首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   

2.
Experiments were conducted under atmospheric pressures appropriate for Earth and Mars to determine the efficiency of sand in saltation as a means for raising dust into the atmosphere under wind speeds which would otherwise be too low for dust entrainment. Experiments involving intimate mixtures of sand and dust (1:1 ratio by mass) showed that after an initial flurry of activity of a few seconds duration, the bed stabilized with little movement of either sand or dust. In contrast, sands set into saltation upwind from dust beds were efficient in injecting the dust into suspension, with low-pressure Martian conditions being some five times more efficient than terrestrial conditions. This result is attributed to the higher kinetic energies of the saltating grains on Mars, which is a consequence of the higher velocities of the grains. These results suggest that sands saltating across dust beds on Mars are an effective means for setting dust into suspension.  相似文献   

3.
We have performed field experiments to further develop and validate the Mars Oxidation Instrument (MOI) as well as measurement strategies for the in situ characterization of oxidation mechanisms, kinetics, and carbon cycling on Mars. Using the Atacama Desert as a test site for the current dry conditions on Mars, we characterized the chemical reactivity of surface and near-surface atmosphere in the dry core of the Atacama. MOI is a chemiresistor-based sensor array that measures the reaction rates of chemical films that are sensitive to particular types of oxidants or that mimic chemical characteristics of pre-biotic and biotic materials. With these sensors, the chemical reactivity of a planetary environment is characterized by monitoring the resistance of the film as a function of time. Our instrumental approach correlates reaction rates with dust abundance, UV flux, humidity, and temperature, allowing discrimination between competing hypotheses of oxidant formation and organic decomposition. The sensor responses in the Atacama are consistent with an oxidative attack by strong acids triggered by dust accumulation, followed by transient wetting due to an increase in relative humidity during the night. We conclude that in the Atacama Desert, and perhaps on Mars, low pH resulting from acid accumulation, combined with limited water availability and high oxidation potential, can result in oxidizing acid reactions on dust and soil surfaces during low-moisture transient wetting events (i.e. thin films of water). These soil acids are expected to play a significant role in the oxidizing nature of the soils, the formation of mineral surface coatings, and the chemical modification of organics in the surface material.  相似文献   

4.
A new optical instrument has been developed to precisely measure the local accumulation of dust particles on a surface. This device can be used in combination with applied magnetic or electric fields in order to investigate physical properties of the dust and its interactions with the surface. In this prototype instrument, permanent magnets were used to capture suspended magnetic dust in a Mars simulation wind tunnel. The scientific objectives that may be addressed with such a device are discussed.  相似文献   

5.
Experimental results are presented of wind induced grain detachment under Mars simulation conditions. A simple force balance equation is applied to quantify the wind shear stress required for removal of glass spheres from a sand bed. The transport of fine grained martian dust is simulated by the detachment of hollow glass spheres which resemble low mass density dust aggregates observed to form during simulations when using Mars analogue material. The results agree well with observations of dust removal and wind speed measurements made by the NASA Viking landers at the martian surface. This work supports the suggestion that dust aggregate fragmentation allows wind induced dust entrainment at substantially lower wind shear than that of solid sand grains and has direct application to the study of global dust transport and martian climatology.  相似文献   

6.
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m−2 K−1s−1/2 at mid-latitudes (60° S to 60° N) and 600 J m−2 K−1s−1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.  相似文献   

7.
In the Xanthe Terra region of Mars, two forms of flow fields are observed on the walls of Mojave Crater, a fresh impact site with a maximum age of Late Hesperian. Flow fields with steep, lobate margins are consistent with emplacement of a highly viscous medium. The focus of this report is on fan-shaped landforms that share many morphologic attributes in common with terrestrial alluvial fans, including a semi-conical form, branching tributary networks, distributary channels and incised channels. Collectively, these sub-kilometer-scale landforms have attributes consistent with overland flow of fluids and formation of fans by water and gravity-driven alluvial sedimentation. Superposition and cross-cutting relationships indicate that fan formation occurred in multiple phases that may have been a single event or multiple, temporally distinct episodes. Many aspects of the fan formation are ill-constrained, including the amount and source of fluid as well as the duration of fan formation and modification. Fans are concentrated on the crater walls and the ejecta blanket shows minimal evidence of fluvial erosion. Similar fan-shaped landforms to those in Mojave Crater are extremely rare on Mars. The localization of fans to Mojave Crater implies that the impact event played a role in the formation of these sub-kilometer fans. This is the first geologic evidence on Mars that tentatively supports a link between impact crater events and the liberation of water for surface runoff.  相似文献   

8.
The Dry Valleys of Antarctica are an excellent analog of the environment at the surface of Mars. Soil formation histories involving slow processes of sublimation and migration of water-soluble ions in polar desert environments are characteristic of both Mars and the Dry Valleys. At the present time, the environment in the Dry Valleys is probably the most similar to that in the mid-latitudes on Mars although similar conditions may be found in areas of the polar regions during their respective Mars summers. It is thought that Mars is currently in an interglacial period, and that subsurface water ice is sublimating poleward. Because the Mars sublimation zones seem to be the most similar to the Antarctic Dry Valleys, the Dry Valleys-type Mars climate is migrating towards the poles. Mars has likely undergone drastic obliquity changes, which means that the Dry Valleys analog to Mars may be valid for large parts of Mars, including the polar regions, at different times in geologic history. Dry Valleys soils contain traces of silicate alteration products and secondary salts much like those found in Mars meteorites. A martian origin for some of the meteorite secondary phases has been verified previously; it can be based on the presence of shock effects and other features which could not have formed after the rocks were ejected from Mars, or demonstrable modification of a feature by the passage of the meteorite through Earth's atmosphere (proving the feature to be pre-terrestrial). The martian weathering products provide critical information for deciphering the near-surface history of Mars. Definite martian secondary phases include Ca-carbonate, Ca-sulfate, and Mg-sulfate. These salts are also found in soils from the Dry Valleys of Antarctica. Results of earlier Wright Valley work are consistent with what is now known about Mars based on meteorite and orbital data. Results from recent and current Mars missions support this inference. Aqueous processes are active even in permanently frozen Antarctic Dry Valleys soils, and similar processes are probably also occurring on Mars today, especially at the mid-latitudes. Both weathering products and life in Dry Valleys soils are distributed heterogeneously. Such variations should be taken into account in future studies of martian soils and also in the search for possible life on Mars.  相似文献   

9.
Due to possible planet contamination, before Earth-departure, Mars landers and/or rovers are subject to strict requirements on the maximum number of attached spores or particles that carry viable microbes. Estimates of the release rates of these particles on Mars are made considering the three mechanisms of wind shear, collision with suspended dust, and collision with saltating sand particles. The first mechanism is found to apply only to particles of size greater than , the second mechanism has a characteristic particle adhesion half life that is so long as to be of no concern, and the third mechanism is deemed of possible importance, vitally depending on attached particle size and detailed surface characteristics of sand and spacecraft. While not investigated in detail, dust devils are shown to be possible contributors to release of microbe-containing particles.  相似文献   

10.
We have developed an artificial neural net detector for use on board Mars rovers that correctly identifies calcite under Mars analogue dust (JSC Mars-1 regolith simulant) layers up to ∼100 μm thickness and 80% aerial coverage. Both the detector output and the band depth of the ∼2300 nm CO=3 absorption are linearly related to the surface area of exposed calcite. This detector provides a means for rapid and robust automated recognition of calcite on Mars in areas of active aeolian erosion.  相似文献   

11.
The Thermal Emission Spectrometer (TES) has observed a high-silica material in the dark regions of Mars that is spectrally similar to obsidian glass and may have a volcanic origin. An alternate interpretation is that the spectrally amorphous material consists of clay minerals or some other secondary material, formed by chemical alteration of surface rocks. The regions where this material is observed (e.g., Acidalia Planitia) have relatively high spectral contrast, suggesting that the high-silica material exists as coarse particulates, indurated soils or cements, within rocks, or as indurated coatings on rock surfaces. The geologic interpretation of this spectral result has major implications for understanding magmatic evolution and weathering processes on Mars. One of the complications in interpreting spectral observations of glasses and clay minerals is that both are structurally and compositionally complex. In this study, we perform a detailed spectroscopic analysis of indurated smectite clay minerals and relate their thermal emission spectral features to structural and crystal chemical properties. We examine the spectral similarities and differences between smectite clay minerals and obsidian glass from a structural-chemical perspective, and make further mineralogical interpretations from previous TES results. The results suggest that neither smectite clays nor any clay mineral with similar structural and chemical properties can adequately explain TES observations of high-silica materials in some martian dark regions. If the spectrally amorphous materials observed by TES do represent an alteration product, then these materials are likely to be poorly crystalline aluminosilicates. While all clay minerals have Si/O ratios ?0.4, the position of the emissivity minimum at Mars suggests a Si/O ratio of 0.4-0.5. The spectral observation could be explained by the existence of a silica-rich alteration product, such as Al- or Fe-bearing opal, an intimate physical mixture of relatively pure silica and other aluminosilicates (such as clay minerals or clay precursors), or certain zeolites. The chemical alteration of basaltic rocks on Mars to phyllosilicate-poor, silica-rich alteration products provides a geologically reasonable and consistent explanation for the global TES surface mineralogical results.  相似文献   

12.
Windborne dust is one of the most important and dynamic factors affecting the Martian surface and its atmosphere, yet there lacks a detailed physical understanding how it is transported. We present a miniature laser-based optoelectronic instrument for use on a Mars lander. It integrates sensors capable of quantifying important parameters needed for the understanding and modeling of dust transport on Mars, these include wind speed, wind direction, suspended dust concentration, dust deposition and removal rates as well as the electrification of the Martian dust. Dust electrification has been seen from experimental simulations to be of considerable importance to the processes of adhesion and cohesion, specifically prompting the formation of low mass density dust aggregates. Testing of this prototype instrument has been performed under simulated Martian conditions in a wind tunnel facility. The results and analysis of its functionality will be presented.  相似文献   

13.
Mars     
Mars is the fourth planet out from the sun. It is a terrestrial planet with a density suggesting a composition roughly similar to that of the Earth. Its orbital period is 687 days, its orbital eccentricity is 0.093 and its rotational period is about 24 hours. Mars has two small moons of asteroidal shapes and sizes (about 11 and 6 km mean radius), the bigger of which, Phobos, orbits with decreasing semimajor orbit axis. The decrease of the orbit is caused by the dissipation of tidal energy in the Martian mantle. The other satellite, Deimos, orbits close to the synchronous position where the rotation period of a planet equals the orbital period of its satellite and has hardly evolved with time. Mars has a tenous atmosphere composed mostly of CO with strong winds and with large scale aeolian transport of surface material during dust storms and in sublimation-condensation cycles between the polar caps. The planet has a small magnetic field, probably not generated by dynamo action in the core but possibly due to remnant magnetization of crustal rock acquired earlier from a stronger magnetic field generated by a now dead core dynamo. A dynamo powered by thermal power alone would have ceased a few billions of years ago as the core cooled to an extent that it became stably stratified. Mars' topography and its gravity field are dominated by the Tharsis bulge, a huge dome of volcanic origin. Tharsis was the major center of volcanic activity, a second center is Elysium about 100° in longitude away. The Tharsis bulge is a major contributor to the non-hydrostaticity of the planet's figure. The moment of inertia factor together with the mass and the radius presently is the most useful constraint for geophysical models of the Martian interior. It has recently been determined by Doppler range measurements to the Mars Pathfinder Lander to be (Folkner et al. 1997). In addition, models of the interior structure use the chemistry of the SNC meteorites which are widely believed to have originated on Mars. According to the models, Mars is a differentiated planet with a 100 to 200 km thick basaltic crust, a metallic core with a radius of approximately half the planetary radius, and a silicate mantle. Mantle dynamics is essential in forming the elements of the surface tectonics. Models of mantle convection find that the pressure-induced phase transformations of -olivine to -spinel, -spinel to -spinel, and -spinel to perovskite play major roles in the evolution of mantle flow fields and mantle temperature. It is not very likely that the -spinel to perovskite transition is present in Mars today, but a few 100 km thick layer of perovskite may have been present in the lower mantle immediately above the core-mantle boundary early in the Martian history when mantle temperatures were hotter than today. The phase transitions act to reduce the number of upwellings to a few major plumes which is consistent with the bipolar distribution of volcanic centers of Mars. The phase transitions also cause a partial layering of the lower mantle which keeps the lower mantle and the core from extensive cooling over the past aeons. A relatively hot, fluid core is the most widely accepted explanation for the present lack of a self-generated magnetic field. Growth of an inner core which requires sub-liquidus temperatures in the core would have provided an efficient mechanism to power a dynamo up to the present day. Received 10 May 1997  相似文献   

14.
The Short Wavelength Channel of the Planetary Fourier Spectrometer (PFS) covers the 8333-1750 cm−1 (1.2-5.7 μm) spectral range, that is well suited to study the reflectance properties of the martian soil. These properties vary with time due to the dust dynamics in the martian environment. Wind can blow off dust exposing soil and fresh rocks and can support grain mobility inducing local dust settling. We have analyzed PFS data from January 2004 to April 2005. A detailed photometric study of the radiance acquired from the planet has been performed in order to compare correctly measurements obtained at different viewing geometries and to produce a mosaic image of the planet. The results show good agreement with data from the Thermal Emission Spectrometer (on-board NASA Mars Global Surveyor orbiter), although some variations are observed. Some albedo changes could be due to small to medium scale dust storms. A very accurate estimation of the limb-darkening parameter has been computed from the analyzed data. The obtained values are compared with a surface roughness and a thermal inertia map in order to assess the relation between the limb-darkening parameter and the physical properties of surface.  相似文献   

15.
The paper presents the results of a new analysis of the data from the Magnetic Properties Experiment onboard the Mars Pathfinder Spacecraft. The spectral data from the extended visible region of material adhering to the magnets are presented as well as the time dependence of dust accumulation to the magnets. A new model is developed to estimate the magnetic properties of the accumulated dust. It is found that the optical reflection spectra of the magnetic dust differ slightly from the reflection of ground soil/dust in the vicinity of the lander. Several possible hypotheses are given to account for this difference. Magnetic dust has been removed from the magnets at least twice during the 80 sol mission by wind gusts, and it is suggested that this happens in a manner similar to sand blasting. A lower limit for the saturation magnetisation of the most magnetic particles is found to be 5 Am2/kg.  相似文献   

16.
Compositional data analysis was performed on chemical compositions of martian surface materials in order to unravel scenarios of past and present weathering and to evaluate the role of meteoritic accumulation. The observed chemical variability is analyzed by means of principal component analysis. Potential reservoirs that may have contributed primary material to soil formation are assessed. Chemical alteration in the course of in situ weathering is described in terms of alteration vectors that link the compositions of fresh rocks and their weathering crusts. The interplay of localized chemical alteration and global scale re-distribution and mixing of fines material is documented through the identification of different soil forming branches. These branches emanate from distinct compositional domains, which comprise basaltic and basalt-andesitic primary materials, and they converge to a global dust composition, which represents the product of chemical and physical disintegration and subsequent global mixing. Mass balance considerations applied to localized weathering phenomena are in line with findings from experimental acid-sulfate weathering on olivine-bearing basalts and the persistence of secondary silica in evaporitic rocks. In addition the composition and oxidation state of involved volcanic gases is deduced. Our findings corroborate the past activity of volcanic exhalation products in combination with liquid water. We conclude that average martian crust is dominated by basaltic materials at its topmost level and that the amount of meteoritic accumulation may contribute about 6 wt% to the martian fines. From the meteoritic contribution minimum soil formation rates of 60±20 cm/Gyr are derived. Sequestration of atmospheric oxygen during weathering of primary materials may account for the oxygen deficiency of the martian atmosphere. A 4-14-m-thick layer of oxidized martian fines may account for the estimated deficit of 1.7×1018 mol O2 in the martian atmosphere depending on the primary oxidation state of volatile volcanic emanations.  相似文献   

17.
Abstract— The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except Allan Hills 84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote‐sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.  相似文献   

18.
D. Reiss  J. Raack  H. Hiesinger 《Icarus》2011,211(1):917-920
We report on the first observations of bright dust devil tracks (BDDTs) on Earth, observed in the Turpan depression desert in northwestern China, where raindrop impacts on sand surfaces form aggregates of sand, silt and clay resulting in rough surface textures, which are destroyed by passages of dust devils leading to smooth surface textures within the tracks. The differences in photometric properties between the track and outside the tracks cause the albedo differences leading to the formation of BDDTs and similar processes might lead to BDDTs on Mars in areas with thick dust covers.  相似文献   

19.
Eolian sediments on Earth are mostly formed from quartz; they consist, in large part, of eolian sand deposits in deserts, silt and loess deposits in and adjoining present and former glaciated areas, and finally clay-sized particles carried in suspension for relatively long distances and deposited in oceanic areas by winds. The quartz particles in these regimes originally came from a granitic source; stresses in granitic rock formation, glacial action, and wind abrasion are largely responsible for making the particles available for the three kinds of eolian deposits. With respect to eolian sediments on Mars, it appears that an entirely different set of criteria must apply, but some critical parameters can usefully be compared. Evidence for free quartz on Mars is lacking and sand-sized particles are probably basaltic, although there does appear to be a deficit in the sand size range. Glacial action does not appear to be available as a large-scale particle producer but high-velocity winds could be efficient producers of very fine particles. Fine particles may aggregate in a similar way to that observed in the Australian regions where “parna” is seen; this could supply a silt mode on Mars. Impact experiments with basalt in eolian abrasion devices suggest that basalt sand-sized particles fragment rapidly to produce silt and clay-sized detritus. Cohesive forces must be more effective on Mars since the gravitational contribution to the bond/weight ratio (R) is lowe; if R = 1 at about 100 μm on Earth, then R = 1 at about 140 μm on Mars and a much greater range of deposits will be stable. Compared to the terrestrial situation, both larger and smaller particles can be expected to make significant contributions to eolian sediments on Mars. The low gravity and the high speed of moving particles and the relatively weak rock material of which they are composed will allow large-scale fine particle production.  相似文献   

20.
The chemical compositions of shergottite meteorites, basaltic rocks from Mars, provide a broad view of the origins and differentiation of these Martian magmas. The shergottite basalts are subdivided based on their Al contents: high‐Al basalts (Al > 5% wt) are distinct from low‐Al basalts and olivine‐phyric basalts (both with Al < 4.5% wt). Abundance ratios of highly incompatible elements (e.g., Th, La) are comparable in all the shergottites. Abundances of less incompatible elements (e.g., Ti, Lu, Hf) in olivine‐phyric and low‐Al basalts correlate well with each other, but the element abundance ratios are not constant; this suggests mixing between components, both depleted and enriched. High‐Al shergottites deviate from these trends consistent with silicate mineral fractionation. The “depleted” component is similar to the Yamato‐980459 magma; approximately, 67% crystal fractionation of this magma would yield a melt with trace element abundances like QUE 94201. The “enriched” component is like the parent magma for NWA 1068; approximately, 30% crystal fractionation from it would yield a melt with trace element abundances like the Los Angeles shergottite. This component mixing is consistent with radiogenic isotope and oxygen fugacity data. These mixing relations are consistent with the compositions of many of the Gusev crater basalts analyzed on Mars by the Spirit rover (although with only a few elements to compare). Other Mars basalts fall off the mixing relations (e.g., Wishstone at Gusev, Gale crater rocks). Their compositions imply that basalt source areas in Mars include significant complexities that are not present in the source areas for the shergottite basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号