首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dramatic hemispheric dichotomy in albedo displayed by Saturn's moon Iapetus has intrigued astronomers for centuries. Here we report on far-ultraviolet observations of Iapetus' bright and dark terrains from Cassini. We compare the reflectance spectra of Iapetus's dark terrain, Hyperion and Phoebe and find that both Phoebe and Hyperion are richer in water ice than Iapetus' dark terrain. Spectra of the lowest latitudes of the dark terrain display the diagnostic water ice absorption feature; water ice amounts increase within the dark material away from the apex (at 90° W longitude, the center of the dark leading hemisphere), consistent with thermal segregation of water ice. The water ice in the darkest, warmest low latitude regions is not expected to be stable and may be a sign of ongoing or recent emplacement of the dark material from an exogenic source.  相似文献   

2.
Mark A. Wieczorek 《Icarus》2008,196(2):506-517
The polar caps of Mars have long been acknowledged to be composed of unknown proportions of water ice, solid CO2 (dry ice), and dust. Gravity and topography data are here analyzed over the southern cap to place constraints on its density, and hence composition. Using a localized spectral analysis combined with a lithospheric flexure model of ice cap loading, the best fit density of the volatile-rich south polar layered deposits is found to be 1271 kg m−3 with 1-σ limits of 1166 and 1391 kg m−3. The best fit elastic thickness of this geologically young deposit is 140 km, though any value greater than 102 km can fit the observations. The best fit density implies that about 55% dry ice by volume could be sequestered in these deposits if they were completely dust free. Alternatively, if these deposits were completely free of solid CO2, the dust content would be constrained to lie between about 14 and 28% by volume. The bulk thermal conductivity of the polar cap is not significantly affected by these maximum allowable concentrations of dust. However, even if a moderate quantity of solid CO2 were present as horizontal layers, the bulk thermal conductivity of the polar cap would be significantly reduced. Reasonable estimates of the present day heat flow of Mars predict that dry ice beneath the thicker portions of the south polar cap would have melted. Depending on the quantity of solid CO2 in these deposits today, it is even possible that water ice could melt where the cap is thickest. If independent estimates for either the dust or CO2 content of the south polar cap could be obtained, and if radar sounding data could determine whether this polar cap is presently experiencing basal melting or not, it would be possible to use these observations to place tight constraints on the present day heat flow of Mars.  相似文献   

3.
Dynamic models of the martian polar caps are in abundance, but most rely on the assumption that the rate of sublimation of CO2 ice can be calculated from heat transfer and lack experimental verification. We experimentally measured the sublimation rate of pure CO2 ice under simulated martian conditions as a test of this assumption, developed a model based on our experimental results, and compared our model's predictions with observations from several martian missions (MRO, MGS, Viking). We show that sun irradiance is the primary control for the sublimation of CO2 ice on the martian poles with the amount of radiation penetrating the surface being controlled by variations in the optical depth, ensuring the formation and sublimation of the seasonal cap. Our model confirmed by comparison of MGS-MOC and MRO-HiRISE images, separated by 2-3 martian years, shows that ∼0.4 m are currently being lost from the south perennial cap per martian year. At this rate, the ∼2.4-m-thick south CO2 perennial cap will disappear in about 6-7 martian years, unless a short-scale climatic cycle alters this rate of retreat.  相似文献   

4.
Cassini VIMS detected carbon dioxide on the surface of Iapetus during its insertion orbit. We evaluated the CO2 distribution on Iapetus and determined that it is concentrated almost exclusively on Iapetus’ dark material. VIMS spectra show a 4.27-μm feature with an absorption depth of 24%, which, if it were in the form of free ice, requires a layer 31 nm thick. Extrapolating for all dark material on Iapetus, the total observable CO2 would be 2.3 × 108 kg.Previous studies note that free CO2 is unstable at 10 AU over geologic timescales. Carbon dioxide could, however, be stable if trapped or complexed, such as in inclusions or clathrates. While complexed CO2 has a lower thermal volatility, loss due to photodissociation by UV radiation and gravitational escape would occur at a rate of 2.6 × 107 kg year−1. Thus, Iapetus’ entire inventory of surface CO2 could be lost within a few decades.The high loss/destruction rate of CO2 requires an active source. We conducted experiments that generated CO2 by UV radiation of simulated icy regolith under Iapetus-like conditions. The simulated regolith was created by flash-freezing degassed water, crushing it into sub-millimeter sized particles, and then mixing it with isotopically labeled amorphous carbon (13C) dust. These samples were placed in a vacuum chamber and cooled to temperatures between 50 K and 160 K. The samples were irradiated with UV light, and the products were measured using a mass spectrometer, from which we measured 13CO2 production at a rate of 2.0 × 1012 mol s−1. Extrapolating to Iapetus and adjusting for the solar UV intensity and Iapetus’ surface area, we calculated that CO2 production for the entire surface would be 1.1 × 107 kg year−1, which is only a factor of two less than the loss rate. As such, UV photochemical generation of CO2 is a plausible source of the detected CO2.  相似文献   

5.
The leading face of Saturn’s moon Iapetus, Cassini Regio, has an albedo only one tenth that on its trailing side. The origin of this enigmatic dichotomy has been debated for over 40 years, but with new data, a clearer picture is emerging. Motivated by Cassini radar and imaging observations, we investigate Soter’s model of dark exogenous dust striking an originally brighter Iapetus by modeling the dynamics of the dark dust from the ring of the exterior retrograde satellite Phoebe under the relevant perturbations. In particular, we study the particles’ probabilities of striking Iapetus, as well as their expected spatial distribution on the Iapetian surface. We find that, of the long-lived particles (?5 μm), most particle sizes (?10 μm) are virtually certain to strike Iapetus, and their calculated distribution on the surface matches up well with Cassini Regio’s extent in its longitudinal span. The satellite’s polar regions are observed to be bright, presumably because ice is deposited there. Thus, in the latitudinal direction we estimate polar dust deposition rates to help constrain models of thermal migration invoked to explain the bright poles (Spencer, J.R., Denk, T. [2010]. Science 327, 432-435). We also analyze dust originating from other irregular outer moons, determining that a significant fraction of that material will eventually coat Iapetus—perhaps explaining why the spectrum of Iapetus’ dark material differs somewhat from that of Phoebe. Finally we track the dust particles that do not strike Iapetus, and find that most land on Titan, with a smaller fraction hitting Hyperion. As has been previously conjectured, such exogenous dust, coupled with Hyperion’s chaotic rotation, could produce Hyperion’s roughly isotropic, moderate-albedo surface.  相似文献   

6.
Narrowband reflectance spectra (0.53-1.0 μm) of Iapetus' leading and trailing sides were obtained in 2000 to test the presence of an absorption feature located near 0.67 μm seen in reflectance spectra of Iapetus' dark material and Hyperion's surface material. No feature was observed. The difference in reflectance across the UV/VIS/NIR spectral region, and the dependence of the presence or absence of this absorption feature on angular separation from the apex of Iapetus in its orbit, phase angle, and heliocentric distance (affecting temperature), were examined. A trend of increased reddening, and the presence of the absorption feature, correlate with an angular separation from the apex of ? approximately 10°. Spectral information is lost when the contribution of the bright water ice signal to the reflectance spectrum increases sufficiently. In order to optimize compositional studies of Iapetus, we encourage future ground-based and space-based spectral observations to maximize the concentration of dark material in the instrumental field of view.  相似文献   

7.
Enigmatic surface features, known as ‘spiders’, found at high southern martian latitudes, are probably caused by sublimation-driven erosion under the seasonal carbon dioxide ice cap. The Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) has imaged this terrain in unprecedented details throughout southern spring. It has been postulated [Kieffer, H.H., Titus, T.N., Mullins, K.F., Christensen, P.R., 2000. J. Geophys. Res. 105, 9653-9700] that translucent CO2 slab ice traps gas sublimating at the ice surface boundary. Wherever the pressure is released the escaping gas jet entrains loose surface material and carries it to the top of the ice where it is carried downslope and/or downwind and deposited in a fan shape. Here we model two stages of this scenario: first, the cleaning of CO2 slab ice from dust, and then, the breaking of the slab ice plate under the pressure built below it by subliming ice. Our modeling results and analysis of HiRISE images support the gas jet hypothesis and show that outbursts happen very early in spring.  相似文献   

8.
In order to study the stability of martian climate, we constructed a two-dimensional (horizontal-vertical) energy balance model. The long-term CO2 mass exchange process between the atmosphere and CO2 ice caps is investigated with particular attention to the effect of planetary ice distribution on the climate stability. Our model calculation suggests that high atmospheric pressure presumed for past Mars would be unstabilized if H2O ice widely prevailed. As a result, a cold climate state might have been achieved by the condensation of atmospheric CO2 onto ice caps. On the other hand, the low atmospheric pressure, which is buffered by the CO2 ice cap and likely close to the present pressure, would be unstabilized if the CO2 ice albedo decreased. This may have led the climate into a warm state with high atmospheric pressure owing to complete evaporation of CO2 ice cap. Through the albedo feedback mechanisms of H2O and CO2 ices in the atmosphere-ice cap system, Mars may have experienced warm and cold climates episodically in its history.  相似文献   

9.
《Planetary and Space Science》2007,55(10):1328-1345
The planetary fourier spectrometer (PFS) for the Mars express mission (MEX) is an infrared spectrometer operating in the wavelength range from 1.2 to 45 μm by means of two spectral channels, called SWC (short wavelength channel) and LWC (long wavelength channel), covering, respectively, 1.2–5.5 and 5.5–45 μm.The middle-spring Martian north polar cap (Ls∼40°) has been observed by PFS/MEX in illuminated conditions during orbit 452. The SWC spectra are here used to study the cap composition in terms of CO2 ice, H2O ice and dust content. Significant spectral variation is noted in the cap interior, and regions of varying CO2 ice grain sizes, water frost abundance, CO2 ice cover and dust contamination can be distinguished. In addition, we correlate the infrared spectra with an image acquired during the same orbit by the OMEGA imaging spectrometer and with the altimetry from MOLA data. Many of the spectra variations correlate with heterogeneities noted in the image, although significant spectral variations are not discernible in the visible. The data have been divided into five regions with different latitude ranges and strong similarities in the spectra, and then averaged. Bi-directional reflectance models have been run with the appropriate lighting geometry and used to fit the observed data, allowing for CO2 ice and H2O ice grain sizes, dust and H2O ice contaminations in the form of intimate granular mixtures and spatial mixtures.A wide annulus of dusty water ice surrounds the recessing CO2 seasonal cap. The inner cap exhibits a layered structure with a thin CO2 layer with varying concentrations of dark dust, on top of an H2O ice underneath ground. In the best-fits, the ices beneath the top layer have been considered as spatial mixtures. The results are still very good everywhere in the spectral range, except where the CO2 ice absorption coefficients are such that even a thin layer is enough to totally absorb the incoming radiation (i.e. the band is saturated). This only happens around 3800 cm−1, inside the strong 2.7-μm CO2 ice absorption band. The effect of finite snow depth has been investigated through a layered albedo model. The thickness of the CO2 ice deposits increases with latitude, ranging from 0.5–1 g cm−2 within region II to 60–80 g cm−2 within the highest-latitude (up to 84°N) region V.Region I is at the cap edge and extends from 65°N to 72°N latitude. No CO2 ice is present in this region, which consists of relatively large grains of water ice (20 μm), highly contaminated by dust (0.15 wt%). The adjacent region II is a narrow region [76–79°N] right at the edge of the north residual polar cap. This region is very distinct in the OMEGA image, where it appears to surround the whole residual cap. The CO2 ice features are barely visible in these spectra, except for the strong saturated 2.7 μm band. It basically consists of a thin layer of 5-mm CO2 ice on top of an H2O ice layer with the same composition as region I. A third interesting region III is found all along the shoulder of the residual cap [79–81°N]. It extends over 1.5 km in altitude and over only 2° of latitude and consists of CO2 ice with a large dust content. It is an admixture of CO2 ice (3–4 mm), with several tens of ppm by mass of water ice and more than 2 ppt by mass of dust. The surface temperatures have been retrieved from the LWC spectra for each observation. We found an increase in the surface temperature in this region, indicating a spatial mixture of cold CO2 ice and warmer dust/H2O ice. Region IV is close to the top of the residual cap [81–84°N]; it is much brighter than region III, with a dust content 10 times lower than the latter. The CO2 grain size is 3 mm and strong CO2 ice features are present in the data, indicating a thicker CO2 ice layer than in region II (1–2 g cm−2). The final region V is right at the top of the residual cap (⩾84°N). It is “pure” CO2 ice (no dust) of 5 mm grain sizes, with 30 ppm by weight of water ice. The CO2 ice features are very pronounced and the 2.7 μm band is saturated. The optical thickness is close to the semi-infinite limit (30–40 g cm−2). Assuming a snowpack density of 0.5 g cm−3, we get a minimum thickness of 1–2 cm for the top-layer of regions II and III, 4–10 cm for region IV, and ⩾60–80 cm thickness for region V. These values are in close agreement with several recent results for the south seasonal polar cap.These results should provide new, useful constraints in models of the Martian climate system and volatile cycles.  相似文献   

10.
The Mars Express spacecraft has a highly inclined orbit around Mars and so has been able to observe the south pole of Mars in illuminated conditions at the end of the southern summer (Ls=330). Spectra from the planetary Fourier spectrometer (PFS) short wavelength (SW) channel were recorded over the permanent ice cap to study its composition in terms of CO2 ice and H2O ice. Models are fitted to the observed data, which include a spatial mixture of soil (not covered by ice) and CO2 frost (with a specific grain size and a small amount of included dust and H2O ice). Two different kinds of spectra were observed: those over the permanent polar cap with almost pure CO2 ice, negligible water ice, no soil fraction required, and bright; and those over mixed terrain (at the edge of the cap or near troughs) containing a significant soil spatial fraction, more water ice and smaller CO2 grain size. The amount of water ice given by fits to scaled albedo models is less than 10 ppm by weight. When using multi-stream reflectance models with the appropriate lighting geometry, the water amount must be 2-5 times greater than the albedo fit (less than 50 ppm). At the periphery of the residual polar cap, we found a region almost completely covered by water frost, modeled as a mixture of micron-sized and sub-mm sized grains. Our result using a granular mixture of micron-sized grains of water ice and dust with the CO2 grains is different from the modeling of OMEGA polar cap observations using molecular mixtures.  相似文献   

11.
《Icarus》1986,67(1):1-18
A thermal/diffusive model of H2O kinetics and equilibrium was developed to investigate the long-term evolution and depth distribution of subsurface ice on Mars. The model quantitatively takes into account (1) obliquity variations; (2) eccentricity variations; (3) long-term changes in the solar luminosity; (4) variations in the argument of subsolar meridian (in planetocentric equatorial coordinates); (5) albedo changes at higher latitudes due to seasonal phase changes of CO2 and the varying extent of CO2 ice cover; (6) planetary internal heat flow; (7) temperature variations in the regolith as a function of depth, time, and latitude due to the above factors; (8) atmospheric pressure variations over a 104-year time scale; (9) the effects of factors (1) through (5) on seasonal polar cap temperatures; and (10) Knudsen and molecular diffusion of H2O through the regolith. The migration of H2O into or out of the regolith is determined by two boundary conditions, the H2O vapor pressure at the subsurface ice boundary and the annual average H2O concentration at the base of the atmosphere. These are controlled respectively by the annual average regolith temperature at the given depth and seasonal temperatures at the polar cap. Starting from an arbitrary initial uniform depth distribution of subsurface ice, H2O fluxes into or out of the regolith are calculated for 100 selected obliquity cycles, each representing a different epoch in Mars' history. The H2O fluxes are translated into ice thicknesses and extrapolated over time to give the subsurface ice depth as a function of latitude and time. The results show that obliquity variations influence annual average regolith temperatures in varying degrees, depending on latitude, with the greatest effect at the poles and almost no effect at 40° lat. Insolation changes at the pole, due to obliquity, argument of subsolar meridian, and eccentricity variations can produce enormous atmospheric H2O concentration variations of ≈6 orders of magnitude over an obliquity cycle. Superimposed on these cyclic variations is a slow, monotonic change due to the increasing solar luminosity. Albedo changes at the polar cap due to seasonal phase changes of CO2 and the varying thickness of the CO2 ice cover are critically important in determining annual average atmospheric H2O concentrations. Despite the strongly oscillating character of the boundary conditions, only small amounts of H2O are exchanged between the regolith and the atmosphere per obliquity cycle (<10 g/cm2). The net result of H2O migration is that the regolith below 30–40° lat is depleted of subsurface ice, while the regolith above 30–40° lat contains permanent ice due to the depth of penetration of the annual thermal wave. This result is supported by recent morphological studies. The rate of migration of H2O is strongly dependent on average pore/capillary radius for which we have assumed values of 1 and 10 μm. We estimate that the H2O ice removed from the regolith would produce a permanent ice cap with a volume between 2 × 106 and 6 × 106 km3. This generally agrees with estimates deduced from deflationary features at lower latitudes, depositional features at higher latitudes, and the mass of the polar caps.  相似文献   

12.
It is uncertain whether the residual (perennial) south polar cap on Mars is a transitory or a permanent feature in the current Martian climate. While there is no firm evidence for complete disappearance of the cap in the past, clearly observable changes have been documented. Observations suggest that the perennial cap lost more CO2 material in the spring/summer season prior to the Mariner 9 mission than in those same seasons monitored by Viking and Mars Global Surveyor. In this paper we examine one process that may contribute to these changes—the radiative effects of a planet encircling dust storm that starts during late Martian southern spring on the stability of the perennial south polar cap. To approach this, we model the radiative transfer through a dusty planetary atmosphere bounded by a sublimating CO2 surface.A critical parameter for this modeling is the surface albedo spectrum from the near-UV to the thermal-IR, which was determined from both space-craft and Earth-based observations covering multiple wavelength regimes. Such a multi-wavelength approach is highly desirable since one spectral band by itself cannot tightly constrain the three-parameter space for polar surface albedo models, namely photon “scattering length” in the CO2 ice and the amounts of intermixed water and dust.Our results suggest that a planet-encircling dust storm with onset near solstice can affect the perennial cap's stability, leading to advanced sublimation in a “dusty” year. Since the total amount of solid CO2 removed by a single storm may be less than the total CO2 thickness, a series of dust storms would be required to remove the entire residual CO2 ice layer from the south perennial cap.  相似文献   

13.
Cassini 2.2-cm radar and radiometric observations of seven of Saturn's icy satellites yield properties that apparently are dominated by subsurface volume scattering and are similar to those of the icy Galilean satellites. Average radar albedos decrease in the order Enceladus/Tethys, Hyperion, Rhea, Dione, Iapetus, and Phoebe. This sequence most likely corresponds to increasing contamination of near-surface water ice, which is intrinsically very transparent at radio wavelengths. Plausible candidates for contaminants include ammonia, silicates, metallic oxides, and polar organics (ranging from nitriles like HCN to complex tholins). There is correlation of our targets' radar and optical albedos, probably due to variations in the concentration of optically dark contaminants in near-surface water ice and the resulting variable attenuation of the high-order multiple scattering responsible for high radar albedos. Our highest radar albedos, for Enceladus and Tethys, probably require that at least the uppermost one to several decimeters of the surface be extremely clean water ice regolith that is structurally complex (i.e., mature) enough for there to be high-order multiple scattering within it. At the other extreme, Phoebe has an asteroidal radar reflectivity that may be due to a combination of single and volume scattering. Iapetus' 2.2-cm radar albedo is dramatically higher on the optically bright trailing side than the optically dark leading side, whereas 13-cm results reported by Black et al. [Black, G.J., Campbell, D.B., Carter, L.M., Ostro, S.J., 2004. Science 304, 553] show hardly any hemispheric asymmetry and give a mean radar reflectivity several times lower than the reflectivity measured at 2.2 cm. These Iapetus results are understandable if ammonia is much less abundant on both sides within the upper one to several decimeters than at greater depths, and if the leading side's optically dark contaminant is present to depths of at least one to several decimeters. As argued by Lanzerotti et al. [Lanzerotti, L.J., Brown, W.L., Marcantonio, K.J., Johnson, R.E., 1984. Nature 312, 139-140], a combination of ion erosion and micrometeoroid gardening may have depleted ammonia from the surfaces of Saturn's icy satellites. Given the hypersensitivity of water ice's absorption length to ammonia concentration, an increase in ammonia with depth could allow efficient 2.2-cm scattering from within the top one to several decimeters while attenuating 13-cm echoes, which would require a six-fold thicker scattering layer. If so, we would expect each of the icy satellites' average radar albedos to be higher at 2.2 cm than at 13 cm, as is the case so far with Rhea [Black, G., Campbell, D., 2004. Bull. Am. Astron. Soc. 36, 1123] as well as Iapetus.  相似文献   

14.
We present a detailed study of an Iapetus mosaic of VIMS data with high spatial resolution (0.5 × 0.5° or ∼6.4 km/pixel). The spectra were taken in August 2007 and provide the highest VIMS spatial resolution data for this object during Cassini’s primary mission. We analyze this set of data using a statistical clustering approach to reduce the analysis of a large number of data (∼104 spectra from 0.35 to 5.10 μm) to the study of seven representative groups accounting for 99.6% of the surface covered by the original sample. We analyze the spectral absorption bands in the spectra of the different clusters indicative of different composition over the observed surface. We find coherence between the distribution of the clusters and the geographical features on the surface. We give special attention to the study of the water ice and CO2 bands. We find that CO2 is widespread over the entire surface being studied, including the bright and dark areas on Iapetus’ surface, and is probably trapped at the molecular level with other materials. The strength of the CO2 band in the areas where both, H2O- and carbon-bearing materials exist, gives support to the hypothesis that this volatile is formed on the surface of Iapetus as a product of irradiation of these two components. Finally, we also compare the Iapetus CO2 with that on other satellites confirming, that there are evident differences on the center, depth and width of the band on Iapetus and Phoebe, where CO2 has been suggested to be endogenous.  相似文献   

15.
We have used Cassini stereo images to study the topography of Iapetus' leading side. A terrain model derived at resolutions of 4-8 km reveals that Iapetus has substantial topography with heights in the range of −10 km to +13 km, much more than observed on the other middle-sized satellites of Saturn so far. Most of the topography is older than 4 Ga [Neukum, G., Wagner, R., Denk, T., Porco, C.C., 2005. Lunar Planet. Sci. XXXVI. Abstract 2034] which implies that Iapetus must have had a thick lithosphere early in its history to support this topography. Models of lithospheric deflection by topographic loads provide an estimate of the required elastic thickness in the range of 50-100 km. Iapetus' prominent equatorial ridge [Porco, C.C., and 34 colleagues, 2005. Science 307, 1237-1242] reaches widths of 70 km and heights of up to 13 km from their base within the modeled area. The morphology of the ridge suggests an endogenous origin rather than a formation by collisional accretion of a ring remnant [Ip, W.-H., 2006. Geophys. Res. Lett. 33, doi:10.1029/2005GL025386. L16203]. The transition from simple to complex central peak craters on Iapetus occurs at diameters of 11±3 km. The central peaks have pronounced conical shapes with flanking slopes of typically 11° and heights that can rise above the surrounding plains. Crater depths seem to be systematically lower on Iapetus than on similarly sized Rhea, which if true, may be related to more pronounced crater-wall slumping (which widens the craters) on Iapetus than on Rhea. There are seven large impact basins with complex morphologies including central peak massifs and terraced walls, the largest one reaches 800 km in diameter and has rim topography of up to 10 km. Generally, no rings are observed with the basins consistent with a thick lithosphere but still thin enough to allow for viscous relaxation of the basin floors, which is inferred from crater depth-to-diameter measurements. In particular, a 400-km basin shows up-domed floor topography which is suggestive of viscous relaxation. A model of complex crater formation with a viscoplastic (Bingham) rheology [Melosh, H.J., 1989. Impact Cratering. Oxford Univ. Press, New York] of the impact-shocked icy material provides an estimate of the effective cohesion/viscosity at . The local distribution of bright and dark material on the surface of Iapetus is largely controlled by topography and consistent with the dark material being a sublimation lag deposit originating from a bright icy substrate mixed with the dark components, but frost deposits are possible as well.  相似文献   

16.
G Tobie  F Forget  F Lott 《Icarus》2003,164(1):33-49
In 1998, the Mars Orbiter Laser Altimeter revealed the presence of isolated or quasi-periodic thick clouds during the martian polar night. They are believed to be composed of CO2 ice particles and to be tilted against the wind direction, a feature characteristic of vertically propagating orographic gravity waves. To support that interpretation, we present here numerical simulations with a two-dimensional anelastic model of stratified shear flow that includes simple CO2 ice microphysics. In some of the simulations presented, the orography is an idealized trough, with dimensions characteristic of the many troughs that shape the Mars polar cap. In others, it is near the real orography. In the polar night conditions, our model shows that gravity waves over the north polar cap are strong enough to induce adiabatic cooling below the CO2 frost point. From this cooling, airborne heterogeneous nucleation of CO2 ice particles occurs from the ground up to the altitude of the polar thermal inversion. Although the model predicts that clouds can be present above 15 km, only low altitude clouds can backscatter the Laser beams of MOLA at a detectable level. Accordingly, the shape of the Laser echoes is related to the shape of the clouds at low level, but do not necessarily coincide with the top of the clouds. The model helps to interpret the cloud patterns observed by MOLA. Above an isolated orographic trough, an isolated extended sloping cloud tilted against the wind is obtained. The model shows that the observed quasi-periodic clouds are due to the succession of small-scale topographic features, rather than to the presence of resonant trapped lee waves. Indeed, the CO2 condensation greatly damps the buoyancy force, essential for the maintenance of gravity waves far from their sources. Simulations with realistic topography profiles show the cloud response is sensitive to the wind direction. When the wind is directed upslope of the polar cap, on the one hand, a large scale cloud, modulated by small-scale waves, forms just above the ground. On the other hand, when the wind is directed downslope, air is globally warmed, and periodic ice clouds induced by small-scale orography form at altitudes higher than 3-5 km above the ground. In both cases, a good agreement between the simulated echoes and the observed one is obtained. According to our model, we conclude that the observed clouds are quasi-stationary clouds made of moving ice particles that successively grow and sublimate by crossing cold and warm phases of orographic gravity waves generated by the successive polar troughs. We also find that the rate of ice precipitation is relatively weak, except when there is a large scale air dynamical cooling.  相似文献   

17.
《Planetary and Space Science》2007,55(10):1319-1327
The advance and retreat of the polar caps were one of the first observations that indicated Mars had seasons. Because a large portion of the atmosphere is cycled in and out of the seasonal caps during the year, the frost deposits play a significant role in regional and global atmospheric circulation. Understanding the nature of the seasonal polar caps is imperative if we are to understand the current Martian climate. In this study, we track the seasonal cap edges as a function of season and longitude for the fall and winter seasons (MY27), using data from the Planetary Fourier Spectrometer (PFS) onboard the Mars Express (MEX) ESA mission. Making use of the rapid rise (decrease) in surface temperature that occurs when CO2 ice is removed (deposited), in a first approach, we defined the advancing cap edge to be where the surface temperature drops below 150 K, and the retreating cap edge where the surface temperature rises above 160 K. In this case, starting from Ls∼50°, the edge progression speed start to be longitude dependent. In the hemisphere that extends form the eastern limit of the Hellas basin to the western limit of the Argyrae basin (and containing the two) the edges progression speed is about a half than that of the other hemisphere; the cap is thus asymmetric and, unexpectedly, no CO2 ice seems to be present inside the basins. This is because the above mentioned surface temperatures used in this approach to detect the cap edges are not adequate (too low) for the high-pressure regions inside the basins where, following the Clausius–Clapeyron's law, the CO2 condensation temperature can be several degrees higher than that of the adjacent lower-pressure regions. In the second, final approach, special attention has been given to this aspect and the advancing and retreating cap edges are defined where, respectively, the surface temperatures drop below and rise above the CO2 condensation temperature for the actual surface pressure values. Now, the results show an opposite situation than the previous one, with the progression speed being higher and the cap more extended (up to −30° latitude) in the hemisphere containing the two major Martian basins. During the fall season, up to Ls∼50° the South Martian polar cap consists of CO2 frost deposits that advance towards lower latitudes at a constant speed of 10° of latitude per 15 degrees of Ls. The maximum extension (−40° latitude) of the South polar cap occurs somewhere in the 80°–90° Ls range. At the winter solstice, when the edges of the polar night start moving poleward, the cap recession has already started, in response to seasonal changes in insolation. The CO2 ice South polar cap will recede with a constant speed of ∼5° of latitude every 25° degrees of Ls during the whole winter. The longitudinal asymmetries reduce during the cap retreat and completely disappear around Ls=145°.  相似文献   

18.
The structure, dynamical equilibrium, and evolution of Saturn’s moon Iapetus are studied. It has been shown that, in the current epoch, the oblateness of the satellite ε2 ≈ 0.046 does not correspond to its angular velocity of rotation, which causes the secular spherization behavior of the ice shell of Iapetus. To study this evolution, we apply a spheroidal model, containing a rock core and an ice shell with an external surface ε2, to Iapetus. The model is based on the equilibrium finite-difference equation of the Clairaut theory, while the model parameters are taken from observations. The mean radius of the rock core and the oblateness of its level surface, ε1 ≈ 0.028, were determined. It was found that Iapetus is covered with a thick ice shell, which is 56.6% of the mean radius of the figure. We analyze a role of the core in the evolution of the shape of a gravitating figure. It was determined that the rock core plays a key part in the settling of the ice masses of the equatorial bulge, which finally results in the formation of a large circular equatorial ridge on the surface of the satellite. From the known mean altitude of this ice ridge, it was found that, in the epoch of its formation, the rotation period of Iapetus was 166 times shorter than that at present, as little as T ≈ 11h27m. This is consistent with the fact that a driving force of the evolution of the satellite in our model was its substantial despinning. The model also predicts that the ice ridge should be formed more intensively in the leading (dark and, consequently, warmer) hemisphere of the satellite, where the ice is softer. This inference agrees with the observations: in the leading hemisphere of Iapetus, the ridge is actually high and continuous everywhere, while it degenerates into individual ice peaks in the opposite colder hemisphere.  相似文献   

19.
The Martian seasonal CO2 ice caps advance and retreat each year. In the spring, as the CO2 cap gradually retreats, it leaves behind an extensive defrosting zone from the solid CO2 cap to the location where all CO2 frost has sublimated. We have been studying this phenomenon in the north polar region using data from the THermal EMission Imaging System (THEMIS), a visible and infra-red (IR) camera on the Mars Odyssey spacecraft, and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor. Recently, we discovered that some THEMIS images of the CO2 defrosting zone contain evidence for a distinct defrosting phenomenon: some areas just south of the CO2 cap edge are too bright in visible wavelengths to be defrosted terrain, but too warm in the IR to be CO2 ice. We hypothesize that we are seeing evidence for a seasonal annulus of water ice (frost) that recedes with the seasonal CO2 cap, as predicted by previous workers. In this paper, we describe our observations with THEMIS and compare them to simultaneous observations by TES and OMEGA. All three instruments find that this phenomenon is distinct from the CO2 cap and most likely composed of water ice. We also find strong evidence that the annulus widens as it recedes. Finally, we show that this annulus can be detected in the raw THEMIS data as it is collected, enabling future long-term onboard monitoring.  相似文献   

20.
The mostly carbon dioxide (CO2) atmosphere of Mars condenses and sublimes in the polar regions, giving rise to the familiar waxing and waning of its polar caps. The signature of this seasonal CO2 cycle has been detected in surface pressure measurements from the Viking and Pathfinder landers. The amount of CO2 that condenses during fall and winter is controlled by the net polar energy loss, which is dominated by emitted infrared radiation from the cap itself. However, models of the CO2 cycle match the surface pressure data only if the emitted radiation is artificially suppressed suggesting that they are missing a heat source. Here we show that the missing heat source is the conducted energy coming from soil that contains water ice very close to the surface. The presence of ice significantly increases the thermal conductivity of the ground such that more of the solar energy absorbed at the surface during summer is conducted downward into the ground where it is stored and released back to the surface during fall and winter thereby retarding the CO2 condensation rate. The reduction in the condensation rate is very sensitive to the depth of the soil/ice interface, which our models suggest is about 8 cm in the Northern Hemisphere and 11 cm in the Southern Hemisphere. This is consistent with the detection of significant amounts of polar ground ice by the Mars Odyssey Gamma Ray Spectrometer and provides an independent means for assessing how close to the surface the ice must be. Our results also provide an accurate determination of the global annual mean size of the atmosphere and cap CO2 reservoirs, which are, respectively, 6.1 and 0.9 hPa. They also indicate that general circulation models will need to account for the effect of ground ice in their simulations of the seasonal CO2 cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号