首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High spatial resolution images of Mars were acquired with the Advanced Electro-Optical System (AEOS) 3.63-meter telescope at the Maui Space Surveillance System (MSSS) during both the 2001 and 2003 Mars apparitions. Comparisons are made of the surface albedo patterns obtained from these AEOS images to the surface albedo maps constructed from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data taken during the same time periods. These comparisons demonstrate that the images provide albedo information in a limited area surrounding the sub-Earth point that is consistent with the TES-derived albedo field. Additionally, it is shown that by employing adaptive optics (AO), the typical ground-based observing season of Mars can be extended. This is the only known published AO data set of Mars with temporal coverage over an entire apparition. Changes in the surface albedo affect the local ground temperature, which impacts the depth of the planetary boundary layer (PBL) above the surface. Since it is the state of the PBL that controls surface/atmospheric interaction, albedo variations have the power to alter the amount of dust that is lifted. A one-dimensional radiative/convective version of the NASA Ames Mars General Circulation Model is used to demonstrate that the measured albedo variations can alter the daytime ground temperatures by as much as 5 K, which in turn alters the structure of the planetary boundary layer (PBL). Therefore, albedo changes are thermodynamically important, and the ability to characterize them, should orbital observations become unavailable, is a valuable capability.  相似文献   

2.
We study the propagation of gravity waves in the martian atmosphere using a linearized one-dimensional full-wave model. Calculations are carried out for atmospheric parameters characteristic of Mars Orbiter Laser Altimeter (on Mars Global Surveyor MGS) observations of apparent gravity waves in high latitude clouds and MGS radio occultation measurements of temperature variations with height suggestive of gravity wave activity. Waves that reach the thermosphere produce fluctuations in density comparable in amplitude with the density variations detected in Mars Odyssey aerobraking data. Gravity waves of modest amplitude are found to deposit momentum and generate significant heating and cooling in the martian atmosphere. The largest heating and cooling effects occur in the thermosphere, at altitudes between about 130 and 150 km, with heating occurring at the lower altitudes and cooling taking place above.  相似文献   

3.
Accelerometer measurements made by Spirit and Opportunity during their entries through the martian atmosphere are reported. Vertical profiles of atmospheric density, pressure, and temperature with sub-km vertical resolution were obtained using these data between 10 and 100 km. Spirit's temperature profile is ∼10 K warmer than Opportunity's between 20 and 80 km. Unlike all other martian entry profiles, Spirit's temperature profile does not contain any large amplitude, long wavelength oscillations and is nearly isothermal below 30 km. Opportunity's temperature profile contains a strong inversion between 8 and 12 km. A moderate dust storm, which occurred on Mars shortly before these two atmospheric entries, may account for some of the differences between the two profiles. The poorly known angle of attack and unknown wind velocity may cause the temperature profiles to contain errors of tens of Kelvin at 10 km, but these errors would be an order of magnitude smaller above 30 km. On broad scales, the two profiles are consistent with Mars Global Surveyor Thermal Emission Spectrometer (TES) pressure/temperature profiles. Differences exist on smaller scales, particularly associated with the near-isothermal portion of Spirit's profile and the temperature inversion in Opportunity's profile.  相似文献   

4.
We study the thermal fields over Olympus Mons separating seasons (northern spring and summer against southern spring and summer) and local time observations (day side versus night side). Temperature vertical profiles retrieved from Planetary Fourier Spectrometer on board Mars Express (PFS-MEX) data have been used. In many orbits (running north to south along a meridian) passing over the top of the volcano there is evidence of a hot air on top of the volcano, of two enhancement of the air temperature both north and south of it and in between a collar of air that is colder than nearby at low altitudes, and warmer than nearby at high altitudes. Mapping together many orbits passing over or near the volcano we find that the hot air has the tendency to form an hot ring around it. This hot structure occurs mostly between LT = 10.00 and 15.00 and during the northern summer. Distance of the hot structure from the top of the volcano is about 600 km (10° of latitude). The hot atmospheric region is 300-420 km (5-7°) wide. Hot ring temperature contrasts of about 40 K occur at 2 km above the surface and decrease to 20 K at 5 km and to 10 K at 10 km. The atmospheric circulation over an area of 40° × 40° (latitudes and longitudes) is affected by the topography and the presence of Olympus Mons (−133°W, 18°N). We discuss also the thermal stability of the atmosphere over the selected area using the potential temperatures. The temperature field over the top of the volcano shows unstable atmosphere within 10 km from the surface. Finally, we interpret the hot temperatures around volcano as an adiabatic compression of down-welling branch coming from over the top of volcano.Different air temperature profiles are observed in the same seasons during the night, or in different seasons. In northern spring-summer during the night the isothermal contours do not show the presence of the volcano until we reach close to the surface very much, where a thermal inversion is observed. The surface temperature shows higher values (by 10 K) in correspondence of the scarp (an abrupt altimetry variation of roughly 5 km) on south (6°N) and north (30°N) sides of volcano. During the southern spring-summer, on the contrary the isothermal curves run parallel to the surface even on top the volcano, just like the GCM have predicted.  相似文献   

5.
We present a Mars General Circulation Model (GCM) numerical investigation of the physical processes (i.e., wind stress and dust devil dust lifting and atmospheric transport) responsible for temporal and spatial variability of suspended dust particle sizes. Measurements of spatial and temporal variations in airborne dust particles sizes in the martian atmosphere have been derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) spectral and emission phase function data [Wolff, M.J., Clancy, R.T., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002057. 1-1; Clancy, R.T., Wolff, M.J., Christensen, P.R., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002058. 2-1]. The range of dust particle sizes simulated by the NASA Ames GCM is qualitatively consistent with TES-derived observations of effective dust particle size variability. Model results suggest that the wind stress dust lifting scheme (which produces regionally confined dust lifting) is the process responsible for the majority of the dust particle size variability in the martian atmosphere. Additionally, model results suggest that atmospheric transport processes play an important role in the evolution of atmospheric dust particles sizes during substantial dust storms on Mars. Finally, we show that including the radiative effects of a spatially variable particle size distribution significantly influences thermal and dynamical fields during the dissipation phase of the simulated global dust storm.  相似文献   

6.
We present here the annual behavior of atmospheric water vapor on Mars, as observed by the OMEGA spectrometer on board Mars Express during its first martian year. We consider all the different features of the cycle of water vapor: temporal evolution, both at a seasonal and at a diurnal scale; longitudinal distribution; and the vertical profile, through the variations in the saturation height. We put our results into the context of the current knowledge on the water cycle through a systematic comparison with the already published datasets. The seasonal behavior is in very good agreement with past and simultaneous retrievals both qualitatively and quantitatively, within the uncertainties. The average water vapor abundance during the year is ∼10 pr. μm, with an imbalance between northern and southern hemisphere, in favor of the first. The maximum of activity, up to 60 pr. μm, occurs at high northern latitudes during local summer and shows the dominance of the northern polar cap within the driving processes of the water cycle. A corresponding maximum at southern polar latitudes during the local summer is present, but less structured and intense. It reaches ∼25 pr. μm at its peak. Global circulation has some influence in shaping the water cycle, but it is less prominent than the results from previous instruments suggest. No significant correlation between water vapor column density and local hour is detected. We can constrain the amount of water vapor exchanged between the surface and the atmosphere to few pr. μm. This is consistent with recent results by OMEGA and PFS-LW. The action of the regolith layer on the global water cycle seems to be minor, but it cannot be precisely constrained. The distribution of water vapor on the planet, after removing the topography, shows the already known two-maxima system, over Tharsis and Arabia Terra. However, the Arabia Terra increase is quite fragmented compared with previous observations. A deep zone of minimum separates the two regions. The saturation height of water vapor is mainly governed by the variations of insolation during the year. It is confined within 5-15 km from the surface at aphelion, while in the perihelion season it stretches up to 55 km of altitude.  相似文献   

7.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

8.
Planetary atmospheres influence cratering rates at small diameters (∼2-250 m) by filtering impactor populations via ablation, aerobraking and breakup of entering objects. The atmosphere of Mars undergoes rapid and drastic obliquity-driven variations in density, corresponding to pressure variations between zero and several tens of millibars. Here a simulation is used to assess the fate of a large population of impactors interacting with the present and predicted past and future martian atmospheres. We find that even Mars's present atmosphere significantly reduces crater production rates at small diameters (<30 m) and past denser atmospheres would have affected cratering even more strongly, and to considerably larger diameters. These effects are increased if the inner Solar System's small impactor population contains significant numbers of icy, cometary bodies. Evidence of recent atmospheric density variations may be detectable in the martian small cratering record with future planned imaging capabilities. Because of martian atmospheric effects and variations, surface ages derived from counts of craters of less than about 250 m on Mars may be underestimated.  相似文献   

9.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

10.
Michael D. Smith 《Icarus》2009,202(2):444-452
We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330°) and December 2008 (MY 29, Ls=183°). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval [Smith, M.D., Bandfield, J.L., Christensen, P.R., Richardson, M.I., 2003. J. Geophys. Res. 108, doi:10.1029/2003JE002114] to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at ∼5:00 PM local time than in the TES retrievals at ∼2:00 PM, suggestive of possible local time variation of clouds.  相似文献   

11.
12.
We present the seasonal and geographical variations of the martian water vapor monitored from the Planetary Fourier Spectrometer Long Wavelength Channel aboard the Mars Express spacecraft. Our dataset covers one martian year (end of Mars Year 26, Mars Year 27), but the seasonal coverage is far from complete. The seasonal and latitudinal behavior of the water vapor is globally consistent with previous datasets, Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES), and with simultaneous results obtained from other Mars Express instruments, OMEGA and SPICAM. However, our absolute water columns are lower and higher by a factor of 1.5 than the values obtained by TES and SPICAM, respectively. In particular, we retrieve a Northern midsummer maximum of 60 pr-μm, lower than the 100-pr-μm observed by TES. The geographical distribution of water exhibits two local maxima at low latitudes, located over Tharsis and Arabia. Global Climate Model (GCM) simulations suggest that these local enhancements are controlled by atmospheric dynamics. During Northern spring, we observe a bulge of water vapor over the seasonal polar cap edge, consistent with the northward transport of water from the retreating seasonal cap to the permanent polar cap. In terms of vertical distribution, we find that the water volume mixing ratio over the large volcanos remains constant with the surface altitude within a factor of two. However, on the whole dataset we find that the water column, normalized to a fixed pressure, is anti-correlated with the surface pressure, indicating a vertical distribution intermediate between control by atmospheric saturation and confinement to a surface layer. This anti-correlation is not reproduced by GCM simulations of the water cycle, which do not include exchange between atmospheric and subsurface water. This situation suggests a possible role for regolith-atmosphere exchange in the martian water cycle.  相似文献   

13.
The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mode. This paper describes assimilation of nadir retrievals from the spacecraft aerobraking period, LS=190°–260°, northern hemisphere autumn to winter, into a Mars general circulation model. The assimilation scheme is able to combine information from temperature and dust optical depth retrievals, making use of a model forecast containing information from the assimilation of earlier observations, to obtain a global, time-dependent analysis. Given sufficient temperature retrievals, the assimilation procedure indicates errors in the a priori dust distribution assumptions even when lacking dust observations; in this case there are relatively cold regions above the poles compared to a model which assumes a horizontally-uniform dust distribution. One major reason for using assimilation techniques is in order to investigate the transient wave behavior on Mars. Whilst the data from the 2-h spacecraft mapping orbit phase is much more suitable for assimilation, even the longer (45–24 h) period aerobraking orbit data contain useful information about the three-dimensional synoptic-scale martian circulation which the assimilation procedure can reconstruct in a consistent way. Assimilations from the period of the Noachis regional dust storm demonstrate that the combined assimilation of temperature and dust retrievals has a beneficial impact on the atmospheric analysis.  相似文献   

14.
15.
David P. Hinson  Huiqun Wang 《Icarus》2010,206(1):290-1294
We have investigated the near-surface meteorology in the northern hemisphere of Mars through detailed analysis of data obtained with Mars Global Surveyor in January-August 2005. The season in the northern hemisphere ranged from midsummer through winter solstice of Mars Year (MY) 27. We examined composite, wide-angle images from the Mars Orbiter Camera and compiled a catalog of the dust storms that occurred in this interval. As in previous martian years, activity in the northern hemisphere was dominated by regional “flushing” dust storms that sweep southward through the major topographic basins, most frequently in Acidalia Planitia. We also used atmospheric profiles retrieved from radio occultation experiments to characterize eddy activity near the surface at high northern latitudes. There are strong correlations between the two sets of observations, which allowed us to identify three factors that influence the timing and location of the regional dust storms: (1) transitions among baroclinic wave modes, which strongly modulate the intensity of meridional winds near the surface, (2) storms zones, which impose strong zonal variations on the amplitude of some baroclinic eddies, and (3) stationary waves, which further modulate the wind field near the surface. The flushing dust storms ceased abruptly in midautumn, possibly in response to source depletion, CO2 condensation, a shift in the period of the baroclinic eddies, and changes in the tidal wind field near the surface. Our results extend the meteorological record of the northern hemisphere, substantiate the findings of previous investigations, and further illuminate the climatic impact of baroclinic eddies.  相似文献   

16.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

17.
Paul Withers  S.W Bougher 《Icarus》2003,164(1):14-32
Mars Global Surveyor accelerometer observations of the martian upper atmosphere revealed large variations in density with longitude during northern hemisphere spring at altitudes of 130-160 km, all latitudes, and mid-afternoon local solar times (LSTs). This zonal structure is due to tides from the surface. The zonal structure is stable on timescales of weeks, decays with increasing altitude above 130 km, and is dominated by wave-3 (average amplitude 22% of mean density) and wave-2 (18%) harmonics. The phases of these harmonics are constant with both altitude and latitude, though their amplitudes change significantly with latitude. Near the South Pole, the phase of the wave-2 harmonic changes by 90° with a change of half a martian solar day while the wave-3 phase stays constant, suggesting diurnal and semidiurnal behaviour, respectively. We use a simple application of classical tidal theory to identify the dominant tidal modes and obtain results consistent with those of General Circulation Models. Our method is less rigorous, but simpler, than the General Circulation Models and hence complements them. Topography has a strong influence on the zonal structure.  相似文献   

18.
Planetary atmospheres are complex dynamical systems whose structure, composition, and dynamics intimately affect the propagation of sound. Thus, acoustic waves, being coupled directly to the medium, can effectively probe planetary environments. Here we show how the acoustic absorption and speed of sound in the atmospheres of Venus, Mars, Titan, and Earth (as predicted by a recent molecular acoustics model) mirror the different environments. Starting at the surface, where the sound speed ranges from ∼200 m/s for Titan to ∼410 m/s for Venus, the vertical sound speed profiles reveal differences in the atmospheres' thermal layering and composition. The absorption profiles are relatively smooth for Mars, Titan, and Earth while Venus stands out with a noticeable attenuation dip occurring between 40 and 100 km. We also simulate a descent module sampling the sound field produced by a low-frequency “event” near the surface noting the occurrence of acoustic quiet zones.  相似文献   

19.
The interval from Ls = 330° in Mars Year (MY) 26 until Ls = 84° in MY 27 has been used to compare and validate measurements from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Express Planetary Fourier Spectrometer (PFS). We studied differences between atmospheric temperatures observed by the two instruments. The best agreement between atmospheric temperatures was found at 50 Pa between 40°S and 40°N latitude, where differences were within ±5 K. For other atmospheric levels, differences as large as ∼25 K were observed between the two instruments at some locations. The largest temperature differences occurred mainly over the Hellas Planitia, Argyre Planitia, Tharsis and Valles Marineris regions.On this basis we report on the variability of the martian atmosphere during the 5.5 martian years of Mars climatology obtained by combining the two data sets from TES and PFS. Atmospheric temperatures at 50 Pa responded to the global-scale dust storms of MY 25 and in MY 28 raising temperatures from ∼220 K to ∼250 K during the daytime. An atmospheric temperature of ∼140 K at 50 Pa was observed poleward of 70°N during northern winter and poleward of 60°S during southern winter each year in both the PFS and TES results. Water vapor observed by the two spectrometers showed consistent seasonal and latitudinal variations.  相似文献   

20.
Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io’s unique atmospheric structure and origin. Improving upon previous models, Walker et al. (Walker, A.C., Gratiy, S.L., Levin, D.A., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Moore, C.H., Stewart, B. [2009]. Icarus) developed a fully 3-D global rarefied gas dynamics model of Io’s atmosphere including both sublimation and volcanic sources of SO2 gas. The fidelity of the model is tested by simulating remote observations at selected wavelength bands and comparing them to the corresponding astronomical observations of Io’s atmosphere. The simulations are performed with a new 3-D spherical-shell radiative transfer code utilizing a backward Monte Carlo method. We present: (1) simulations of the mid-infrared disk-integrated spectra of Io’s sunlit hemisphere at 19 μm, obtained with TEXES during 2001-2004; (2) simulations of disk-resolved images at Lyman-α obtained with the Hubble Space Telescope (HST), Space Telescope Imaging Spectrograph (STIS) during 1997-2001; and (3) disk-integrated simulations of emission line profiles in the millimeter wavelength range obtained with the IRAM-30 m telescope in October-November 1999. We found that the atmospheric model generally reproduces the longitudinal variation in band depth from the mid-infrared data; however, the best match is obtained when our simulation results are shifted ∼30° toward lower orbital longitudes. The simulations of Lyman-α images do not reproduce the mid-to-high latitude bright patches seen in the observations, suggesting that the model atmosphere sustains columns that are too high at those latitudes. The simulations of emission line profiles in the millimeter spectral region support the hypothesis that the atmospheric dynamics favorably explains the observed line widths, which are too wide to be formed by thermal Doppler broadening alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号