarbons in the upper atmosphere of Saturn are known, from Voyager, ground-based, and early Cassini results, to vary in emission intensity with latitude. Of particular interest is the marked increase in hydrocarbon line intensity near the south pole during southern summer, as the increased line intensity cannot be simply explained by the increased temperatures observed in that region since the variations between C2H2 and C2H6 emission in the south pole region are different. In order to measure the latitudinal variations of hydrocarbons in Saturn's southern hemisphere we have used 3 cm−1 resolution Cassini CIRS data from 2006 and combined this with measurements from the ground in October 2006 at NASA's IRTF using Celeste, an infrared high-resolution cryogenic grating spectrometer. These two data sets have been used to infer the molecular abundances of C2H2 and C2H6 across the southern hemisphere in the 1-10 mbar altitude region. We find that the latitudinal acetylene profile follows the yearly average mean daily insolation except at the southern pole where it peaks in abundance. Near the equator (5° S) the C2H2 abundance at the 1.2 mbar level is (1.6±0.19)×10−7 and it decreases by a factor of 2.7 from the equator toward the pole. However, at the pole (∼87° S) the C2H2 abundance jumps to (1.8±0.3)×10−7, approximately the equatorial value. The C2H6 abundance near the equator at the 2 mbar level is (0.7±0.1)×10−5 and stays approximately constant until mid-latitudes where it increases gradually toward the pole, attaining a value of (1.4±0.4)×10−5 there. The increase in ethane toward the pole with the corresponding decrease in acetylene is consistent with southern hemisphere meridional winds [Greathouse, T.K., Lacy, J.H., Bézard, B., Moses, J.I., Griffith, C.A., Richter, M.J., 2005. Icarus 177, 18-31]. The localized increase in acetylene at the pole provides evidence that there is dynamical transport of hydrocarbons from the equator to the southern pole.  相似文献   

5.
Mars was observed near the peak of the strongest SO2 band at 1364-1373 cm−1 with resolving power of 77,000 using the Texas Echelon Cross Echelle Spectrograph on the NASA Infrared Telescope Facility. The observation covered the Tharsis volcano region which may be preferable to search for SO2. The spectrum shows absorption lines of three CO2 isotopomers and three H2O isotopomers. The water vapor abundance derived from the HDO lines assuming D/H = 5.5 times the terrestrial value is 12±1.0 pr. μm, in agreement with the simultaneous MGS/TES observations of 14 pr. μm at the latitudes (50° S to 10° N) of our observation. Summing of spectral intervals at the expected positions of sixteen SO2 lines puts a 2σ upper limit on SO2 of 1 ppb. SO2 may be emitted into the martian atmosphere by seepage and is removed by three-body reactions with OH and O. The SO2 lifetime, 2 years, is longer than the global mixing time 0.5 year, so SO2 should be rather uniformly distributed across Mars. Seepage of SO2 is less than 15,000 tons per year on Mars which is smaller than the volcanic production of SO2 on the Earth by a factor of 700. Because CH4/SO2 is typically 10−4-10−3 in volcanic gases on the Earth, our results show seepage is unlikely to be the source of the recently discovered methane on Mars and therefore strengthen its biogenic origin.  相似文献   

6.
Venus was observed at 2.4 and 3.7 μm with a resolving power of 4×104 using the long-slit high-resolution spectrograph CSHELL at NASA IRTF. The observations were made along a chord that covered a latitude range of ± 60° at a local time near 8:00. The continuous reflectivity and limb brightening at 2.4 μm are fitted by the clouds with a single scattering albedo 1−a=0.01 and a pure absorbing layer with τ=0.09 above the clouds. The value of 1−a agrees with the refractive index of H2SO4 (85%) and the particle radius of 1 μm. The absorbing layer is similar to that observed by the UV spectrometer at the Pioneer Venus orbiter. However, its nature is puzzling. CO2 was measured using its R32 and R34 lines. The retrieved product of the CO2 abundance and airmass is constant at 1.9 km-atm along the instrument slit in the latitude range of ± 60°. The CO mixing ratio (measured using the P21 line) is rather constant at 70 ppm, and its variations of ∼10% may be caused by atmospheric dynamics. The observed value is higher than the 50 ppm retrieved previously from a spectrum of the full disk, possibly, because of some downward extension of the mesospheric morningside bulge of CO. The observations of the HF R3 line reveal a constant HF mixing ratio of 3.5±0.5 ppb within ± 60° of latitude, which is within the scatter in the previous measurements of HF. OCS has been detected for the first time at the cloud tops by summing 17 lines of the P-branch. The previous detections of OCS refer to the lower atmosphere at 30-35 km. The retrieved OCS mixing ratio varies with a scale height of 1 to 3 km. The mean OCS mixing ratio is ∼2 ppb at 70 km and ∼14 ppb at 64 km. Vertical motions in the atmosphere may change the OCS abundance. The detected OCS should significantly affect Venus' photochemistry. A sensitive search for H2S using its line at 2688.93 cm−1 results in a 3 sigma upper limit of 23 ppb, which is more restrictive than the previous limit of 100 ppb.  相似文献   

7.
We report here the first detection of mono-deuterated acetylene (acetylene-d1, C2HD) in Titan's atmosphere from the presence of two of its emission bands at 678 and 519 cm−1 as observed in CIRS spectral averages of nadir and limb observations taken between July 2004 and mid-2007. By using new laboratory spectra for this molecule, we were able to derive its abundance at different locations over Titan's disk. We find the C2HD value () to be roughly constant with latitude from the South to about 45° N and then to increase slightly in the North, as is the case for C2H2. Fitting the 678 cm−1ν5 band simultaneously with the nearby C2H2 729 cm−1ν5 band, allows us to infer a D/H ratio in acetylene on Titan with an average of the modal values of 2.09±0.45×10−4 from the nadir observations, the uncertainties being mainly due to the vertical profile used for the fit of the acetylene band. Although still subject to significant uncertainty, this D/H ratio appears to be significantly larger than the one derived in methane from the CH3D band (upper limit of 1.5×10−4; Bézard, B., Nixon, C.A., Kleiner, I., Jennings, D.E., 2007. Icarus, 191, 397-400; Coustenis, A., Achterberg, R., Conrath, B., Jennings, D., Marten, A., Gautier, D., Bjoraker, G., Nixon, C., Romani, P., Carlson, R., Flasar, M., Samuelson, R.E., Teanby, N., Irwin, P., Bézard, B., Orton, G., Kunde, V., Abbas, M., Courtin, R., Fouchet, Th., Hubert, A., Lellouch, E., Mondellini, J., Taylor, F.W., Vinatier, S., 2007. Icarus 189, 35-62). From the analysis of limb data we infer D/H values of (at 54° S), (at 15° S), (at 54° N) and (at 80° N), which average to a mean value of 1.63±0.27×10−4.  相似文献   

8.
Observation of the hydrogen corona with SPICAM on Mars Express   总被引:1,自引:0,他引:1  
J.Y. Chaufray  E. Quémerais 《Icarus》2008,195(2):598-613
A series of seven dedicated Lyman-α observations of exospheric atomic hydrogen in the martian corona were performed in March 2005 with the ultraviolet spectrometer SPICAM on board Mars Express. Two types of observations are analyzed, observations at high illumination (for a solar zenith angle SZA equal to 30°) and observations at low illumination (for a solar zenith angle equal to 90° (terminator), and near the south pole). The measured Lyman-α emission is interpreted as purely resonant scattering of solar photons. Because the Lyman-α emission is optically thick, we use a forward model to analyze this data. Below the exobase, the hydrogen density is described by a diffusive model and above the exobase, it follows Chamberlain's approach without satellite particles. For different hydrogen density profiles between 80 and 50,000 km, the volume emission rates are computed by solving the radiative transfer equation. Such an approach has been used to analyze the Mariner 6, 7 exospheric Lyman-α data during the late 1960s. A reasonable fit of the set of observations is obtained assuming an exobase temperature between 200 and 250 K and an exobase density of ∼1-4 × 105 cm−3 in good agreement with photochemical models. However, when considering the average exospheric temperature of 200 K measured by other methods [Leblanc, F., Chaufray, J.Y., Witasse, O., Lilensten, J., Bertaux, J.-L., 2006a. J. Geophys. Res. 111 (E9), doi:10.1029/2005JE002664. E09S11; Leblanc, F., Chaufray, J.-Y., Bertaux, J.-L., 2007. Geophys. Res. Lett. 34, doi:10.1029/2006GL028437. L02206; Bougher, S.W., Engel, S., Roble, R.G., Foster, B., 2000. J. Geophys. Res. 105, 17669-17692; Mazarico, E., Zuber, M.T., Lemoine, F.G., Smith, D.E., 2007. J. Geophys. Res. 112, doi:10.1029/2006JE002734. E05014] a supplementary hot population is needed above the exobase to reconcile Lyman-α measurements with these previous measurements, particularly for the observations at low SZA. In this case, the densities and temperatures at the exobase for the two populations are 1.0±0.2×105 cm−3 and T=200 K and 1.9±0.5×104 cm−3 and T>500 K for the cold and hot populations respectively at low SZA. At high SZA, the densities and temperatures are equal to 2±0.4×105 cm−3 and T=200 K and n=1.2±0.5×104 cm−3 and T>500 K. These high values of the hot hydrogen component are not presently supported by the theory. Moreover, it is important to underline that the two population model remains relatively poorly constrained by the limited range of altitude covered by the present set of SPICAM measurements and cannot be unambiguously identified because of the global uncertainty of our model and of SPICAM measurements. For a one population solution, an average water escape rate of 7.5 × 10−4 precipitable μm/yr is estimated, yielding a lifetime of 13,000 years for the average present water vapor content of 10 precipitable microns.  相似文献   

9.
The condensing CO2 south polar cap of Mars and the mechanisms of the CO2 ice accumulation have been studied through the analysis of spectra acquired by the Planetary Fourier Spectrometer (PFS) during the first two years of ESA's Mars Express (MEX) mission. This dataset spans more than half a martian year, from Ls∼330° to Ls∼194°, and includes the southern fall season which is found to be extremely important for the study of the residual south polar cap asymmetry. The cap expands symmetrically and with constant speed during the fall season. The maximum extension occurs sometime in the 80°-90° Ls range, when the cap edges are as low as −40° latitude. Inside Hellas and Argyre basins, frost can be stable at lower latitudes due to the higher pressure values, causing the seasonal cap to be asymmetric. Within the seasonal range considered in this paper, the cap edge recession rate is approximately half the rate at which the cap edge expanded. The longitudinal asymmetries reduce during the cap retreat, and disappear around Ls∼145°. Two different mechanisms are responsible for CO2 ice accumulation during the fall season, especially in the 50°-70° Ls range. Here, CO2 condensation in the atmosphere, and thus precipitation, is allowed exclusively in the western hemisphere, and particularly in the longitudinal corridor of the perennial cap. In the eastern hemisphere, the cap consists mainly of CO2 frost deposits, as a consequence of direct vapor deposition. The differences in the nature of the surface ice deposits are the main cause for the residual south polar cap asymmetry. Results from selected PFS orbits have also been compared with the results provided by the martian general circulation model (GCM) of the Laboratoire de Météorologie dynamique (LMD) in Paris, with the aim of putting the observations in the context of the global circulation. This first attempt of cross-validation between PFS measurements and the LMD GCM on the one hand confirms the interpretation of the observations, and on the other hand shows that the climate modeling during the southern polar night on Mars is extremely sensitive to the dynamical forcing.  相似文献   

10.
The vertical profile of H2SO4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H2O profiles observed at 70-112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H2O and H2SO4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90-100% at 110 km. The H2SO4 vapor mixing ratio is ∼10−12 at 70 and 110 km with a deep minimum of 3 × 10−18 at 88 km. The H2O-H2SO4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H2SO4 is 1.6 × 105 cm−2 s−1 at 70 km and 23 cm−2 s−1 at 90 km. The calculated abundance of H2SO4 vapor at 90-110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834-837) by factors of 106 and 109, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H2SO4 (impossible for a source of SOX), and cross sections for H2SO4·H2O (impossible above the pure H2SO4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SOX at 70-110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SOX on Venus remains unclear and probably does not exist.  相似文献   

11.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   

12.
While CO, HCl, and HF, that were considered in the first part of this work, have distinct absorption lines in high-resolution spectra and were detected four decades ago, the lines of HDO, OCS, and SO2 are either very weak or blended by the telluric lines and have not been observed previously by ground-based infrared spectroscopy at the Venus cloud tops. The H2O abundance above the Venus clouds is typically below the detection limit of ground-based IR spectroscopy. However, the large D/H ratio on Venus facilitates observations of HDO. Converted to H2O with D/H ≈ 200, our observations at 2722 cm−1 in the Venus afternoon show a H2O mixing ratio of ∼1.2 ppm at latitudes between ±40° increasing to ±60° by a factor of 2. The observations in the early morning reveal the H2O mixing ratio that is almost constant at 2.9 ppm within latitudes of ±75°. The measured H2O mixing ratios refer to 74 km. The observed increase in H2O is explained by the lack of photochemical production of sulfuric acid in the night time. The recent observations at the P-branch of OCS at 4094 cm−1 confirm our detection of OCS. Four distributions of OCS along the disk of Venus at various latitudes and local times have been retrieved. Both regular and irregular components are present in the variations of OCS. The observed OCS mixing ratio at 65 km varies from ∼0.3 to 9 ppb with the mean value of ∼3 ppb. The OCS scale height is retrieved from the observed limb darkening and varies from 1 to 4 km with a mean value of half the atmospheric scale height. SO2 at the cloud tops has been detected for the first time by means of ground-based infrared spectroscopy. The SO2 lines look irregular in the observed spectra at 2476 cm−1. The SO2 abundances are retrieved by fitting by synthetic spectra, and two methods have been applied to determine uncertainties and detection limits in this fitting. The retrieved mean SO2 mixing ratio of 350 ± 50 ppb at 72 km favors a significant increase in SO2 above the clouds since the period of 1980-1995 that was observed by the SOIR occultations at Venus Express. Scale heights of OCS and SO2 may be similar, and the SO2/OCS ratio is ∼500 and may be rather stable at 65-70 km under varying conditions on Venus.  相似文献   

13.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

14.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

15.
The O2 dayglow at 1.27 μm is formed by high-altitude ozone on Mars and is a sensitive tracer of Mars photochemistry. Mapping of this dayglow using the IRTF/CSHELL long-slit spectrograph requires the extraction of weak emission lines against a strong continuum of the reflected solar light. Some new tools are suggested to improve the data processing. The observed O2 dayglow intensities at LS=67°, 112°, 148°, and 173° show a decrease from late spring (aphelion) to fall equinox by a factor of ≈5 at low latitudes (±30°). This decrease agrees with that predicted by a model of Clancy and Nair (1996, J. Geophys. Res. 101 (12) 12785-12790), although the dayglow intensities are weaker than those based on that model. The measured dayglow variations with latitude are rather low at LS=67°, 112°, and 148° and unexpectedly high at 173°. The dayglow intensity peaks near noon and is smaller at 9:00 and 16:30 LT by a factor of 2. Some data on the ozone profile near aphelion are obtained from a combination of the dayglow and ozone observations. It is hardly possible to detect the O2 night airglow at 1.27 μm on Mars using the existing ground-based and on-orbit instruments. The O2 dayglow intensity as a function of latitude and season from aphelion to fall equinox has been obtained. Our goal is to extend this distribution to the full martian year and get a database for Mars photochemistry to complement the MGS/TES observations of water vapor, atmospheric temperature, and dust and ice aerosol.  相似文献   

16.
The Cassini Composite Infrared Spectrometer (CIRS) has been used to derive the vertical and meridional variation of temperature and phosphine (PH3) abundance in Saturn's upper troposphere. PH3 has a significant effect on the measured radiances in the thermal infrared and between May 2004 and September 2005 CIRS recorded thousands of spectra in both the far (10-600 cm−1) and mid (600-1400 cm−1) infrared, at a variety of latitudes covering the southern hemisphere. Low spectral resolution (15 cm−1) data has been used to constrain the temperature structure of the troposphere between 100 and 500 mbar. The vertical distributions of phosphine and ammonia were retrieved from far-infrared spectra at the highest spectral resolution (0.5 cm−1), and lower resolution (2.5 cm−1) mid-infrared data were used to map the meridional variation in the abundance of phosphine in the 250-500 mbar range. Temperature variations at the 250 mbar level are shown to occur on the same scale as the prograde and retrograde jets in Saturn's atmosphere [Porco, C.C., and 34 colleagues, 2005. Science 307, 1243-1247]. The PH3 abundance at 250 mbar is found to be enhanced at the equator when compared with mid-latitudes. At mid latitudes we see anti-correlation between temperature and PH3 abundance at 250 mbar, phosphine being enhanced at 45° S and depleted at 25 and 55° S. The vertical distribution is markedly different polewards of 60-65° S, with depleted PH3 at 500 mbar but a slower decline in abundance with altitude when compared with the mid-latitudes. This variation is similar to the variations of cloud and aerosol parameters observed in the visible and near infrared, and may indicate the subsidence of tropospheric air at polar latitudes, coupled with a diminished sunlight penetration depth reducing the rate of PH3 photolysis in the polar region.  相似文献   

17.
The Pioneer Venus Orbiter Infrared Radiometer and Venera 15 Fourier Transform Spectrometer observations of thermal emission from Venus' middle atmosphere between 10° S and 50° N have been independently re-analyzed using a common method to determine global maps of temperature, cloud optical depth, and water vapor abundance. The spectral regions observed include the strong 15 μm carbon dioxide band and the 45 μm fundamental rotational water band. The different spatial and spectral resolutions of the two instruments have necessitated the development of flexible analysis tools. New radiative transfer and retrieval models have been developed for this purpose based on correlated-k absorption tables calculated with up-to-date spectral line data. The common analysis of these two sets of observations has hence been possible for the first time. From the PV OIR observations, the cloud-top unit optical depth pressure showed a minimum of ∼110±10 mbars in the evening equatorial region and a maximum of ∼160±12 mbars in the morning mid-latitude regions. From the Venera 15 FTS spectra, the cloud-top pressure was found to increase from morning values of ∼120±10 to 200±30 mbars in the late afternoon/early evening region. The cloud-top water vapor abundances observed by the PV OIR instrument were found to fluctuate from 10±5 ppm at night up to 90±15 ppm in the equatorial cloud-top region shortly after the sub-solar point. The mean Venera 15 FTS water vapor abundances were found to be 12±5 ppm with only a slight enhancement over the equatorial latitude bands and no clear day-night distinction. The common analysis of these two sets of observations broadly validates previously published individual findings. The differences in the retrieved atmospheric state can no longer be attributed to radiative transfer modeling bias and suggest significant temporal variability in the middle atmosphere of Venus.  相似文献   

18.
We report the detection of H13CN and HC15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/13C and 14N/15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm−1 resolution. The spectral range 1210-1310 cm−1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H12C14N, H13CN and HC15N from their bands at 713, 706 and 711 cm−1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find at 15° S, and at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane (82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/15N isotopic ratio is found equal to at 15° S and at 83° N. Combining the two values yields 14N/15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/14N ratio found in HCN is ∼3 times higher than in N2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], which implies a large fractionation process in the HCN photochemistry.  相似文献   

19.
We have observed about 16 absorption lines of the ν2 SO2 vibrational band on Io, in disk-integrated 19-μm spectra taken with the TEXES high spectral resolution mid-infrared spectrograph at the NASA Infrared Telescope Facility in November 2001, December 2002, and January 2004. These are the first ground-based infrared observations of Io's sunlit atmosphere, and provide a new window on the atmosphere that allows better longitudinal and temporal monitoring than previous techniques. Dramatic variations in band strength with longitude are seen that are stable over at least a 2 year period. The depth of the strongest feature, a blend of lines centered at 530.42 cm−1, varies from about 7% near longitude 180° to about 1% near longitude 315° W, as measured at a spectral resolution of 57,000. Interpretation of the spectra requires modeling of surface temperatures and atmospheric density across Io's disk, and the variation in non-LTE ν2 vibrational temperature with altitude, and depends on the assumed atmospheric and surface temperature structure. About half of Io's 19-μm radiation comes from the Sun-heated surface, and half from volcanic hot spots with temperatures primarily between 150 and 200 K, which occupy about 8% of the surface. The observations are thus weighted towards the atmosphere over these low-temperature hot spots. If we assume that the atmosphere over the hot spots is representative of the atmosphere elsewhere, and that the atmospheric density is a function of latitude, the most plausible interpretation of the data is that the equatorial atmospheric column density varies from about 1.5×1017 cm−2 near longitude 180° W to about 1.5×1016 cm−2 near longitude 300° W, roughly consistent with HST UV spectroscopy and Lyman-α imaging. The inferred atmospheric kinetic temperature is less than about 150 K, at least on the anti-Jupiter hemisphere where the bands are strongest, somewhat colder than inferred from HST UV spectroscopy and millimeter-wavelength spectroscopy. This longitudinal variability in atmospheric density correlates with the longitudinal variability in the abundance of optically thick, near-UV bright SO2 frost. However it is not clear whether the correlation results from volcanic control (regions of large frost abundance result from greater condensation of atmospheric gases supported by more vigorous volcanic activity in these regions) or sublimation control (regions of large frost abundance produce a more extensive atmosphere due to more extensive sublimation). Comparison of data taken in 2001, 2002, and 2004 shows that with the possible exception of longitudes near 180° W between 2001 and 2002, Io's atmospheric density does not appear to decrease as Io recedes from the Sun, as would be expected if the atmosphere were supported by the sublimation of surface frost, suggesting that the atmosphere is dominantly supported by direct volcanic supply rather than by frost sublimation. However, other evidence such as the smooth variation in atmospheric abundance with latitude, and atmospheric changes during eclipse, suggest that sublimation support is more important than volcanic support, leaving the question of the dominant atmospheric support mechanism still unresolved.  相似文献   

20.
John E. Moores  Peter H. Smith 《Icarus》2011,211(2):1129-1149
A chamber was constructed to simulate the boundary between the ice table, regolith and atmosphere of Mars and to examine fractionation between H2O and HDO during sublimation under realistic martian conditions of temperature and pressure. Thirteen experimental runs were conducted with regolith overlying the ice. The thickness and characteristic grain size of the regolith layer as well as the temperature of the underlying ice was varied. From these runs, values for the effective diffusivity, taking into account the effects of adsorption, of the regolith were derived. These effective diffusivities ranged from 1.8 × 10−4 m2 s−1 to 2.2 × 10−3 m2 s−1 for bare ice and from 2.4 × 10−11 m2 s−1 to 2.0 × 10−9 m2 s−1 with an adsorptive layer present. From these, latent heats of adsorption of 8.6 ± 2.6 kJ mol−1 and 9.3 ± 2.8 kJ mol−1 were derived at ice-surface temperatures above 223 ± 8 K and 96 ± 28 kJ mol−1 and 104 ± 31 kJ mol−1 respectively for H2O and HDO were derived at colder temperatures. For temperatures below 223 K, the effective diffusivity of HDO was found to be lower than the diffusivity of H2O by 40% on average, suggesting that the regolith was adsorptively fractionating the sublimating gas with a fractionation factor of 1.96 ± 0.74. Applying these values to Mars predicts that adsorbed water on the regolith is enriched in HDO compared to the atmosphere, particularly where the regolith is colder. Based on current observations, the D/H ratio of the regolith may be as high as 21 ± 8 times VSMOW at 12°S and LS = 357° if the regolith is hydrated primarily by the atmosphere, neglecting any hydration from subsurface ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号