首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High Resolution Imaging Science Experiment (HiRISE) imagery and digital elevation models of the Candor Chasma region of Valles Marineris, Mars, reveal prominent and distinctive positive-relief knobs amidst light-toned layers. Three classifications of knobs, Types 1, 2, and 3, are distinguished from a combination of HiRISE and Thermal Emission Imaging System (THEMIS) images based on physical expressions (geometries, spatial relationships), and spectral data from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Type 1 knobs are abundant, concentrated, topographically resistant features with their highest frequency in West Candor, which have consistent stratigraphic correlations of the peak altitude (height). These Type 1 knobs could be erosional remnants of a simple dissected terrain, possibly derived from a more continuous, resistant, capping layer of pre-existing material diagenetically altered through recrystallization or cementation. Types 2 and 3 knobs are not linked to a single stratigraphic layer and are generally solitary to isolated, with variable heights. Type 3 are the largest knobs at nearly an order of magnitude larger than Type 1 knobs. The variable sizes and occasional pits on the tops of Type 2 and 3 knobs suggest a different origin, possibly related to more developed erosion, preferential cementation, or textural differences from sediment/water injection or intrusion, or from a buried impact crater. Enhanced color HiRISE images show a brown coloration of the knob peak crests that is attributable to processing and photometric effects; CRISM data do not show any detectable spectral differences between the knobs and the host rock layers, other than albedo. These intriguing knobs hold important clues to deducing relative rock properties, timing of events, and weathering conditions of Mars history.  相似文献   

2.
We examine hypotheses for the formation of light-toned layered deposits in Juventae Chasma using a combination of data from Mars Global Surveyor's Mars Orbiter Camera (MOC), Mars Orbiter Laser Altimeter (MOLA), and Thermal Emission Spectrometer (TES), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). We divide Juventae Chasma into geomorphic units of (i) chasm wall rock, (ii) heavily cratered hummocky terrain, (iii) a mobile and largely crater-free sand sheet on the chasm floor, (iv) light-toned layered outcrop (LLO) material, and (v) chaotic terrain. Using surface temperatures derived from THEMIS infrared data and slopes from MOLA, we derive maps of thermal inertia, which are consistent with the geomorphic units that we identify. LLO thermal inertias range from ∼400 to 850 J m−2 K−1 s−1/2. Light-toned layered outcrops are distributed over a remarkably wide elevation range () from the chasm floor to the adjacent plateau surface. Geomorphic features, the absence of small craters, and high thermal inertia show that the LLOs are composed of sedimentary rock that is eroding relatively rapidly in the present epoch. We also present evidence for exhumation of LLO material from the west wall of the chasm, within chaotic and hummocky terrains, and within a small depression in the adjacent plateau. The data imply that at least some of the LLO material was deposited long before the adjacent Hesperian plateau basalts, and that Juventae Chasma underwent, and may still be undergoing, enlargement along its west wall due to wall rock collapse, chaotic terrain evolution, and exposure and removal of LLO material. The new data allow us to reassess possible origins of the LLOs. Gypsum, one of the minerals reported elsewhere as found in Juventae Chasma LLO material, forms only at low temperatures () and thus excludes a volcanic origin. Instead, the data are consistent with either multiple occurrences of lacustrine or airfall deposition over an extended period of time prior to emplacement of Hesperian lava flows on the plateau above the chasm.  相似文献   

3.
Chris H. Okubo 《Icarus》2010,207(1):210-21
The structural geology of an outcropping of layered sedimentary deposits in southwest Candor Chasma is mapped using two adjacent high-resolution (1 m/pixel) HiRISE digital elevation models and orthoimagery. Analysis of these structural data yields new insight into the depositional and deformational history of these deposits. Bedding in non-deformed areas generally dips toward the center of west Candor Chasma, suggesting that these deposits are basin-filling sediments. Numerous kilometer-scale faults and folds characterize the deformation here. Normal faults of the requisite orientation and length for chasma-related faulting are not observed, indicating that the local sediments accumulated after chasma formation had largely ceased in this area. The cause of the observed deformation is attributed to landsliding within these sedimentary deposits. Observed crosscutting relationships indicate that a population of sub-vertical joints are the youngest deformational structures in the area. The distribution of strain amongst these joints, and an apparently youthful infill of sediment, suggests that these fractures have been active in the recent past. The source of the driving stress acting on these joints has yet to be fully constrained, but the joint orientations are consistent with minor subsidence within west Candor Chasma.  相似文献   

4.
We investigate the sulfate and iron oxide deposits in Ophir Chasma, Mars, based on short-wave infrared data from the Compact Reconnaissance Imaging Spectrometer for Mars - CRISM and from the Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité - OMEGA. Sulfates are detected mainly in two locations. In the valley between Ophir Mensa and the southern wall of Ophir Chasma, kieserite is found both within the slope of Ophir Mensa, and superposed on the basaltic wall of the chasm. Here, kieserite is unconformably overlain by polyhydrated sulfate deposits and iron oxides. Locally, jarosite and unidentified phases with absorptions at 2.21 μm or 2.23 μm are detected, which could be mixtures of jarosite and amorphous silica or other poorly crystalline phases.The second large sulfate-rich outcrop is found on the floor of the central valley. Although the same minerals are found here, polyhydrated sulfates, kieserite, iron oxides, and locally a possibly jarosite-bearing phase, this deposit is very distinct. It is not layered, almost horizontal, and located at a much lower elevation of below −4250 m. Kieserite superposes polyhydrated sulfate-rich deposits, and iron oxides form lags.The facies of sulfate formation remains unclear, and could be different for the two locations. A formation in a lake, playa or under a glacier is consistent with the mineralogy of the central valley and its flat, low-lying topography. This is not conceivable for the kieserite deposits observed south of Ophir Mensa. These deposits are observed over several thousands of meters of elevation, which would require a standing body of water several thousands of meters deep. This would have lead to much more pervasive sulfate deposits than observed. These deposits are therefore more consistent with evaporation of groundwater infiltrating into previously sulfate-free light-toned deposits. The overlying polyhydrated sulfates and other mineral phases are observed in outcrops on ridges along the slopes of the southern chasm wall, which are too exposed to be reached by groundwater. Here, a water supply from the atmosphere by rain, snow, fog or frost is more conceivable.  相似文献   

5.
R. Greve 《Icarus》2008,196(2):359-367
The martian polar caps feature large chasmata and smaller trough systems which have no counterpart in terrestrial ice sheets. Chasma Boreale cuts about 500 km into the western part of the north-polar cap, is up to 100 km wide and up to 2 km deep. One possible formation mechanism is by a temporary heat source under the ice due to tectono-thermal or volcanic activity, which melts the ice from below. It is demonstrated by model simulations that this process is feasible, a moderately increased heat flux of 0.5-1 W m−2, sustained over at least tens of thousands of years, producing a topographic depression which resembles the real chasma. Associated meltwater discharge rates are small (), but can exceed 10 km3 a−1 if a stronger heat flux of 10 W m−2 is assumed. Local ice-flow velocities during the process of chasma formation can exceed 1 m a−1 at the head and scarps of the chasma. However, if the thermal anomaly shuts down, glacial flow quickly decreases, so that the chasma can stay open for an indefinite amount of time without an ongoing, sustaining process under the climate conditions of the most recent millions of years.  相似文献   

6.
Steven W. Ruff 《Icarus》2004,168(1):131-143
Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data (∼1670-220 cm−1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ∼1630 cm−1 is consistent with the presence of an H2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ∼830 cm−1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ∼830 cm−1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.  相似文献   

7.
We examine the nature of the surface layer in a small area of the Melas Chasma region as determined from high-resolution thermal and visible Mars Odyssey Thermal Emission Imaging System (THEMIS) data as well as how our conclusions compare to past analyses. At THEMIS resolution, the thermal structure is dominated by local control and all significant thermal variations can be linked to morphology. Thus, THEMIS provides us with detailed images that contain thermophysical information as well, allowing us to create a surficial geologic map intended to reflect the surface structure of the region. Eight units have been defined: (i) blanketed plateaus with thermally distinct craters and fractures, (ii) blanketed canyon walls with rocky edges, (iii) indurated and/or rocky canyon wall slide material partially covered by aeolian material, (iv) an anomalous wall region with fluvial-like depressions partially filled with particulate material, (v) indurated and/or rocky ridged and non-ridged canyon floor landslide material mingled with aeolian material, (vi) sand sheets, (vii) indurated and/or rocky rounded blocks intermingled with small areas of aeolian material, and (viii) transverse dunes. The THEMIS thermal data support conclusions from previous studies but also reveal much more structure than was seen in the past. We have found that all significant thermal variations in this region can be linked to morphology but all morphological variations cannot be linked to significant thermal variations. THEMIS visible images provide an intermediate resolution that bridges the gap between MOC and Viking and allow for a more meaningful interpretation of the geologic context of a region. Surfaces indicate that landslides were an important geologic process long ago, shaping the canyon walls and floor, while aeolian processes have subsequently altered the surface layer in many locations and may still be active.  相似文献   

8.
Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe3(SO4)2(OH)6). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Mawrth Vallis layered terrains include a basal sequence of layers containing Fe-Mg smectites and an upper set of layers of hydrated silica and aluminous phyllosilicates. In terms of its fine scale morphology revealed by MRO HiRISE imagery, the jarosite-bearing unit has fracture patterns very similar to that observed in Fe-Mg smectite-bearing layers, but unlike that observed in the Al-bearing phyllosilicate unit. The ovoid-shaped landform is situated in an east-west bowl-shaped depression superposed on a north sloping surface. Spectra of the ovoid-shaped jarosite-bearing landform also display an anomalously high 600 nm shoulder, which may be consistent with the presence of goethite and a 1.92 μm absorption which could indicate the presence of ferrihydrite. Goethite, jarosite, and ferrihydrite can be co-precipitated and/or form through transformation of schwertmannite, both processes generally occurring under low pH conditions (pH 2-4). To date, this location appears to be unique in the Mawrth Vallis region and could represent precipitation of jarosite in acidic, sulfur-rich ponded water during the waning stages of drying.  相似文献   

9.
A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H2O, with some structural groups showing more rapid H2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe3+- and H2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in CH related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.  相似文献   

10.
Clay mineral-bearing deposits previously discovered on Mars with near infrared (λ=0.3-5 μm) remote sensing data are of major significance for understanding the aqueous history, geological evolution, and past habitability of Mars. In this study, we analyzed the thermal infrared (λ=6-35 μm) surface properties of the most extensive phyllosilicate deposit on Mars: the Mawrth Vallis area. Clay mineral-bearing units, which in visible images appear to be relatively light-toned, layered bedrock, have thermal inertia values ranging from 150 to 460 J m−2 K−1 s−1/2. This suggests the deposits are composed of a mixture of rock with sand and dust at 100-meter scales. Dark-toned materials that mantle the clay-bearing surfaces have thermal inertia values ranging from 150 to 800, indicating variable degrees of rockiness or induration of this younger sedimentary or pyroclastic unit. Thermal Emission Spectrometer (TES) spectra of the light-toned rocks were analyzed with a number of techniques, but none of the results shows a large phyllosilicate component as has been detected in the same surfaces with near-infrared data. Instead, TES spectra of light-toned surfaces are best modeled by a combination of plagioclase feldspar, high-silica materials (similar to impure opaline silica or felsic glass), and zeolites. We propose three hypotheses for why the clay minerals are not apparent in thermal infrared data, including effects due to surface roughness, sub-pixel mixing of multiple surface temperatures, and low absolute mineral abundances combined with differences in spatial sampling between instruments. Zeolites modeled in TES spectra could be a previously unrecognized component of the alteration assemblage in the phyllosilicate-bearing rocks of the Mawrth Vallis area. TES spectral index mapping suggests that (Fe/Mg)-clays detected with near infrared data correspond to trioctahedral (Fe2+) clay minerals rather than nontronite-like clays. The average mineralogy and geologic context of these complex, interbedded deposits suggests they are either aqueous sedimentary rocks, altered pyroclastic deposits, or a combination of both.  相似文献   

11.
An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ∼42,300 km2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ∼1.4 μm, and ∼1.9 μm and a large deep band between ∼2.21 and ∼2.26 μm that are consistent with previous spectral analysis in other regions of LDs. We interpret these spectral characteristics as an enrichment of LDs in opaline silica or by Al-phyllosilicate-rich layers being overlain by hydroxylated ferric sulfate-rich layers. These alteration minerals are consistent with the aqueous alteration of LDs at low temperatures.  相似文献   

12.
Valles Marineris offers a deep natural insight into the upper crust of Mars. The morphology of its slopes reflects the properties of the wall materials, thus constraining in models of composition and evolution of the upper layers of the Martian crust. Hence, knowledge about the lithological composition of these wall rocks is of major interest to the understanding of the geological and climatic history of Mars. This study investigates mechanical rock mass parameters of the northern wall of eastern Candor Chasma (between 290°E and 296°E longitude, −8° to −5° latitude). These are inferred from its present-day morphology and a proposed slope-forming history, applying a distinct element code to simulate the stability and the tectonic history of this slope within a parameter study. Additionally, a mathematical denudation model is applied to take into account the effect of exogenic processes on the slope. The study results show that two periods of normal faulting in conjunction with massive interim denudational scarp recess is a valid model for the evolution of the northern wall of eastern Candor Chasma. The estimated rate of scarp recess of 60 m Myr−1 is comparable with certain terrestrial scarp retreat rates. The best-fit models yield a homogenous distribution of low-level rock mass strength and deformability properties distributed over the entire stratigraphic column of the northern wall of eastern Candor Chasma. The values are 5.0 (±0.7) MPa for the uniaxial compressive strength, 1.6 (±0.2) MPa for the Brazilian tensile strength, 4.7 (±1.5) GPa for the Young's modulus, 0.2 (±0.15) for the Poisson's ratio, 22 (±2)° for the internal friction angle, 1.6 (±0.2) MPa for the cohesion and 2200 (±500) kg m−3 for the density. This study favors columnar jointed basalt as the material that builds up the northern wall of eastern Candor Chasma and other walls within central Valles Marineris. The best-fit denudational model of the upper slope section of the northern wall of eastern Candor Chasma indicates a distinct cap rock unit of lesser susceptibility to denudation than the wall rock below.  相似文献   

13.
The region surrounding the Mawrth Vallis outflow channel on Mars hosts thick layered deposits containing diverse phyllosilicate minerals. Here we report detection of the Ca-sulfate bassanite on the outflow channel floor, requiring a more complex aqueous chemistry than previously inferred for this region. The sulfate-bearing materials underlie phyllosilicate-bearing strata, and provide an opportunity for testing proposed models of martian geochemical evolution with a future landed mission.  相似文献   

14.
Remote-sensing observations of Gale Crater and Melas Chasma are synthesized to better understand the present surface layer in these two scientifically interesting regions. Data sets analyzed include geologic maps, Mars Orbiter Laser Altimeter (MOLA) elevation, Thermal Emission Spectrometer (TES) albedo, TES thermal inertia, MOLA residual pulse width, TES rock abundance, and Viking and Mars Orbiter Camera images. Using these data sets, we constrain the properties of and processes acting on the present surface and create self-consistent models for the surface layer. Surface properties within Gale Crater are variable and complex, and interpreting the surface layer is not straightforward. Observations indicate that aeolian processes have shaped some of the intracrater surface, but other areas do not comply with this model and have counterintuitive surface characteristics. In contrast, aeolian activity appears to have played a large role in shaping the present-day physical structure of all surfaces in Melas Chasma and is reflected in the remote-sensing data sets. Here we summarize our analysis and discuss the surface attributes as determined from these data sets.  相似文献   

15.
Z.C. Ling  Alian Wang 《Icarus》2010,209(2):422-433
Ferric sulfates were observed on Mars during orbital remote sensing and surface explorations. These observations have stimulated our systematic experimental investigation on the formative conditions, stability fields, phase boundaries, and phase transition pathways of these important minerals. We report here the results from the first step of this project: eight synthesized anhydrous and hydrous crystalline ferric sulfates and their structural characters reflected through spectroscopic studies. A few phenomena observed during the 150 sets of on-going experiments for stability field study are also reported, which reveal the structural distortions that can happen under environmental conditions relevant to Mars.  相似文献   

16.
In this paper we report about a small region on the northern scarp of Olympus Mons showing an increase of the 3 μm hydration band in the OMEGA spectra, together with low superficial temperatures. Although water ice clouds can occurs on the flank of big martian volcanoes, radiative transfer modeling indicates that atmospheric water ice alone cannot justify the shape of the observed band. A fit of the 1.9–3 μm absorption features is obtained by hypothesizing that the study region consists of a mixture of dust and water ice covered by an optically thin (τ=0.08 at 3 μm) layer of dust. Thermal modeling also suggests that water ice in this region may be stable during most of the martian year due to the saturation of the atmosphere. If water ice is responsible for the observed spectral behavior, it might consist of a number of ice or snow patches possibly deposited in small depressions.  相似文献   

17.
M. Parente  J.L. Bishop 《Icarus》2009,203(2):421-436
The objective of this work is to propose an automated unmixing technique for the analysis of 11-channel Mars Exploration Rover Panoramic Camera (MER/Pancam) spectra. Our approach is to provide a screening tool for identifying unique/distinct reflectance spectra. We demonstrate the utility of this unmixing technique in a study of the mineralogy of the bright salty soils exposed by the rover wheels in images of Gusev crater regions known as Paso Robles (Sols 400,426), Arad (Sol 721), and Tyrone (Sol 790). The unmixing algorithm is based on a novel derivation of the Nonnegative Matrix Factorization technique and includes added features that preclude the adverse effects of low abundance materials that would otherwise skew the unmixing. In order to create a full 11-channel spectrum out of the left and right eye stereo pairs, we also developed a new registration procedure that includes rectification and disparity calculation of the images. We identified two classes of endmember spectra for the bright soils imaged on Sols 426 and 790. One of these endmember classes is also observed for soils imaged on Sols 400 and 721 and has a unique spectral shape that is distinct from most iron oxide, sulfate and silicate spectra and differs from typical martian surface spectra. Instead, its unique spectral character resembles the spectral shape of the ferric sulfate minerals fibroferrite (Fe3+(SO4)(OH) · 5H2O) and ferricopiapite and the phosphate mineral ferristrunzite . The other endmember class is less consistent with specific minerals and is likely a mixture of altered volcanic material and some bright salts. Further analyses of data from Sols 400 and 790 using an anomaly detection algorithm as a tool for detecting low abundance materials additionally suggests the identification of the sulfate mineral paracoquimbite (Fe2(SO4)3 · 9H2O). This spectral study of Pancam images of the bright S- and P-enriched soils of Gusev crater identifies specific ferric sulfate and ferric phosphate minerals that are consistent with the unique spectral properties observed here in the 0.4-1 μm range.  相似文献   

18.
Diverse phyllosilicate deposits discovered previously in the Nili Fossae region with near infrared reflectance data are a window into the complex history of aqueous alteration on Mars. In this work, we used thermal infrared data from the Thermal Emission Spectrometer (TES) in combination with near infrared data from the Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) to better constrain the mineralogy and geologic origin of these deposits. We developed a TES spectral index for identification of clay minerals, which correctly identifies the phyllosilicates in the Nili Fossae area and points to several other interesting deposits in the Syrtis Major region. However, detailed inspection of the TES spectral features of Nili Fossae phyllosilicates shows a feature at low wavenumbers (350-550 cm−1) that is not an exact match to any specific Fe3+-, Al-, or Mg-rich phyllosilicate phase. Instead, the feature is more similar to basaltic glass and may indicate that the phyllosilicates in this region are: (1) rich in Fe2+ (based on similarity to trends seen in laboratory data of clay minerals), (2) poorly crystalline/extremely disordered, and/or (3) present within a matrix of actual basalt glass. This feature is similar to spectral features seen in altered rocks in the Columbia Hills region of Gusev Crater by previous authors. By calibrating measured spectral index values against mathematical spectral mixtures of typical martian dark surfaces and known abundances of alteration minerals, we are able to estimate an enrichment in abundance of alteration minerals in the altered surfaces. Many dark, Noachian deposits in the Nili Fossae area are enriched phyllosilicates by 20-30% (±10-15%) relative to dark, volcanic surfaces in the same region. The distribution and abundance of these phases indicates that alteration in the region was pervasive, but did not completely erase the original mineralogy of what was likely an Fe-rich basalt protolith. As a group, the Nili Fossae phyllosilicate deposits are fundamentally different from those found in the Mawrth Vallis region. Nili Fossae deposits have strong thermal infrared features related to admixed pyroxene, plagioclase, and occasionally olivine, whereas the Mawrth Vallis deposits contain no mafic minerals. Comparison of TES and OMEGA data also illustrates some more general differences between the datasets, including the impact of physical character of the martian surface on detectability of minerals in each spectral range.  相似文献   

19.
We have used data from the Mars Reconnaissance Orbiter to study 30-80 m thick light-toned layered deposits on the plateaus adjacent to Valles Marineris at five locations: (1) south of Ius Chasma, (2) south of western Melas Chasma, (3) south of western Candor Chasma, (4) west of Juventae Chasma, and (5) west of Ganges Chasma. The beds within these deposits have unique variations in brightness, color, mineralogy, and erosional properties that are not typically observed in light-toned layered deposits within Valles Marineris or many other equatorial areas on Mars. Reflectance spectra indicate these deposits contain opaline silica and Fe-sulfates, consistent with low-temperature, acidic aqueous alteration of basaltic materials. We have found valley or channel systems associated with the layered deposits at all five locations, and the volcanic plains adjacent to Juventae, Ius, and Ganges exhibit inverted channels composed of light-toned beds. Valleys, channels, and light-toned layering along the walls of Juventae and Melas Chasmata are most likely coeval to the aqueous activity that affected the adjacent plateaus and indicate some hydrological activity occurred after formation of the chasmata. Although the source of water and sediment remains uncertain, the strong correlation between fluvial landforms and light-toned layered deposits argues for sustained precipitation, surface runoff, and fluvial deposition occurring during the Hesperian on the plateaus adjacent to Valles Marineris and along portions of chasmata walls.  相似文献   

20.
Data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS) instruments are used to assess the mineralogic and dust cover characteristics of landing regions proposed for the Mars Science Laboratory (MSL) mission. Candidate regions examined in this study are Eberswalde crater, Gale crater, Holden crater, Mawrth Vallis, Miyamoto crater, Nili Fossae Trough, and south Meridiani Planum. Compositional units identified in each region from TES and THEMIS data are distinguished by variations in hematite, olivine, pyroxene and high-silica phase abundance, whereas no units are distinguished by elevated phyllosilicate or sulfate abundance. Though phyllosilicate minerals have been identified in all sites using near-infrared observations, these minerals are not unambiguously detected using either TES spectral index or deconvolution analysis methods. For some of the sites, small phyllosilicate outcrop sizes relative to the TES field of view likely hinder phyllosilicate mineral detection. Porous texture and/or small particle size (<∼60 μm) associated with the phyllosilicate-bearing surfaces may also contribute to non-detections in the thermal infrared data sets, in some areas. However, in Mawrth Vallis and Nili Fossae, low phyllosilicate abundance (<10-20 areal %, depending on the phyllosilicate composition) is the most likely explanation for non-detection. TES data over Mawrth Vallis indicate that phyllosilicate-bearing surfaces also contain significant concentrations (>15%, possibly up to ∼40%) of a high-silica phase such as amorphous silica or zeolite. High-silica phase abundance over phyllosilicate-bearing surfaces in Mawrth Vallis is higher than that of surrounding surfaces by 10-15%. With the exception of these high-silica surfaces in Mawrth Vallis, regions examined in this study exhibit similar bulk mineralogical compositions to that of most low-albedo regions on Mars; the MSL scientific payload will thus be able to provide important information on surface materials typical of low-albedo regions in addition to investigating the origin of phyllosilicate and/or sulfate deposits. With the exception of Gale crater, all of the landing sites have relatively low dust cover compared to classic high-albedo regions (Tharsis, Arabia and Elysium) and to previous landing sites in Gusev Crater, Utopia Planitia, and Chryse Planitia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号